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Rhodnius prolixus (Hemiptera: Reduviidae) is a hematophagous insect native from South America. By the
end of the 20th century, it was one of the main vectors of Chagas disease in Venezuela, Colombia, several
Central American countries and southern Mexico. The aim of the present article is to review the literature
regarding R. prolixus toxicology. British entomologist Vincent B. Wigglesworth carried out the first studies
on this subject over seventy years ago. A wide bibliographical search allowed to locate one hundred and
thirty scientific articles describing the effects of different insecticides on R. prolixus. About one-third of
these articles report the acute toxicity and/or sublethal effects produced by the main synthetic
neurotoxic families of insecticides (organochlorines, organophosphates, carbamates and pyrethroids).
Only a couple of these studies have regarded the toxicokinetics or toxicodynamics of these insecticides.
Insect growth or development disruptors, such as juvenoids, chitin synthesis inhibitors, precocenes,
azadirachtin and lignoids, have been thoroughly studied in R. prolixus. Important aspects on the mode
of action of ureases were also described in this species. By the end of the 1960’s, resistance to insecticides
was detected in R. prolixus from Venezuela. Some years later, the existence of pyrethroid-resistant indi-
viduals was also reported. Control programmes for R. prolixus in countries where Chagas is endemic have
only used synthetic neurotoxic insecticides. In 2011, Central America and southern Mexico were declared
free of this insect. The recent sequencing of the R. prolixus genome will provide valuable information to
understand the molecular basis of insecticide resistance in this species.

� 2016 Elsevier Ltd. All rights reserved.
1. Insect toxicology

Insect toxicology studies the adverse effects of toxicants in
insects. Although this includes the effects of any toxicant on any
insect, insect toxicologists mainly specialize on the effects of insec-
ticides on pest species. The development and rational use of prod-
ucts for controlling pest insects requires extensive knowledge on
the physico-chemical properties of insecticides, insect biology
and the interaction between them. Insect toxicology provides
information on the latter.

Toxicological bioassays are the first step towards determining
the toxicity of an insecticide on a species and comparing it to that
of other substances. In these assays, the observation of intoxication
symptoms and the application of specific inhibitors of enzymatic
processes provide evidence regarding the mode of action and
metabolism of the insecticides. Bioassays also allow determining
sublethal effects.
In order to understand how an insecticide produces its toxic
effects, it is necessary to know its toxicokinetics and toxicodynam-
ics (Hodgson et al., 1998). Toxicokinetics refers to the movement
and changes an insecticide undergoes inside an organism: absorp-
tion, distribution, metabolism and excretion. Toxicodynamics
describes the physiological, biochemical and molecular effects of
the compounds and the mechanisms in which they are involved.
The study of these processes implies that insect toxicology is a
multidisciplinary field, as it involves insect anatomy, biochemistry,
behaviour, ecology, physiology, and genetics.

The foundation of insect toxicology is attributed to the North
American chemist William M. Hoskins (1896–1993), who in 1929
taught the first course on that subject at the University of Califor-
nia, Berkeley (Casida and Quistad, 2001). At the time, the era of
synthetic insecticides had still not begun and pest control was car-
ried out using natural substances like pyrethrum, rotenone, nico-
tine, sulphur and arsenicals (Menn and Hollingworth, 1985). In
1939, the Swiss chemist Paul Müller (1899–1965) discovered the
insecticide properties of 1,10-(2,2,2-trichloroethane-1,1-diyl)bis
(4-chlorobenzene) (also known as dichlorodiphenyltrichloroe
thane or DDT) (Mellanby, 1992). This finding was a turning point
in the history of pest control. It also stimulated the chemical and
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toxicological study of insecticides, initiating the ‘‘Golden Age of
Insecticide Research” (Casida and Quistad, 1998).

Rhodnius prolixus (Hemiptera: Reduviidae) is an insect of medi-
cal importance in several countries of Latin American (Box 1).
About eighty years ago, the British entomologist Vincent B.
Wigglesworth (1899–1994) adopted it as a model for physiological
studies. Since then, R. prolixus has been used by many other insect
physiologists. The present review was requested to highlight Wig-
glesworth’s contribution to insect toxicology and review the liter-
ature about R. prolixus toxicology. This is the first article aimed to
review the whole literature regarding to this subject, therefore
all the publications found on R. prolixus toxicology are cited here,
from the pioneering studies by Wigglesworth (in the early
1940’s) to the present (December 31, 2015).
Box 1. R. prolixus, a vector of Chagas disease
The blood-sucking bug R. prolixus (Hemiptera: Reduviidae)

is a hemimetabolous insect that feeds exclusively on blood
from mammals and other vertebrates throughout its entire
life-cycle, which includes five nymphal stages (Buxton,
1930). In the mid-20th century, its geographical distribution
included Venezuela, Colombia, Central America (except
Panama, Belice, and Costa Rica) and south Mexico, but in
the last years it seems to have been eliminated from Mexico
and the Central American area (Dias, 2015).

Even though the presence of R. prolixus in Brazil has been
reported sporadically, it has been suggested that these are
misidentifications of morphologically similar species of the
same genus (Dujardin et al., 1991; Gurgel-Gonalves et al.,
2008). R. prolixus has also been detected in Guyana (Aguilar
et al., 2007); its presence in Suriname and the French Guiana
is doubtful (BÅrenger et al., 2009; Hiwat, 2014).

Togetherwith Triatoma infestansand Panstrongylusmegistus,
R. prolixus is one of the main vectors of Trypanosoma cruzi, the
protozoan that causes Chagas disease, also known as Ameri-
can trypanosomiasis (WHO, 2002). Chagas is the most severe
parasitic chronic disease of the American continent. It affects
around fifteen million people, and another eighty million are
exposed to the infection (Coura and Dias, 2009). It is consid-
ered a neglected tropical disease (a diseasewith a high impact
on the world’s poorest people) (Feasy et al., 2009).

Triatomines ingest T. cruzi when they feed on an infected
host (Rassi et al., 2010). Inside the insect’s gut, the parasite
goes through different developmental stages and reproduces
(Kollien and Schaub, 2000). It is then transmitted to another
host through the faeces deposited by the vector while it feeds
(Rassi et al., 2010).

The English common name of R. prolixus is ‘‘kissing bug”.
In Spanish, it is called ‘‘pito” (Colombia), ‘‘chipo” (Venezuela),
‘‘chinche besucona” (Central America and Mexico), and
‘‘chinche picuda” (Mexico). In both languages, these names
are used when referring to any of the different species of
triatomines indistinctly (Schofield and Galvâo, 2009).

Wigglesworth’s first studies on physiology of R. prolixus
were published in the early 1930’s (Locke, 1992). In the
following decades, he published nearly forty articles regard-
ing different physiological aspects of this insect. It is said that
Wigglesworth loved R. prolixus (Locke, 1996). In his laboratory
he fed the colony on rabbits, but occasionally allowed the
insects to feed on blood from his own arm (Locke, 1996). In
R. prolixus, Wigglesworth discovered the key aspects of insect
growth and development, excretion, development of the ner-
vous and tracheal systems, formation of muscle and connec-
tive tissues, cuticle structure, antennae function, physiology
of ecdysis, wound healing, and the role of haemocytes
(Locke, 1992). His works, in addition to studies performed
by other researchers, have made R. prolixus a classic model
organism for insect physiology.
2. Vincent B. Wigglesworth and insect toxicology

The same year Müller discovered the insecticide properties of
DDT, Wigglesworth published The Principles of Insect Physiology
(Wigglesworth, 1939), a book which today is still one of the recom-
mended references in courses on the subject. At that moment,
Wigglesworth had already been working on R. prolixus for several
years and carried out some of the many studies for which he would
later be known as the ‘‘Father of Insect Physiology” (Locke, 1994).

Between 1923 and 1991, Wigglesworth published more than
two hundred and eighty articles and books (Locke, 1992). His first
work on a toxicological topic was published in 1941: The effect of
pyrethrum on the spiracular mechanism of insects (Wigglesworth,
1941). Pyrethrum is a mixture of six insecticide molecules, called
pyrethrins, that are extracted from flowers of the Chrysanthemum
genus (Schleier and Peterson, 2011). Wigglesworth carried out this
study to test his hypothesis that the cause of death from pyre-
thrum might be desiccation as the result of interference with
spiracular control. Hence, he occluded the anus of adult R. prolixus
with paraffin to prevent water loss by excretion. He then applied
an extract of pyrethrum dissolved in paraffin to the antennae of
a group of insects and recorded their weight loss during several
days, comparing them to untreated insects. In another experiment,
he applied the same treatment to the adult bedbugs Cimex lectular-
ius. When the insects showed intoxication symptoms, he observed
the frequency of spiracular opening under a transmitted light
microscope. As he found no effects that could be attributed to
the treatments, he dismissed his hypothesis.

His next toxicological article appeared the following year: Some
notes on the integument of insects in relation to the entry of insecti-
cides (Wigglesworth, 1942). This study was inspired on a recent
investigation on the effect of non-toxic paraffin on the passage of
insecticides through the insect cuticle (Hurst, 1940), and on
Wigglesworth’s own observations regarding the importance of
the solvent oil/water partition coefficient on the speed of this
passage (Wigglesworth, 1941). This time, he dissolved pyrethrum
in solvents with different viscosity and applied it on fifth instar
nymphs of R. prolixus. He then registered the time it took to
observe intoxication symptoms. Wiggleswoth observed that the
speed with which the symptoms appeared, and therefore the rate
at which the substances entered the organisms, decreased as the
viscosity of the solvents increased. With a histological examination
of the integument, he discovered that oily substances penetrated
faster through the base of the bristles that through other parts of
the integument. He also observed that in adults soon after moult-
ing, the rate of entry was higher through stretched than unstreched
integuments. However, in old adults, the main entry point to the
organism were the dermal gland ducts.

In a letter published in Nature, Wigglesworth described that
when R. prolixus nymphs are made to walk over a surface treated
with a finely sprayed coat of alumina (an inert dust) the loss of
weight by dehydration increases (Wigglesworth, 1944). Using a sil-
ver staining technique, he obtained evidence that the inert dust
destroys the layer of waxes covering the body of insects. Three
years later he wrote a more extensive article on this matter, where
he described the abrasion experiments he performed in five species
of stored products beetles (Wigglesworth, 1947). He demonstrated
that the species that elicit most activity are more damaged by
abrasion than the less active ones. He also identified the parts of
the body that are more susceptible to abrasion (places with soft
cuticle, like the intersegmental articulations of the legs, the mar-
gins of the elytra and the terminal segment, and the articulations
of the maxillary and labial palps).

Between1961and1972,Wigglesworthpublishedseveral articles
on the effects of substances that mimic the activity of the juvenile



Table 1
Articles on R. prolixus toxicology grouped according to their mode of action.

Mode of action and families or compounds Number of
articles

Synthetic neurotoxic insecticides 42
Organochlorines, organophosphates, carbamates and

pyrethroids
41a

Ivermectin 1
Insect growth or development disruptors 55
Juvenoids 16
Chitin synthesis inhibitors 4
Precocenes 13
Azadirachtin and lignoids 22
Synthetic insect repellents 7
Insecticides with other modes of action

(including those non-specific or unknown)
31

Peptides 11
Botanicals 8
Fatty acids and aliphatic alcohols 2
Inert dusts 4
Sterilizants 6

Total 135

a Including five unpublished WHO documents.
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hormone (juvenoids). The first of these articles was published as an
annex (written in English) to the article of another author (written in
German) (Wigglesworth in Schmialek, 1961). In that work, Wig-
glesworthused farnesol, a substance recently isolatedbyhisGerman
colleague Peter Schmialek (1925?–1976) from yeasts and excre-
ments of the Tenebrio molitor beetle (Schmialek, 1961). Farnesol is
a natural sesquiterpenoid alcohol that in insects is a precursor of
the juvenile hormone (Bede et al., 2001; Sen et al., 2003). Fifth instar
nymphs of R. prolixus treated with farnesol developed into sixth
instars (a nymph stage that does not naturally exist). Some decades
before, Wigglesworth had observed the same phenomenon in his
experiments on the implant of corpora allata (Wigglesworth, 1936).

To quantify juvenoid activity, Wigglesworth proposed a scoring
system for the retention of juvenile characters (Wigglesworth,
1969). Normal adults are scored as 0 and supernumerary nymphs
are scored as 19. A score of 10 indicates a ‘‘half-juvenalized” insect;
in other words, an insect that still maintains 50% of its juvenile
characteristics.

Wigglesworth studied different aspects of the biological activity
of farnesol and other juvenoids in R. prolixus, such as the retention
of nymphal characteristics in the moulting fifth instar nymphs and
the induction of yolk formation in the oocytes of decapitated
females (Wigglesworth, 1961), the juvenoid effects of a family of
chemically-related-to-farnesol compounds (Wigglesworth, 1963),
and the importance of geometrical isomerism, starvation and sol-
vent properties on juvenoid activity (Wigglesworth, 1969, 1973).

The toxicological issues investigated byWigglesworth are highly
relevant in pest control. Understanding the relation between the
physicochemical properties of solvents and their passage through
the cuticle is indispensable for a rational development of insecticide
formulations (Licastro et al., 1983; Stadler and Buteler, 2009). Cuti-
cle damage is the phenomenon that underlies the use of insecticide
products based on diatomaceous earth and other inert dusts
(Buteler et al., 2015; Golob, 1997). Juvenoids have been used since
the 1970’s for controlling insect pests (Pener and Dhadialla, 2012).

Despite Wigglesworth’s prolific scientific contribution, he only
pursued purely toxicological topics on very few occasions. He
explained the reason for this during a lecture he gave in London,
invited by the Royal Society for the Encouragement of Arts, Manu-
factures and Commerce. There hementioned how he had refused to
take over a research unit for the physiological study of insecticide
action at the Agricultural Research Council. ‘‘I’m afraid my reply
was to the effect that I was not interested -Wigglesworth confessed
to the audience-. Now I am fully convinced that insect physiology
has a real contribution to make to the killing of insects by means
of chemicals. But insect physiology is not an applied science, it is
a fundamental science, and what is holding matters up is not our
failure to know just how gamma-hexachlorobenzene kills the
insect, but our lack of knowledge of the internal working of the
insect as a whole” (Wigglesworth, 1956).

Although Wigglesworth only sporadically explored the insect
toxicology territory, his physiological research paved the way to
those studying the toxicokinetics and toxicodynamics of insecti-
cides in insects.

3. R. prolixus toxicology

To write this reviewwe tried to locate as many scientific articles
as possible regarding toxicology of R. prolixus. The criteria used for
this search was to include all studies describing the toxicokinetics,
toxicodynamics, and lethal or sublethal effects of insecticides on
this species, in field or laboratory conditions.

To identify the toxicological works carried out by Vincent B.
Wigglesworth cited in Section 2, we consulted the complete
bibliography of this author (Locke, 1992). The rest of the search
was carried out online, using the following search engines: PubMed
(www.ncbi.nlm.nih.gov/pubmed), ScienceDirect (www.sciencedi-
rect.com) and Google (www.google.com). Different searches were
carried out in each of these engines using the keywords ‘‘prolixus
AND X”, were ‘‘X” represents different words (general concepts
such as ‘‘pesticides” or ‘‘toxicity”, or specific names of insecticides
like ‘‘pyrethroids”, ‘‘carbamates”, ‘‘azadirachtin”, ‘‘juvenoids”,
among others). No time limits were specified in these searchs. All
the results were screened by title to select only those related to
the toxicology of R. prolixus.

Most of the bibliographical material was downloaded from the
Biblioteca Electrónica de Ciencia y Tecnología, depending on the
Ministerio de Ciencia, Tecnología e Innovación Productiva of Argen-
tina, which was accessed via the Universidad Nacional de San
Martín (Argentina). The open access Scientific Electronic Database
(www.scielo.org) was also an important source of material. Some
articles published in journals with limited diffusion, that are not
indexed in databases, as well as unpublishedWorld Health Organi-
zation (WHO) documents, were located by consulting the bibliogra-
phy section of other articles. Twenty-five articles that were
unavailable online were requested from other colleagues or organ-
isms that, out of kindness to the authors of this review or as third
party services, provided scans of the printed versions via e-mail
(see ‘‘Acknowledgements”).

In all, 130 scientific articles and 5 unpublishedWHO documents
reporting original results about some aspect of R. prolixus toxicology
were gathered (Table 1; see also the section ‘‘References”, where the
gathered articles and documents are indicated by asterisk). Other
WHO documents located in the searches were not taken into
account after verifying that their results were also published in sci-
entific journals. The unpublished WHO documents contain impor-
tant information on R. prolixus toxicology, and are usually quoted
in the bibliography on the subject. However, until very recently,
most of them they were not available online (see ‘‘Acknowl
edgments”). Five discussion papers focused on some aspect of R.
prolixus toxicology (Azambuja and Garcia, 1991, 1992; Garcia
et al., 1987, 1991; Rembold, 1987), and one book chapter (Garcia
et al., 1989b) were also located.

Of the 135 scientific articles and WHO documents on R. prolixus
toxicology, 41 (30.4%) report the results of studies with substances
belonging to the four most important families of synthetic neuro-
toxic insecticides (organochlorines, organophophates, carbamates
and pyrethroids). The insecticides that appear in the highest
number of articles are azadirachtin and dieldrin (15 articles each,
11.3%), followed by lindane and precocene II (13 articles each, 9.8%).
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Most of the articles are in English (76.3%). The remaining are in
Spanish (14.8%), Russian (6.7%), Portuguese (1.5%) or French (0.7%).
The articles are authored by 216 researchers belonging to about 60
organisms from 15 countries.

4. R. prolixus intoxicated in the laboratory

4.1. Synthetic neurotoxic insecticides

Most bioassays evaluating synthetic neurotoxic insecticides on
R. prolixus were carried out to quantify their acute toxicity (imme-
diate mortality by a single exposure). The general aim of these
works was to obtain potentially useful information for controlling
this Chagas disease vector. Their specific objectives were at least
one of the following five: (a) validating new methods for evaluat-
ing acute toxicity; (b) determining the acute toxicity of new insec-
ticides (these assays may or may not include another insecticide
with previously known toxicity with comparative aims), (c) assess-
ing sublethal effects, (d) studying toxicokinetics and/or toxicody-
namics processes in susceptible insects; and (e) establishing the
existence and/or mechanisms of resistance to insecticides in natu-
ral or laboratory populations (Table 2).

The assays carried out to achieve objectives (a), (b) (c), and (d)
used laboratory reared insect colonies. Both field and laboratory
insects were used to assess objective (e), as in order to establish
resistance it is necessary to compare the toxicity in both groups.
This section reviews studies with aims (a), (b), (c), and (d). Publica-
tions on R. prolixus insecticide resistance are reviewed in Section 5.2.

4.1.1. Organochlorines, organophosphates, carbamates and
pyrethroids

The family of organochlorines includes DDT, lindane, and
cyclodienes. Organophosphates are esters of phosphoric acid;
Table 2
Organochlorines, organophosphates, carbamates and pyrethroids tested on R. prolixus.

Insecticide Study objectivec

(stage used)

DDT (OC) Evaluating acute toxicity
(unspecified nymphs, adult)

DDT (OC)
Lindane (OC)

Validating exposure to films
(fourth and fifth instar, adult)

Dieldrin (OC) Using xenointoxication for determining the prese
dog blood

(unspecified nymphs)
Dieldrin (OC) Evaluating acute toxicity in laboratory conditio

(in laboratory: egg, unspecified nymphs, adul
population)

Dieldrin (OC) Using xenointoxication for determining the prese
human blood

(unspecified nymphs)
DDT (OC)

Dieldrin (OC)
Fenthion (OP)
Malathion (OP)

Evaluating acute toxicity
(first to fifth instar, adult)

Propoxur Evaluating effectivity in laboratory conditions
(in laboratory: egg; in field: unspecified ny

Aldrin (OC)
Alpha-, beta-, and delta-
hexachlorocyclohexane (OC)
DDT (OC)
Chlordane (OC)
Dieldrin (OC)
Endosulfan (OC)
Endrin (OC)
Heptachlor (OC)
Isodrin (OC)
Lindane (OC)
Methoxychlor (OC)
TDE (OC)
Toxaphene (OC)

Evaluating effect on diuresis
(fifth instar)
carbamates are derivatives of carbamic acid. The pyrethroid family
consists of alpha-cyano and noncyano pyrethroids (molecules with
and without a cyano group in the alpha carbon, respectively). The
site of action of the synthetic neurotoxic insecticides are the
voltage-gated sodium channels in nerve cell membranes (DDT
and pyrethroids), the GABA receptors in gabaergic synapses (lin-
dane and cyclodienes), and the enzyme acetylcholinesterase in
cholinergic synapses (organophosphates and carbamates) (Casida
and Durkin, 2013).

Organochlorines and some organophophates and carbamates
are prohibited in several countries due to their effects on human
health and/or environment (Camenzuli et al., 2015; Mostafalou
and Abdollahi, 2013). Other organophosphates and carbamates,
together with pyrethroids, are the most used active ingredients
for controlling all types of insect pests. They account for three-
quarters of the world’s insecticide market (Casida, 2009).

Bioassays on R. prolixus generally use fifth instar nymphs,
because it is the most tolerant stage to insecticides (Fox et al.,
1966; Lent and Oliveira, 1944). However, according to the specific
aims of each study, other stages are also used, including eggs if ovi-
cidal activity needs to be determined.

Before the appearance of synthetic insecticides, it was common
in bioassays to dissolve the studied substance in a mineral oil and
apply the resulting solution on the insects as a mist using an
‘‘atomising gun” (Busvine and Barnes, 1948). During the 1940’s,
insects began to be exposed to filter papers impregnated with a
solution of the insecticide dissolved in acetone or another organic
solvent (letting the solvent evaporate before exposing the insects)
(Busvine and Barnes, 1948). The toxicity of the organochlorines
DDT, lindane and dieldrin in R. prolixus has been assessed almost
exclusively with this method, exposing groups of insects to one
or several concentrations of insecticide in each assay, but without
Mode of application Reference

Dust sprinkled on the bottom of Petri
dishes

In a pigeon blood meal

Lent and
Oliveira (1944)

Film on filter paper Busvine and
Barnes (1948)

nce of insecticide in In a dog blood meal Carrillo and
Vicente (1955)

ns and in the field
ts; in field: wild

Film on filter paper
Sprayed on houses

Peñalver and
Villagran
(1955)

nce of insecticide in In a human blood meal Blazquez and
Bianchini
(1957)

Film on filter paper Fox et al.
(1966)

and in the field
mphal staged)

Film on different surfaces
Sprayed on houses

Valdivieso and
Diaz (1968)

Injection into the haemolymph
Topical application

Casida and
Maddrell
(1970)



Table 2 (continued)

Insecticide Study objectivec

(stage used)
Mode of application Reference

EPN (OP)
Malathion (OP)
Schradan (OP)
Carbaryl (CA)
Carbofuran (CA)
Pirimicarb (CA)

Amino mexacarbate (CA)
Mexacarbate (CA)

Evaluating the effect on diuresis
(fifth instar)

Injection into the haemolymph
Topical application

Maddrell and
Casida (1971)

Dieldrin (OC)
Lindane (OC)

Monitoring insecticide resistance in several Venezuelan localities
(fifth instar and other unspecified stages)

Film on filter paper Valdivieso et al.
(1971)

Dieldrin (OC)
Lindane (OC)
Propoxur (CA)

Monitoring insecticide resistance in the state of Trujillo
(Venezuela)

(third to fifth instar)

Topical application Cockburn
(1972)

Dieldrin (OC)
Fenthion (OP)
Malathion (OP)

Evaluating acute toxicity
(fifth instar, adult)

Film on filter paper Kul’kova and
Fedder (1972)

Dieldrin
Lindane
Propoxur

Laboratory selection of a dieldrin-resistant colony Film on filter paper Nocerino
(1972)

Dieldrin (OC)
Lindane (OC)
Fenthion (OP)

Monitoring insecticide resistance in several Venezuelan localities
(unspecified nymphs, adult)

Film on filter paper Nocerino
(1976)

Fenthion (OP)
Malathion (OP)
Pirimifos methyl (OP)
Jodfenphos (OP)
Propoxur (CA)

Evaluating effectivity in the field
(wild population, and unspecified staged)

Sprayed on houses Nocerino et al.
(1976)

Dieldrin (OC)
Fenitrothion (OP)
Fenthion (OP)
Propoxur (CA)

Monitoring insecticide resistance in several Venezuelan localities
(fifth instar)

Film on filter paper Nelson and
Colmenares
(1979a)

Dieldrin (OC)
Lindane (OC)
Bromophos (OP)
Chlorphoxim (OP)
Fenitrothion (OP)
Fenthion (OP)
Jodfenphos (OP)
Malathion (OP)
Phoxim (OP)
Pirimiphos ethyl (OP)
Pirimiphos metil (OP)
Bendiocarb (CA)
Propoxur (CA)
Bioallethrin (PY)
S-bioallethrin (PY)
Bioresmethrin (PY)
Cypermethrin (PY)
Decamethrina (PY)
Permethrin (PY)
Tetramethrin (PY)
Sumithrin (PY)
2-Zb (PY)

Validating topical application on susceptible and resistant insects
(fifth instar)

Topical application Nelson and
Colmenares
(1979b)

Dieldrin (OC) Evaluating sublethal effects on oxygen consumption, moulting time,
eggs laid and survivorship

(first instar, adult)

Film on filter paper Arends and
Rabinovich

(1980)
Bioallethrin (PY)

Bioresmethrin (PY)
Decamethrina (PY)

Studying the effect on the pattern of corpora cardiaca electrical activity
(fifth instar)

Topical application on the corpora
cardiaca after removing an area of

overlying cuticle

Orchard (1980)

Fenthion (OP) Evaluating ovicidal activity
(egg)

Film on filter paper Kul’kova
(1981a)

Lindane (OC) Evaluating knockdown and recovery
(fifth instar, adult)

Film on cardboard Kul’kova
(1981b)

DDT (OC) Field testing of toxicity
(wild population)

Sprayed on houses Williams et al.
(1981a)

Fenitrothion (OP) Evaluating effectivity in the field of different application equipments
(wild population)

Sprayed or aerosolized on houses Williams et al.
(1981b)

DDT (OC)
Dieldrin (OC)
Lindane (OC)
Bromophos (OP)
Chlorphoxim (OP)
Fenitrothion (OP)
Fenthion (OP)

Laboratory, semi-field and field testing of toxicity
(in laboratory: fifth instar; in semi-field: fifth instard; in field: wild

population, and fifth instard)

Film on the bottom of Petri dishes
Fumigant

Sprayed on houses

Nelson et al.
(1983)

(continued on next page)
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Table 2 (continued)

Insecticide Study objectivec

(stage used)
Mode of application Reference

Jodfenphos (OP)
Pirimiphos ethyl (OP)
Pirimiphos methyl (OP)
Bendiocarb (CA)
Propoxur (CA)
Cypermethrin (PY)
Deltamethrin (PY)

Bendiocarb (CA) Evaluating acute toxicity
(egg, fourth and fifth instar)

Film on filter paper and samples of
earthen walls

Sherlock et al.
(1983)

Permethrin (PY) Evaluating repellency
(adult)

Skin-treated rabbit Buescher et al.
(1985)

Dieldrin (OC)
Lindane (OC)
Bromophos (OP)
Fenitrothion (OP)
Fenthion (OP)
Jodfenphos (OP)
Malathion (OP)
Pirimiphos-methyl (OP)
Dioxacarb (CA)
Propoxur (CA)

Evaluating acute toxicity
(fifth instar)

Film on filter paper Nocerino and
Hernández
(1985)

Permethrin (PY) Evaluating repellency
(adult)

Skin-treated rabbit Buescher et al.
(1985)

Lindane (OC)
Fenitrothion (OP)
Malathion (OP)

Evaluating acute toxicity of the three compounds. Evaluating the
penetration rate, acetylcholinesterase inhibition and metabolism of

malathion
(first instar)

Film on filter paper
Topical application

Villar et al.
(1990)

DDT (OC)
Lindane (OC)
Malathion (OP)
Trichlorfon (OP)

Validating a lethal bait
(first to fifth instar, adult)

In a sheep blood meal Lima et al.
(1991)

Lindane (OC) Validating a lethal bait
(first to fifth instar, adult)

In a distilled water meal Lima et al.
(1992)

Dichlorvos (OP)
Malathion (OP)
Cypermethrin (PY)

Comparing different application methods
(wild population)

Film of paint on houses and
peridomestic structures

Fumes delivered by fumigant cans
inside houses

Filho (1996)

Alpha-cypermethrin (PY)
Cyfluthrin (PY)
Deltamethrin (PY)
Lambda-cyhalothrin (PY)

Evaluating acute toxicity
(fifth instar)

Topical application Filho (1999)

Beta-cyfluthrin (PY)
Beta-cypermethrin (PY)
Cypermethrin (PY)
Deltamethrin (PY)
Lambda-cyhalothrin (PY)

Determining the presence of insecticide resistance in individuals from
the state of Carabobo

(Venezuela)
(first instar)

Topical application Vassena et al.
(2000)

Beta-cyfluthrin (PY)
Beta-cypermethrin (PY)
Deltamethrin (PY)
Lambda-cyhalothrin (PY)

Quantifying hyperactivity, incoordination, recovery and mortality
(third instar)

Film on filter paper
Topical application

Alzogaray and
Zerba (2001b)

Fenitrothion (OP)
Pirimiphos methyl (OP)
Propoxur (CA)
Deltamethrin (PY)
Cyfluthrin (PY)
Lambda-cyhalothrin (PY)

Monitoring insecticide resistance in several Venezuelan localities
(first instar)

Topical application Fernández and
Vivas (2001)

Malathion (OP)
Deltamethrin (PY)

Evaluating acute toxicity
(first and fifth instar)

Film on filter paper
Topical application

Sandoval
(2001)

Fenitrothion (OP)
Pirimiphos methyl (OP)
Propoxur (CA)
Deltamethrin (PY)
Lambda-cyhalothrin (PY)

Evaluating acute toxicity
(first and fifth instar)

Topical application Vivas and
Fernández
(2001)

Lambda-cyhalothrin (PY) Laboratory and field assessment of toxicity
(fifth instard)

Film on palm leaves Mazariego-
Arana et al.

(2002)
Beta-cyfluthrin (PY)

Deltamethrin (PY)
Evaluate efectiveness
(wild population)

Film on houses and peridomestic
structures

Nakagawa et al.
(2003)

Deltamethrin (PY)
Lambda-cyhalothrin (PY)

Monitoring insecticide resistance in several Venezuelan localities
(fifth instar)

Topical application Fernández et al.
(2004)

CA, carbamate; EPN, ethyl 4-nitrophenyl phenylphosphonothioate; OC, organochlorine; OP, organophoshate; PY, pyrethroid; TDE, tetrachlorodiphenylethane.
a Later called deltamethrin.
b Unidentified pyrethroid.
c Performed in laboratory, except when stated otherwise.
d After houses were sprayed, laboratory insects were experimentally exposed to the treated surfaces.
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calculating toxicological parameters. In some cases, the papers
treated with insecticides were provided by the WHO as requested
by the researchers.

Although exposure to filter papers is still used, at the end of the
1970’s topical application began to be used as well. This consists in
applying a minute drop of insecticide solution on each insect using
a microsyringe provided with a dispenser. Applying different doses
to different groups of insects, dose-response relationships are
obtained which are then used to calculate the median lethal dose
(LD50).

In a protocol developed for evaluating insecticides in R. prolixus,
WHO recommends both exposure to treated filter papers and topi-
cal application (WHO, 2001). The results of the first method can be
used to calculate the median lethal concentration (LC50), while the
results of the second method are used to calculate LD50 values.
These toxicological parameters allow comparing the toxicity of dif-
ferent substances in a very precise way. They are widely used in
studies with all types of living beings.
Table 3
Toxicity of some representative insecticides on R. prolixus.

Insecticide Family or structure
(mode of action)

Exposure (2 h) to film
Lindane Organochlorine

(neurotoxic)
Pyrethrins A mixture of six esters of chrysanthemic and pyrethric

acids
(neurotoxic)

DDT Organochlorine
(neurotoxic)

Oral application (ad libitu
Azadirachtin A A triterpenoid limonoid

(feeding deterrent; molting inhibitor)
Azadirachtin A A triterpenoid limonoid

(feeding deterrent; molting inhibitor)
Pinoresinol Lignoid

(ecdysis disruptor)
Pinoresinol Lignoid

(ecdysis disruptor)

Topical appl
Lambda-

cyhalothrin
Pyrethroid
(neurotoxic)

Fenitrothion Organophosphorus
(neurotoxic)

Deltamethrin Pyrethroid
(neurotoxic)

Propoxur Carbamate
(neurotoxic)

Triflumuron Benzoylphenylurea
(chitin synthesis inhibitor)

Pyriproxyfen Juvenoid
(mimics juvenile hormone)

Methoprene Juvenoid
(mimics juvenile hormone)

Precocene II Precocenes
(damage corpora allata)

Exposure to
Dichlorvos Organophosphorus

(neurotoxic)

Thymol Monoterpene
(neurotoxic)

Eugenol Monoterpene
(neurotoxic)

Eucalyptol Monoterpene
(probably neurotoxic)
After the Second World War, on account of its incredible results
in pest control, DDT was considered for controlling Chagas vectors.
However, this idea was discarded almost immediately after
proving that, unlike what happens in most insects, the toxicity of
DDT is very low in triatomines (Gualtieri et al., 1985). The cause
of this was discovered years later. Triatoma infestans, the main
Chagas disease vector in Argentina and limiting countries,
biotransforms DDT to polar metabolites that are rapidly excreted
(Agosin et al., 1964). Additionally, the passage of DDT
through the cuticle of T. infestans is slow (Fontán and Zerba,
1992). The toxicity of DDT in R. prolixus is also lower compared
to other insecticides (Fox et al., 1966). Although it has still not been
determined whether the cause of this low toxicity is the same as in
T. infestans, it is highly probable based on their taxonomical
proximity.

Bioassays with DDT, lindane, and dieldrin on R. prolixus were
interrupted towards the end of the 1970’s and beginning of the
1980’s, as these insecticides fell in disuse throughout the world.
Toxicity References
(stage used and effect evaluated)

s on filter paper
LC50 = 0.002 mg per cm2

(unspecified stage, mortality)
Busvine and Barnes (1948)

LC50 = 0.009 mg per cm2

(unspecified stage, mortality)
Busvine and Barnes (1948)

LC50 = 10 mg per cm2

(unspecified stage, mortality)
Busvine and Barnes (1948)

m in a blood meal)
EC50 = 0.04 lg per ml

(fourth instar, moult inhibition)
Garcia et al. (1984)

EC50 = 25 lg per ml
(fourth instar, feeding inhibition)

Garcia et al. (1984)

EC50 = 60 lg per ml
(fourth instar, ecdysis inhibition)

Garcia et al. (2000)

EC50 > 100 lg per ml
(fourth instar, feeding inhibition)

Garcia et al. (2000)

ication
LD50(72 h) = 40 ng per insect

(fifth instar, mortality)
Filho (1999)

LD50(48 h) = 100 ng/insect
(fifth instar, mortality)

Vivas and Fernández
(2001)

LD50(72 h) = 150 ng per insect
(fifth instar, mortality)

Filho (1999)

LD50(48 h) = 690 ng per insect
(fifth instar, mortality)

Vivas and Fernández
(2001)

LD50(24 h) < 50 lg per insect
(fifth instar, mortality)

Mello et al. (2008)

EC50 = 150 ng per insect
(fifth instar, supernumerary molt)

Langley et al. (1990)

EC50 = 4.2 lg per insect
(fifth instar, supernumerary molt)

Langley et al. (1990)

EC50 40 lg per insect
(third instar, induction of precocious

metamorphosis)

Azambuja et al. (1996)

vapors
KT50 = 3.6 min

continuous exposure to 390 lg per cm2

(first instar, knockdown)

Moretti et al. (2015)

KT50 = 78.9 min
continuous exposure to 3,900 lg per cm2

(first instar, knockdown)

Moretti et al. (2013)

KT50 = 89.8 min
continuous exposure to 3,900 lg per cm2

(first instar, knockdown)

Moretti et al. (2013)

KT50 = 42.6 min
continuous exposure to 3,900 lg per cm2

(first instar, knockdown)

Moretti et al. (2015)
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Notwithstanding, two studies published in the 1990’s evaluated
the oral toxicity of DDT and lindane in R. prolixus by using baits
with insecticides in suspension (Box 2).
Box 2. R. prolixus xenointoxicated
Xenointoxication occurs when a parasite is intoxicated

after feeding on a host that has been treated with a pesticide.
Already in the 1940’s, it was observed that R. prolixus died
when it fed on pigeons that had previously ingested capsules
containing DDT (Lent and Oliveira, 1944).

Before the appearance of analytical equipment able to
detect minimal quantities of an insecticide in biological sam-
ples, xenointoxication of R. prolixus nymphs was used as a
way of determining the presence of dieldrin in dog blood
(Carrillo and Vicente, 1955). It was also used to determine
its presence in the blood of workers exposed daily to the
insecticide (Blazquez and Bianchini, 1957).

Oral intoxication of triatomines with baits containing
insecticides was also evaluated. Nymphs of R. prolixus and
another six species of triatomines were fed on suspensions
of DDT, lindane, or the organophosphates malathion and
trichlorfon (1 g/l) in defibrinated sheep blood contained in
latex bags (Lima et al., 1991). As lindane produced the best
results (between 94% and 100% mortality a week after feed-
ing), it was used in a second experiment. There it was offered
to the insects as a water suspension at room temperature and
similar results were obtained (Lima et al., 1992). The authors
suggested that this type of baits could be an economical way
of controlling triatomines. However, there are no indications
of these traps being tested in field experiments, where they
most certainly would not have been as effective in attracting
triatomines, having to compete with the physical and
chemical cues emitted by human beings and other hosts.

More recently, xenointoxication of T. infestans was
assessed using experimental chickens, goats and dogs
(Amelotti et al., 2010, 2012; GÏrtler et al., 2009; Juan et al.,
2013).
Each family of insecticides is composed by substances with very
different toxicity. In addition, a wide variety of experimental has
been used for evaluating their effects. For this reason, it is very dif-
ficult to make accurate comparisons regarding the toxicity of dif-
ferent families or molecules on R. prolixus (Table 3). In general,
lindane is more toxic than dieldrin and equally or more toxic than
organophosphates and carbamates (depending on which of the
members of the family is used to compare it with). Some, but not
all, organophosphates are more toxic than carbamates. Pyrethroids
are by far the most effective, with a toxicity five orders of magni-
tude higher than that of other families of insecticides. Among pyr-
ethroids, those with an alpha-cyano group are more toxic than
those without.

Susceptibility to insecticides varies throughout the life cycle of
R. prolixus. For example, the organophosphate pirimiphos-methyl
and the carbamate propoxur are fifty-four times more toxic on first
than on fifth instar nymphs, and the pyrethroid deltamethrin is one
hundred and eighty times more toxic (Fernández and Vivas, 2001).
The difference in size between both stages only partially justifies
this difference in toxicity, hence there must also be some toxicoki-
netic differences.

Like other insects, when intoxicated with neurotoxic insecti-
cides, R. prolixus intoxicated shows characteristic symptoms that
indicate malfunctioning of the nervous system: hyperactivity, tre-
mors, incoordination, leg paralysis (starting with the third pair),
and proboscis extension (Alzogaray and Zerba, 2001b; Lima et al.,
1992; Osborne, 1985).
Hyperactivity is the first observable symptom of intoxication
with pyrethroids in insects (Alzogaray and Zerba, 2001a,b;
Alzogaray et al., 1997; Gammon, 1978). The locomotor activity of
third instar nymphs of R. prolixus exposed to filter papers treated
with alpha-cyanopyrethroids increased lineally as a function of
the logarithm of concentration (Alzogaray and Zerba, 2001b).

Hyperactivity has a practical application in the Chagas vector
control. Triatomines spend most of the day hidden in the crevices
of mud walls and thatched roofs in rural households (Jurberg and
Galvão, 2006). In Argentina, the operators of control campaigns
apply the pyrethroid tetramethrin in aerosol to determine whether
a house is infested with T. infestans (Gürtler et al., 1993). Hyperac-
tive insects abandon their hideouts and are thus spotted by the
operators. This phenomenon, called flushing-out, allows to deter-
mine whether a household is infested or not. In Venezuela, pyre-
thrum has been used to flushing-out R. prolixus (Nelson and
Colmenares, 1979b; Williams et al., 1981a).

Knockdown is a fast and reversible paralysis that is manifested
in insects intoxicated with pyrethrum or pyrethroids (Alzogaray
and Zerba, 1997; Sawicki, 1962; Scott and Georghiou, 1984). In
third instar nymphs of R. prolixus treated topically with a-
cyanopyrethroids, the values of the mean effective dose (ED50) cal-
culated at different times decreased during the first hours follow-
ing the treatment, it then remained constant for about four days
and finally increased (Alzogaray and Zerba, 2001b). This variation
of ED50 along time indicates nymph recovery. Individuals that at
one point were knocked-down, then recovered and began acting
normally again. When piperonyl butoxide, an inhibitor of microso-
mal mixed-function oxidases (MMFO), was applied simultaneously
with the insecticides, no recovery was observed. This suggests that
the recovery was due to the degradation of the insecticides by
MMFOs.

Exposure to neurotoxic insecticides induces abdominal disten-
sion in triatomines. Both contact and ingestion of DDT in a blood
meal induced this symptom in T. infestans, P. megistus, T. sordida
and R. prolixus (Lent and Oliveira, 1944). The same symptom was
observed in T. infestans nymphs exposed to the pyrethroid cis-
permethrin (Alzogaray, 1996), and in different stages of R. prolixus
treated with lethal concentrations of dieldrin (Peñalver and
Villagran, 1955), lindane (Lima et al., 1992) or the botanical
monoterpene eucalyptol (Moretti et al., 2015).

The appearance of intoxicated triatomines with abdominal dis-
tension is similar to that of individuals that have had ad libitum
access to food. R. prolixus nymphs can ingest up to seven times
their weight in a single blood meal (Beckel and Friend, 1964;
Garcia et al., 1975). This is possible by the plasticization of the
abdominal cuticle (a physico-chemical change controlled via the
nervous system, that allows the cuticle to stretch its surface up
to four times its size). Plasticization is triggered by the contact of
the proboscis with a warm source (Ianowski et al., 1998).

Abdominal distention in intoxicated insects was attributed to
the formation of gas inside the insects (Lent and Oliveira, 1944;
Lima et al., 1992; Peñalver and Villagran, 1955). Still it has not been
explained why this happens. It would be interesting determine if
the cuticle of intoxicated insects suffering abdominal distension
is plasticized as in feeding insects, and how this occurs in the
absence of external stimuli.

Apart from intoxication symptoms, other sublethal effects of
synthetic neurotoxic insecticides in R. prolixus have hardly been
studied. DDT, lindane and members of the other families of syn-
thetic neurotoxic insecticides induce secretion in the Malpighian
tubules of R. prolixus (Casida and Maddrell, 1970). This causes an
increase in the volume of rectal fluids at the expense of the hemo-
lymph. Although the mechanism producing this effect has not been
entirely uncovered, there is evidence that it is caused by the
release of a factor from the mesothoracic ganglionic mass into
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the hemolymph (Maddrell and Casida, 1971). This factor could be
the diuretic hormone. This is a plausible hypothesis, as insecticides
alter the electrical activity of neurosecretory cells in R. prolixus and
other insects (Orchard, 1980; Orchard and Osborne, 1979) and
induce the release of neurohormones (Granett and Leeling, 1972;
Samaranayaka, 1974).

Exposure of R. prolixus to a sublethal concentration of dieldrin
(7.2 � 10�5 g/day) extended the time of moulting and slowed
down the rate of oviposition, but did not affect the number of
moulting individuals nor the total amount of eggs laid (Arends
and Rabinovich, 1980). Dieldrin also increased life expectancy
when applied eight days after feeding, but decreased it when
applied fifteen or more days later. To explain this last result, the
authors suggested that insects that have fed recently have a higher
metabolic rate that allows biotransforming the insecticides more
efficiently than insects subjected to prolonged fasting. As an alter-
native explanation, they considered hormoligasis. The bioavailabil-
ity of insecticides would be lower in insects that have fed recently
because they present high levels of lipids and lipoproteins where
insecticides are stored.

4.1.2. Ivermectin
Ivermectin is a semi-synthetic macrocyclic lactone derived from

the microbial toxins avermectin B1a and B1b (both are biosynthe-
sized by the bacterium Streptomyces avermitilis) (Ōmura, 2008). It
is a broad-spectrum anti-parasitic drug currently used against
onchocerciasis, lymphatic filariasis and strongyloidiasis (Ōmura
and Crump, 2014).

Feeding R. prolixus nymphs and adults on mices previously trea-
ted with a commercial product based on ivermectin (0.2 mg/kg of
body weight) produced high mortality (Azambuja et al., 1985). The
surviving nymphs did not moult and egg production was lower in
the surviving adult females.

4.2. Insect growth or development disruptors

Insect development and metamorphosis are regulated by two
hormones, ecdysone and juvenile hormone. Ecdysone, a steroid
secreted by the prothoracic gland, is a pro-hormone that is con-
verted into 20-hydroxyecdysone in several tissues (Riddiford,
2012). The latter, also known as ‘‘moulting hormone”, induces
moulting.

The existence of juvenile hormones was first proposed by
Wigglesworth (1936). They are a group of sesquiterpenoids that
regulate metamorphosis and insect reproduction (Jindra et al.,
2013). Juvenile hormones are secreted by the corpora allata gland.
They prevent metamorphosis in immature stages and control ovar-
ian development in adult females.

Various groups of substances interfere negatively with the
growth or development of insects: juvenile hormone mimics (juve-
noids), chitin synthesis inhibitors, anti-juvenile hormone com-
pounds (precocenes), and ecdysteroid agonists (Pener and
Dhadialla, 2012).

Many substances, both synthetic and natural, act like ecdysone
agonists (Pener and Dhadialla, 2012), but there seem to no publica-
tions describing their effect on R. prolixus. On the contrary, there
are many studies describing the effects of other growth or develop-
ment disruptors in this insect.

4.2.1. Juvenoids
When a hemimetabolous insect is in the last nymphal stage, the

production of juvenile hormone is physiologically interrupted and
the next moult produces an adult. However, if the insect is treated
with a juvenoid, metamorphosis does not take place and the insect
moults to another juvenile stage (Devillers, 2013). The end result
depends on the dose of juvenoid administered. Insects receiving
a high dose will moult to juvenile individuals (supernumerary
nymphs). Lower doses will produce individuals that are similar
to adults, but that still have juvenile features (adultoids).

About one hundred and thirty juvenoids were evaluated in R.
prolixus (Grove et al., 1974; Kul’kova et al., 1983; Patterson,
1973; Patterson and Schwarz, 1977; Pridantseva et al., 1978;
Wigglesworth, 1963, 1969, 1973). The activity of these molecules
was mainly quantified using the scoring system proposed by
Wigglesworth (see Section 2).

Topical application of juvenile hormone from the moth
Hyalophora cecropia on fifth instar nymphs of R. prolixus gave a
score of 10 at a dose of 0.015 lg per insect (Wigglesworth,
1973). Juvenoids produced the same effect at doses between
0.0024 and more than 800 lg per insect.

The effect of a juvenoid strongly depends on its chemical struc-
ture. Among several farnesene derivatives, trans,trans-farnesyl
methyl ether is the most active in R. prolixus (0.32 lg per insect
produces a score of 10) (Wigglesworth, 1963). Farnesene deriva-
tives with polar groups (–OH, –NH2, –COOH) are less active than
those without them; derivatives with an epoxy group in the C6–7

position are less active than those that have it in the C10-11 position
(Wigglesworth, 1969).

Other terpenoids that elicit an important effect in R. prolixus
are: those with a methyl ester and an epoxide group at opposite
ends of the molecule; meta substituted aryl terpenoids; aryl ter-
penoid amines with an ester substituted in the para position of
the aromatic ring, and a methyl ester and an epoxy group in the
positions 6,7 in the terpenoid side chain, respectively; and aryl ter-
penoid amines with two chlorines substituted in positions 2 and 5
of the aromatic ring (Patterson and Schwarz, 1977).

A divinyl cyclohexanone, that is a compound chemically unre-
lated to the juvenile hormone, showed very good juvenoid activity
on larvae of the mosquito Culex pipiens quinquefasciatus
(Desmarchelier and Fukuto, 1974). However, when it and other
molecules belonging to the same group were tested on R. prolixus,
juvenoid activity was not observed (Shekhter et al., 1978).

Geometric isomerism has an important effect on juvenoid activ-
ity. The juvenile hormone from H. cecropia has three chiral carbons.
The most active isomeric configuration in R. prolixus is trans, trans,
cis (Wigglesworth, 1969). It is four hundred and fifty-five times
more effective than the synthetic form cis, cis, cis. Other isomeric
configurations present intermediate activities. Trans-isomers of
cyclohexenones are also more active than cis-isomers (Grove
et al., 1974).

Juvenile hormones are quickly degraded by hydrolysis of the
ester group (White, 1972). Therefore, the effect of juvenoids with
this chemical group is limited by their rapid metabolism. Applying
1 ll/insect/day of juvenoids with an ester group is twelve times
more effective that a single dose of 5 ll/insect one day after feed-
ing (Patterson, 1973).

Another factor limiting the activity of juvenoids in R. prolixus is
that this species is susceptible to these substances only during the
ten days after feeding in the last nymphal stage (Wigglesworth,
1969). This time-frame represents only a small fraction of the
insect’s life-cycle, which takes at least four months to reach the
adult stage (Arévalo et al., 2007).

Juvenoids also affect R. prolixus embryogenesis. The most pow-
erful inhibitors of metamorphosis are also the ones with the high-
est activity on embryos (although there are some exceptions)
(Patterson and Schwarz, 1979). However, prevention of eclosion
only occurs if eggs are treated immediately after oviposition.

As evidenced by two-dimensional electrophoretic analysis,
embryos treated with the juvenoid fenoxycarb present a pattern
of proteins that is different to non-treated embryos (Kelly and
Huebner, 1986, 1987). This suggests the presence of alterations
in molecular events accompanying development.
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The juvenoid pyriproxyfen elicits a good activity in R. prolixus
(Langley et al., 1990). Its ED50 for inducing supernumerary
nymphs is 0.15 lg per insect (twenty-eight times more effective
than the juvenoid methoprene, used as positive control). Applying
10 lg of pyriproxyfen per egg caused 100% unviability, and young
adult females treated with 10 lg produced non-viable eggs.
Exposure of female adults to filter papers impregnated with
0.15 mg of pyriproxyfen in oil per cm2 reduced their egg viability
to zero.

Retinoids are sesquiterpenes derived from retinol (vitamin A)
that are structurally related to juvenile hormones (Němec et al.,
1993). In holometabolous insects, these substances participate in
morphogenesis and produce a juvenilizing effect when applied
on last instar nymphs. Injection of several retinoids (120 pmol
per insect) to fourth instar nymphs of R. prolixus caused morpho-
logical abnormalities and death during moulting (Nakamura
et al., 2007). Retinoids, methoprene and juvenile hormones also
decreased phenoloxidase activity, which is involved in the insect
immune response, suggesting that these compounds may have
some effect on the insect’s immune system.

4.2.2. Chitin synthesis inhibitors
Chitin is one of the main components of the insect cuticle

(Cohen, 2010). It is a polymer of N-acetyl-D-glucosamine, and
chitin synthase is the enzyme involved in the construction of the
polymer chain. Molecules of the benzoylphenylurea family inhibit
chitin synthesis (Pener and Dhadialla, 2012). Insects treated with
these substances die during or after the following moult. The
effects of two benzoylphenylureas, triflumuron and lufenuron,
were tested in R. prolixus.

Exposure of R. prolixus fifth instar nymphs to cotton materials
treated with triflumuron produced abnormalities in the external
morphology and mortality during moulting (Vásquez et al.,
2002). Further experiments on the same nymphal stage showed
that topical, oral or continuous applications of triflumuron were
all effective (Mello et al., 2008). In oral applications, it was added
to a human blood meal; in continuous applications, insects were
exposed to films of triflumuron placed on the bottom of Petri
dishes. The lowest dose/concentration applied in each case
(0.05 mg per insect in topical applications, 0.05 mg per ml in oral
applications, and 0.007 mg per cm2 in continuous applications)
produced a high mortality rate and inhibited moulting in the sur-
viving insects.

Beauveria bassiana is an entomopathogenic fungi commercial-
ized as a biological control agent for certain insects (Skinner
et al., 2014). Different combinations of this fungus and triflumuron
were tested in R. prolixus and R. pallescens (another Chagas vector)
(Saldarriaga et al., 2005). The activity of some of these combina-
tions on insect mortality was slightly higher than the activity of
each agent on its own. However, the heterogeneity of the results
did not allow reaching a clear conclusion.

As chitin is a component of R. prolixus eggs, lufenuron affects
oogenesis and egg laying (Mansur et al., 2010). Injections of 7.5
or 15 lg of lufenuron in females reduced the size of oocytes, the
number of chorionated oocytes and the polymerization of N-
acetylglucosamine in ovaries. It also induced oosorption (reabsorp-
tion of oocytes in ovaries). Compared to the control group, this sub-
stance reduced the number of eggs laid by 30 to 50%, and altered
their shape and colour (pink at first, but then turning abnormally
grey). Only 1% of the eggs laid by treated females hatched, whereas
98% of hatching was observed in the controls.

4.2.3. Precocenes
Precocenes I and II are naturally occurring 2H-chromenes pro-

duced by species of the plant genus Ageratum (Bowers, 1976). Both
interrupt the secretion of juvenile hormone by damaging the
corpora allata (Azambuja and Garcia, 1991). In the absence of juve-
nile hormone, immature stages moult to small sterile adults called
adultoids (Bowers, 1976). As juvenile hormones, they also control
ovarian development, therefore newly emerged females treated
with precocenes are sterile (Azambuja and Garcia, 1991). There
are no commercial products based on precocenes due to their
low effectivity, and because one of its metabolites is a potentially
carcinogenic epoxide (Coats, 1994; Pener, 2002).

Studies performed with R. prolixus during the 1980’s con-
tributed to understand the mode of action of precocenes. The
results of these works were summarized and discussed in two dis-
cussion papers (Azambuja and Garcia, 1991; and Garcia et al.,
1987). Briefly, contact, oral, and topical application of precocene
I, II or their synthetic analogues delayed moulting and induced
the formation of adultoids in all stages of R. prolixus (Azambuja
and Garcia, 1987; Azambuja et al., 1981a,b, 1982, 1984; Garcia
et al., 1984a,b, 1988; Jurberg et al., 1984; Pridantseva et al.,
1981; Tarrant and Cupp, 1978; Tarrant et al., 1982). The greatest
effect was observed when these compounds were orally applied.
Blood meals containing 10–300 lg/ml of precocene II delayed
ecdysis and induced precocious metamorphosis, all in a
concentration-dependent manner (Azambuja et al., 1981a). A sin-
gle oral application of precocene II (1, 5 or 10 lg/ml of blood) to
adult females prevented yolk deposition, reduced the number of
mature oocytes and decreased egg production in a dose-
dependent manner (Azambuja and Garcia, 1987).

Two-(2-ethoxyethoxy)ethyl furfuryl ether, a furanyl-containing
compound, showed a high precocene activity (Bowers et al., 1995).
When tested on R. prolixus, its toxicity was similar to that of pre-
cocene II (ED50 values for the induction of precocious metamor-
phosis were 55 and 40 lg per insect, respectively) (Azambuja
et al., 1996; Jurberg et al., 1997).

4.2.4. Azadirachtin and lignoids
Azadirachtin is a triterpenoid limonoid found in the seed of the

neem tree, Azadirachta indica (Mordue et al., 2005). It is a strong
insect feeding deterrent, and also induces delays in the develop-
ment of juvenile stages, incomplete ecdysis, malformations during
metamorphosis, sterility in eggs, and reduces fertility in adults
(Morgan, 2009). The mode of action of azadirachtin is not exactly
known, but it has been suggested that its effects on development
could be caused by blocking microtubule formation in actively
dividing cells (Morgan, 2009).

With fifteen articles reporting its toxicokinetics and diverse
effects on R. prolixus, azadirachtin is one of the most studied insec-
ticide in this insect. Most of these studies were published in the
1980’s and early 1990’s, and have already been summarized and
discussed in several discussion papers (Azambuja and Garcia,
1992; Garcia et al., 1987, 1991; Rembold, 1987), so only a brief
description of their main results is given below.

Azadirachtin presents good insecticidal activity on fourth instar
nymphs of R. prolixus. ED50 values for the inhibition of feeding and
ecdysis were 25 and 4 � 10�4–4 � 10�2 lg per ml of blood, respec-
tively (Garcia and Rembold, 1984; Garcia et al., 1984b). Injection of
10 ng per insect prevented ecdysis in 100% of the treated nymphs
(Garcia et al., 1986). Ingestion of azadirachtin in a blood meal pro-
duced immunodepression in insects previously inoculated with
Enterobacter cloacae (Azambuja et al., 1991). Azadirachtin
decreases the title of prothoracicotropic hormone in hemolymph
(Garcia et al., 1990b). It also decreases oocyte growth and egg pro-
duction in adult R. prolixus females (Feder et al., 1988; Garcia et al.,
1990a; Moreira et al., 1994).

One of the few and most complete studies on insecticide
toxicokinetics in R. prolixus was carried out with azadirachtin
(Garcia et al., 1989c). When orally administered, [22,23-3H2]
dihydroazadirachtin crosses the gut wall into the haemolymph.
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Following a peak 24 h after feeding, its level in the haemolymph
gradually decreases as it is excreted unmetabolized.

Although azadirachtin is not toxic to T. cruzi, the causative agent
of Chagas disease, it does prevent the proliferation of this proto-
zoan in the gut of R. prolixus (Box 3).
Box 3. Azadirachtin and lignoids prevent the proliferation
of T. cruzi in the gut of R. prolixus

Oral administration of azadirachtin before, with or after a
blood meal containing T. cruzi, decreased the gut population
of this parasite in R. prolixus and other triatomines to almost
undetectable levels in a few weeks (Garcia et al., 1989a;
Gonzalez and Garcia, 1992; Rembold and Garcia, 1989). How-
ever, these results are not due to the toxic effect of azadirach-
tin, as T. cruzi develops normally and does not loose its
infectious capacity when cultured in vitro in the presence of
this insecticide (Rembold and Garcia, 1989). The lignoids
burchellin and NDGA also inhibited the establishment of T.
cruzi in the gut of R. prolixus when applied before or together
with the parasite (Cabral et al., 1999a).

Once in the midgut of R. prolixus, T. cruzi becomes attached
to the perimicrovillar membrane of epithelial cells (Alves
et al., 2007; Nogueira et al., 2007). This attachment seems cru-
cial for the reproduction of the parasite. Taking this into
account, it has been suggested that the effect of azadirachtin
on triatomine gut populations of T. cruzi could be explained
by the changes the insecticide produces on the epithelial cells
of the midgut (Cortez et al., 2012).

The surface of normal midgut cells has a homogeneous
distribution of densely packed microvilli, with well organized
layers of extracellular membranes covering them. Inside the
microvilli there are bundles of microfilaments. After the
ingestion of azadirachtin, the microvilli are found clustered,
giving the cell surface a wrinkled appearance. Furthermore,
the extracellular membrane layers are disorganized and
microfilaments are lost (Nogueira et al., 1997). Head trans-
plantation from untreated donors and oral treatment with
ecdysone re-establish both the morphology of gut epithelial
cells and T. cruzi development (Cortez et al., 2012, Gonzalez
et al., 1999). These results suggest that the modifications pro-
duced by azadirachtin in gut epithelial cells might be incom-
patible with the viability of T. cruzi in the gut of R. prolixus.

Lignoids are dimers of phenylpropanoid units biosynthesized by
plants from more than seventy families (Pan et al., 2009). Some of
these substances cause acute mortality, feeding deterrence and/or
ecdysis disruption in different insects (Garcia and Azambuja,
2004). The activity of the lignoids burchellin, licarin A, nordihy-
droguaiaretic acid (NDGA), pinoresinol, podophyllotoxin and sesa-
min was studied in fourth instar nymphs of R. prolixus. The effects
of lignoids on insects were reviewed some years ago (Garcia and
Azambuja, 2004). The studies related to R. prolixus are briefly sum-
marized below.

Podophyllotoxin was the most toxic lignoid, followed by licarin
A (90% and 30% of acute mortality, respectively, after ingesting
100 lg per ml of a blood meal) (Cabral et al., 2000a). At first, it
was thought that pinoresol did not have anti-moulting activity
(Cabral et al., 1995); however, subsequent studies showed that
both this substance and NDGA inhibit ecdysis (with ED50s lower
than 20 lg per insect) (Cabral et al., 1999b; Garcia et al., 2000).
Podophyllotoxin, burchellin and, to a lesser degree, licarin A,
reduce the production of urine (Cabral et al., 2000b; Garcia et al.,
2000). Burchellin seems to prevent the secretion of the diuretic
hormone and/or induce the release of antidiuretic compounds
(Cabral et al., 2000b). This lignoid is biotransformed to piperonyl
alcohol and other metabolites in the hemolymph of R. prolixus,
(Cabral et al., 2008).
As in the case of azadirachtin, some lignoids prevent the prolif-
eration of T. cruzi in the gut of R. prolixus (Box 3).

4.3. Synthetic insect repellents

An insect repellent has been defined as ‘‘something that causes
insects to make oriented movements away from its source” (White
and Moore, 2015). Repellents are detected by the insects’ olfactory
sense (Bohbot and Dickens, 2010; Kain et al., 2013; Zermoglio
et al., 2015). N,N-diethyl-3-methylbenzamide (DEET) is the more
popular insect repellent. It is effective against all groups of biting
arthropods, and has been used as a commercial product for more
than fifty years (White and Moore, 2015).

There are very few studies on repellents in R. prolixus. During
the 1980’s, the first works showed what would be then confirmed
in later investigations on this species and other Chagas vectors: tri-
atomines are less sensitive to repellents than mosquitoes and other
blood-sucking arthropods (Buescher et al., 1985, 1987). Another
tendency observed in triatomines and other insects is that natural
substances originated from plants are less effective than DEET
(although there are some exceptions) (Alzogaray et al., 2000,
2011; Lucía et al., 2009; Rajendran and Sriranjini, 2008; Rice and
Coats, 1994a,b).

Of eighteen experimental and commercial repellents tested by
application on shaved rabbit skin, the pyrethroid permethrin, the
experimental compound RH-398 and DEET showed the highest
repellent activity on R. prolixus adults (Buescher et al., 1985). The
median effective concentration (EC50) values of these three com-
pounds were 7, 390, and 443 lg per cm2, respectively. Indalone
and dimetil-phtalate, repellents with confirmed efficiency in other
arthropods, were ineffective against R. prolixus.

In a comparative study using twelve blood-sucking species of
arthropods and the same methodology as described above, DEET
proved to be as good a repellent as permethrin on eight of the spe-
cies (Buescher et al., 1987). It showed a very low activity on R. pro-
lixus, the mosquito Ae. tueniorhynchus, the flea Xenopsylla cheopis,
and the tick Ornithodoros parkeri.

Although DEET has been used worldwide for more than five
decades, its mode of action on a molecular level has only recently
been studied (Corbel et al., 2009; Kain et al., 2013; Leal, 2014; Xu
et al., 2014). There is evidence that it blocks the perception of
the host’s odours (Ditzen et al., 2008; McIver, 1981), and that itself
can also be perceived by insects as an odour (Alzogaray et al., 2000;
Alzogaray, 2015). In R. prolixus, it was shown that DEET and piper-
idine produce repellency in both the presence and absence of
human odours, but icaridine only produces repellency when the
host is absent (Zermoglio et al., 2015).

The fact that DEET is perceived by smell was supported by the
capacity this molecule has to promote adaptation, a phenomenon
associated with stimulus-receptor interaction (Dolzer et al.,
2003). After different times of continuous exposure to DEET, the
behavioural response of R. prolixus to this repellent decreased in
a time-dependent way (Sfara et al., 2011). However, the response
was recovered after interrupting the exposure. A similar decrease
in the behavioural response was obtained when exposing R. pro-
lixus to the natural monoterpene repellents menthyl acetate and
geraniol (Lutz et al., 2014). Continuous exposure to one monoter-
pene decreased the repellency produced by the other. This last
result might indicate that these substances share at least part of
the olfactory pathway from the chemoreceptor to the central ner-
vous system.

Nitric oxide is involved in the olfaction transduction pathway in
insects (Bicker, 1998; Davies, 2000). It activates soluble guanylyl
cyclase, leading to the synthesis of cGMP (Müller, 1997). The treat-
ment of R. prolixus antennae with S-nitroso-acetyl-cysteine (SNAC),
a nitric oxide donor, reduced DEET, menthyl acetate and geraniol
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repellency (Lutz et al., 2014; Sfara et al., 2008). These results are
consistent with the participation of nitric oxide in the sensorial
perception of the repellents tested in R. prolixus.

Compared to DEET, the synthetic repellent IR3535 was ineffec-
tive in R. prolixus adults (Buescher et al., 1985). However, its lowest
observed effect level in fifth instar nymphs was similar to DEET
(74 lg/cm2) when applied in the absence of a host-related stimuli
(Alzogaray, 2015).

The response of R. prolixus to carbon dioxide, a cue associated
with host localization, is influenced by age and physiological state
(Bodin et al., 2009). However, DEET and IR3535 repellency was not
modified by nymphs age (between 1 and 3 h to 99 days from last
ecdysis).

The toxicity of DEET and IR3535 in insects has been scarcely
studied. They both showed very poor insecticidal activity in R. pro-
lixus (Alzogaray, 2015). A dose of 750 lg of DEET per insect pro-
duced only 40% mortality seven days after topical application.
Simultaneous application of DEET and pyperonilbutoxide, an inhi-
bitor of MFMO, doubled the mortality. These results suggest that
MFMO are involved in the metabolism of DEET in this species.
No symptoms of intoxication were observed after topical
application of 750 lg per insect of IR3535, either with or without
pyperonil butoxide.

4.4. Insecticides with other modes of action (including those non-
specific or unknown)

4.4.1. Peptides
d-Endotoxins are parasporal crystalline inclusions biosynthe-

sized by the Gram positive bacterium Bacillus thuringiensis at the
onset of sporulation and during the stationary phase (Palma and
Berry, 2016; Palma et al., 2014). After being ingested by insects,
d-endotoxins are dissolved in the midgut and proteolitically
activated by enzymes. Activated toxins bind to receptors located
on midgut cell membranes, leading to cell disruption followed by
insect death (Bravo et al., 2011).

In vitro studies showed that the 27 � 103 Mr d-endotoxin from
B. thuringiensis var. israeliensis alters the function of Malpighian
tubules isolated from R. prolixus (Maddrell et al., 1988). Concentra-
tions higher than 1 lg per ml modified both basal and luminal
microvilli. They also dissociated intercellular junctions and
induced cytoplasmic vacuolization. These microstructural
alterations caused the microtubules to stop secreting fluids.
d-Endotoxin produced a rapid collapse in the basal membrane
potential and increased membrane permeability to sucrose
(Maddrell et al., 1989). These effects are consistent with the forma-
tion of pores in cell membranes.

Both these studies were published when the mode of action of
d-endotoxin was still unknown. Although Malpighian tubules are
not the primary target of these toxins, their results showed that
d-endotoxins form aggregates that lead to the formation of pores,
as now is known to occur in the gut epithelium.

Canatoxin is a protein initially isolated from the seeds of the
jackbean Canavia ensiformis (Carlini and Guimarães, 1981). It is
toxic for both mammals and insects (Carlini et al., 1984, 1997).
Third instar nymphs of R. prolixus feeding on blood with canatoxin
showed a decrease in post-feeding weight loss and a mortality
peak 72–96 h after the meal (LD50 was 0.4–0.8 lg/mg of insect
body weight) (Carlini et al., 1997). Canatoxin was similarly toxic
in fourth instar nymphs of R. prolixus, but produced no mortality
in adult males (Ferreira-DaSilva et al., 2000).

At the beginning of the 21st century, it was determined that
canatoxin is an urease isoform (Follmer et al., 2001) which led to
investigate whether other ureases from C. ensiformis showed insec-
ticidal activity. Ureases are nickel-dependent enzymes biosynthe-
sized by bacteria, fungi and plants (Modolo et al., 2015). They
catalyse the hydrolysis of urea to ammonia and carbon dioxide. A
review on insect toxicity by ureases was published a few years
ago (Stanisçuaski and Carlini, 2012). The next paragraph briefly
summarizes its effects on R. prolixus.

The toxicity of urease isoforms canatoxin and jack bean urease in
insects is due to a 10-kDa peptide released by a cathepsin-like activ-
ity in the midgut (Carlini et al., 1997). Canatoxin, jack bean urease,
the isoform JBURE-IIb and the recombinant peptide jaburetox-2Ec
(equivalent to the product of canatoxin hydrolysis), inhibit
serotonin-stimulated secretion of fluid in isolated Malpighian
tubules (Mulinari et al., 2011; Stanisçuaski et al., 2010; Tomazetto
et al., 2007). The effect of jack bean urease is eicosanoid
metabolite- and calcium ion-dependent. On the other hand, the
effect of jaburetox-2Ec is cGMP-dependent (Stanisçuaski et al.,
2009). Neither jack bean urease nor jaburetox-2Ec are agonists of
the antidiuretic hormone receptor RhorpCAPA-2 (Paluzzi et al.,
2012).

More recently, the properties of jack bean urease with chemi-
cally modified lysine residues or carboxylic groups were evaluated
(Real-Guerra et al., 2013). Chemical modification of lysine residues
altered antidiuretic activity in vitro. When acidic residues were
modified, the peptide was not hydrolysed by the digestive
enzymes. Although these modifications did not altered the urease
activity, they did decrease its toxicity in the cotton stainer bug
Dysdercus peruvianus (toxicity in R. prolixus was not assessed).

Destruxins are a family of about forty cyclic hexadepsipeptides
biosynthesized by Metarhizium anisopliae and other ento-
mopathogenic fungi (Liu and Tzeng, 2012). They are toxic to
viruses, bacteria, fungi and insects. Destruxin A has a strong toxic
effect on isolated Malpighian tubules of R. prolixus stimulated with
serotonin or cAMP (Ruiz-Sanchez et al., 2010). The median inhibi-
tory concentration (IC50) of fluid secretion in tubules stimulated
by the diuretic neurotransmisor serotonin was 3 � 10�7 M. A con-
centration of 10�6 M altered the transepithelial potential, disrupt-
ing the second and third phase of the triphasic response to
serotonin. Destruxin A increased the pH of the secreted fluid, but
did not affect Na+ or K+ concentrations nor ATP content in the
tubules. These results support the hypothesis that the target of
destruxin A in the Malpighian tubules could be related to the inhi-
bition of the apical V-type H+ ATPase of tubule cells. V-ATPase pro-
ton pumps are located in the endomembranes of eukaryotic cells
(Cotter et al., 2015). Among other functions, they provide energy
for intracellular transportation across membranes. Similar effects
of destruxins were reported in other biological models like yeast
and human tumours (Liu and Tzeng, 2012).

4.4.2. Botanicals
Essential oils are complex mixtures of phenols, and mono- and

sesquiterpenes, produced as secondary metabolites by aromatic
species belonging to the families Myrtaceae, Lauraceae, Lamiaceae,
Asteraceae, among others (Regnault-Roger et al., 2012). They are
volatile, liposoluble and rarely coloured liquids with characteristic
smells and tastes (Bakkali et al., 2008). Due to their low toxicity to
mammals and low environmental residual activity, their insectici-
dal properties have been the object of a great number of studies in
the last decades (Isman, 2010). The activity of several essential oils
and some of their monoterpene components was studied in R. pro-
lixus (for a review about toxicity of essential oils in triatomines, see
Sainz et al., 2012).

Topical application of crude essential oils from the leaves of the
Brazilian shrub Policarpus spicatus (0.5 and 1 lg per insect) and the
American tree Zanthoxylum caribaeum (0.5–5 lg per insect)
produced paralysis and high mortality on fifth instar nymphs of
R. prolixus (Mello et al., 2007; Nogueira et al., 2014). Oral applica-
tion of the essential oil from P. spicatus (5 ll per ml of blood) pro-
longed the moulting period for 48 h compared to controls. Only 5%
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of the insects survived moulting. Nymphs continuously exposed to
essential oil from Z. caribaeum (5 ll per cm2 on filter paper)
exhibited malformations in legs and wings.

Commercial essential oils from eucalyptus, geranium, lavender,
mint, and orange applied as fumigants on first instar nymphs were
between 6.7 and more than 16.8 times less toxic than dichlorvos,
an organophosphate with renowned fumigant activity (Sfara
et al., 2009). At the same stage, eighteen monoterpenes were
between 21.9 and more than 116.7 times less toxic than dichlorvos
(Moretti et al., 2013, 2015; Sfara et al., 2009). The most effective
essential oils were thymol, eugenol, and eucalyptol.

Nine essential oils from plants of the genera Artemisia, Mentha,
Satureja, and Thymus produced a repellent effect similar to that of
dimethyl phtalato (positive control) (Sainz et al., 2012). Lavender
and mint essential oils showed good repellent activity on first
instar nymphs of R. prolixus (Sfara et al., 2009). Most monoterpenes
tested on first instar nymphs showed repellence (Moretti et al.,
2013, 2015; Sfara et al., 2009). The repellent effect of carvacrol,
eugenol and geraniol was as good as DEET.

As described in Section 4.1.1, hyperactivity is one of the first vis-
ible symptoms in insects intoxicated with pyrethroids and other
insecticides. Some monoterpenes present in essential oils also
produce this effect. Of eleven monoterpenes studied in first instar
R. prolixus nymphs, ten increased locomotor activity (Moretti
et al., 2013, 2015). Hyperactivity was evidenced using concentra-
tions of at least two orders of magnitude greater than that required
by deltamethrin, a powerful insect hyperactivant, to produce the
same effect. Carvacrol was the best hyperactivant while eugenol
showed no effect.

The only publication found on the effects of monoterpenes on
the life cycle of R. prolixus reports that exposure to citral or ruda
vapours delayed moulting from fifth instar nymphs to adults by
almost a month (Abramson et al., 2007).

The sites of action of only a few monoterpenes have been dis-
covered. Eugenol and a-terpineol inhibit the octopaminergic
receptor of the cockroach Blattella germanica (Enan, 2001); thymol
and carvacrol inhibit the tyramine receptor of Drosophila melano-
gaster (Enan, 2005). The site of action of eucalyptol is unknown.
In R. prolixus, it produces similar symptoms to those observed in
insects intoxicated with neurotoxic insecticides such organophos-
phates and pyrethroids (Table 4) (Moretti et al., 2015). These
symptoms suggest that the site of action of eucalyptol is located
in the nervous system.

Only two studies were found on the insecticidal activity of plant
extracts on R. prolixus. Ethanol extracts from the seeds of Annona
muricata, Mammea americana, Melia azedarach and Ricinus
communis produced acute toxicity when applied topically on fourth
instar nymphs and eggs (Parra-Henao et al., 2007). The LC50 values
Table 4
Visible symptoms of intoxication with eucalyptol observed in first instars of T.
infestans and R. prolixus.

First phase (minor to moderate) Second phase (severe)

Abnormal rest position: ventral
contact of full body with support
surface (at normal rest position,
the body remains suspended over
the support surface)

Reverse walk with elevated abdomen
or normal walk with leaning
abdomen

Reverse or lateral walk Slow vertical oscillation of body over
antero-posterior axis

Flexion of antennal flagella 90�
outwards

‘‘Praying mantis” position: forelegs
flexed beneath elevated thorax

Proboscis extension (in absence of
phagostimulants)

Unable to return to normal position
after accidentally getting in dorsal
decubitus position

Paralysis of hind legs Total immobility
Antennas aligned forward

Source: Moretti et al. (2015). Reproduced under license from John Wiley and Sons.
ranged between 1.02% and 4.33% p/p (one and two orders of mag-
nitude less toxic than the positive controls nicotin and deltame-
thrin, respectively). All the extracts produced repellency but only
those from A. muricata, M. azedarach and R. communis showed ovi-
cidal activity (25% or less when applied at a dose of 2.5–3% p/p).

Topical application of an ethanol extract of the giant star potato
tree Solanum macranthus produced a LD50 of 172 mg per ml in R.
prolixus (Carvajal et al., 2010). The main components of the extract
were alkaloids, coumarins, terpenic lactoses and flavonoids.

4.4.3. Fatty acids and aliphatic alcohols
The discovery that certain fatty acids are teratogenic in the

house fly (Quraishi, 1971) lead to further investigations to deter-
mine whether they produced similar effects in R. prolixus
(Gomez, 1985). Two short-chain unsaturated fatty acids, octinoic
and undecylenic acid, produced malformations in legs and mouth-
parts in all the juvenile stages. Topical application on eggs (20 ll of
octionoic acid per egg or 5 ll of undecylenic acid per egg) produced
100% of mortality before eclosion. Treatment of juvenile stages
with doses between 0.1 and 2 lg per insect produced low
mortality and malformations which were manifested in the stages
following the one receiving the treatment. Undecylenic acid
produced greater mortality and lower teratogenicity.

With the previous knowledge that aliphatic alcohols (C2–C18)
present insecticidal properties in mosquitoes and human head lice
(Sinniah, 1983; Cueto et al., 2002), the toxicity of 1-dodecanol was
studied in R. prolixus (Cueto et al., 2005). This alcohol was 623,333
times more toxic in teneral first instar nymphs than in post-teneral
ones (LC50 values were 0.03 and 18,700 ng/nymph, respectively).
Notwithstanding, it presented similar toxicity in both groups when
injected. This evidenced the fact that its passage through the cuti-
cle has an important role in the toxicity of this molecule. Another
effect of 1-dodecanol was manifested in the tanning of cuticle:
24 h-old nymphs treated 1-4 h after hatching looked as red as
recently hatched nymphs. The mechanism underlying these effects
has yet to be determined.

4.4.4. Inert dusts
Inert dusts exert their insecticide effect physically, causing

abrasions to the insect cuticle (Golob, 1997; Wigglesworth, 1944,
1947). Without the protection of their cuticle, insects exposed to
inert dusts become easily dehydrated. Moreover, the entry rate of
insecticides to the organism increases when the insect cuticle is
damaged. Inert dusts are mainly used for protecting stored
products (Subramanyam and Roesli, 2000).

Exposure to amixture of amorphous silica, ammoniumfluorosil-
icate and pyrethrum during 2–15 min produced between 87.9% and
100% mortality in fifth instar nymphs and adults of both sexes of R.
prolixus after 24 h (Kul’kova, 1975). Additionally, 100% of the
insects lost their capacity to feed immediately after an exposure
of 10 min.

R. prolixus adults were more susceptible than fifth instar
nymphs when exposed to a mixture of silica aerogel and ammo-
nium fluorosilicate, but no differences were found due to nymph
sex (Kul’kova, 1983).

4.4.5. Sterilizants
Some alkylating agents are known to induce sterility in insects

(Labrecque and Fye, 1978). Treatment of fifth instar nymphs of R.
prolixus with 1-[bis(2-methyl-1-aziridinyl)phosphoryl]-2-methyla
ziridine (metepa) sterilized in a dose-dependent manner the adults
emerging in the following moult (Feliciangeli et al., 1972). Steril-
ization was quantified by registering the percentage of eclosion.
A dose of 200 lg per insect completely sterilized all the treated
males. Females were more tolerant, as a dose of 400 lg per insect
only induced an average of 70% sterility. In addition to its
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chemosterilant effect, metepa increased locomotor activity and
reduced longevity in insects of both sexes (Feliciangeli, 1972). In
similar experiments, but using individuals fed on mice infected
with T. cruzi, faeces examination showed that metepa does not
seem to affect the viability of the protozoan in the insect’s gut
(Feliciangeli et al., 1972).

Exposure to ionizating radiaton is another way of sterilizing
insects. This led to the concept of the sterile insect technique
(Lance and McInnis, 2005). This technique consists in sterilizing
males and then releasing them in large quantities in the environ-
ment. The objective is for sterile males to mate with wild females
who then produce sterile eggs, thus reducing the insect population.
The sterile insect technique is used successfully for controlling
dipterans of agricultural importance, especially the Mediterranean
fruit fly, Ceratitis capitata (Shelly and McInnis, 2015).

One hundred per cent of sterility was observed mating normal
females with males irradiated with gamma-rays (20,000 R)
(Gómez et al., 1962; Gómez-Núñez et al., 1964). In other experi-
ment, the application of 6,800 R produced an average fertility of
23.9% (Maudlin, 1976). Cytogenetic examination showed that
infertility was related to chromosomal abnormalities. R. prolixus
has holocentric chromosomes and a high rate of translocations
were observed in the F1 progeny.

X-ray irradiation of male fifth instar nymphs produced sterile
adults after moulting, but the sterilizing dose interfered with mat-
ing (Baldwin and Shaver, 1963). Radiation of adults affected mating
to a lesser degree. In an experimental population where males
treated with a dose of 17,500 R were introduced, there was an
important decrease in viable eggs produced by non irradiated
females. However, the sterile males died prematurely.

Beyond these results, the sterile insect technique is not a recom-
mendable strategy for controlling domiciliary populations of R. pro-
lixus, as it would imply releasing into the homes a massive amount
of hematophagous insects that are vectors of an infectious disease.

5. R. prolixus intoxicated in the field

5.1 Past and present of R. prolixus control

The control of R. prolixus and other Chagas vectors mainly
depends on sociocultural, political and economical factors (Dias
et al., 1994). Chemical control of vectors and close surveillance of
blood banks (to avoid reception from infected donors) are the main
actions taken to interrupt the transmission of the disease
(Moncayo, 1999).

Chemical control strategies are strongly influenced by insect
toxicology. Studies in this area are essential when deciding what
insecticides to apply. Insect toxicology also detects if there is insec-
ticide resistance in insect populations. By studying the biological
mechanisms involved in the resistance, it provides the necessary
information to determine the best way to manage this problem.

The chemical control of R. prolixus began halfway through the
last century and to the present day has been based on the applica-
tion of synthetic neurotoxic insecticides. This is due to their high
efficiency, the rapidity with which they elicit their effect and their
adequate residual activity.

Vector-borne diseases are a problem that affects public health.
Therefore, and as proclaimed by the WHO Constitution based on
international and local treatises, the control of these diseases is
the responsibility of the governments (WHO, 2014). The first gov-
ernmental programme for controlling R. prolixus was organized in
Venezuela in the mid-20th century (Feliciangeli, 2009). After prov-
ing the low toxicity of DDT in R. prolixus and the low residuality of
lindane, the initial successful field trials carried out in this country
in 1949 used dieldrin. This insecticide was chosen based on results
obtained in a semi-field experience, where structures imitating the
rural households of the area were sprayed with a wettable powder
formulation of dieldrin (Gualtieri et al., 1985). A massive applica-
tion of 1 g of dieldrin per m2 was then initiated (Carrillo, 1954).
Between 1952 and 1955, the treatment of some 300,000 homes
reduced triatomine infestation in Venezuela by 95% (Aché and
Matos, 2001). In 1966, the Venezuelan Program for the Control of
Chagas Disease adopted a centralized and vertical structure, with
a minimum decentralization of activities via local headquarters
in the endemic area (Aché and Matos, 2001). This strategy reduced
the levels of R. prolixus infestation even further.

In 1974, coinciding with an important increase in the rentability
of petroleum, the Venezuelan programme became even more cen-
tralized (Briceño-León, 2006). A few years later, the price of petrol
began to fall while the external debt of the country increased. This
caused an economical crisis that led to the decentralization of the
Chagas vector control programme and the health services were
transferred to the states (Briceño-León, 2006).

In Colombia, there was no national policy for controlling Chagas
disease before the 1980’s (Guhl and Vallejo, 1999). It was only in
1995 that the prevalence of the disease became known and the fol-
lowing year the first national program for controlling Chagas vec-
tors was initiated. Actions against Chagas were at first
centralized but then became decentralized (Guhl et al., 2006).
Decentralization was strongly criticized due to the important
delays in transferring funds that resulted in defunded programmes,
inability to access remote communities and the lack of national
policies to direct, coordinate and audit activities.

In Central America, the first vector-control strategies against
the two main vectors, R. prolixus and T. dimidiata, were also con-
ceived as a vertical structure. In general, scarce resources were
assigned to this activity and by the end of the 20th century,
vector-control activities with trained personnel had almost disap-
peared from the region (Nakagawa et al., 2006).

Towards the end of the 80’s, vector-control programmes for R.
prolixus and other Chagas vectors began to use pyrethroids. The
cyanopyretroids deltamethrin, alpha-cypermethrin, cyfluthrin,
beta-cyfluthrin, and lambda-cyhalothrin were chosen for their
high triatomicidal activity (Zerba, 1999). In some countries of the
Southern Cone, beta-cypermethrin was also used. The recom-
mended concentrations for these insecticides ranged between 25
and 50 mg per m2.

At the same time, the countries of the Southern Cone started to
discuss the need to perform a joint and sustained regional effort to
interrupt the transmission of Chagas disease. The activities pro-
posed were aimed at controlling insect vectors and monitoring
blood banks. In order to achieve continuity in the intervention and
vigilance of the disease, the discussion was focused on acquiring a
sustained political compromise from the countries in the region.
Based on these premises, the Initiative of the Southern Cone Coun-
tries (including Argentina, Bolivia, Brazil, Chile, Paraguay and Uru-
guay) was created in 1991 (Schofield and Dias, 1999). In these
countries, that are outside the distribution area ofR. prolixus, T. infes-
tans is themainChagasvector (orwas, as in somecases the transmis-
sion has been interrupted). This initiative was followed by others
countries from different regions of Latin America. In all the cases,
insect-vector control was based on the use of cyanopyrethroids.
Due to the high triatomicidal activity of these compounds, it was
not necessary to use insecticides from other chemical families.

At the XIIIth Meeting of the Central American Health Sector held
in Belize in 1997, a resolution was approved establishing that the
control of Chagas disease should be a priority for the countries of
that subcontinent (Ponce, 2007). In that same year, the Initiative
of Central America and Mexico was launched, aiming to eliminate
R. prolixus from the region, reduce domiciliary infestation of
T. dimidiata, and interrupt transmission via blood transfusions
(Ponce, 2007). It was supported by important donations, most of
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which were provided by large Non-Governmental Organizations
such as the Japan International Cooperation Agency. This initiative
generated good results: by August 2011, Central America and Mex-
ico were certified free of Chagas disease transmission by R. prolixus
(Hashimoto and Schofield, 2012). Chagas still remains present in
these countries due to the presence of other triatomine disease
vectors, but the eradication of R. prolixus implied a significant
decrease in its transmission.

The fast elimination of R. prolixus in Central America is attributed
to the fact that this species is not autochthonous to the region, but
was introduced accidentally at the beginning of the last century
(Zeledón, 2004). It is believed that the R. prolixus individuals that
accidentally entered San Salvador were originated from insects col-
lected in La Guaira (Venezuela) in 1912. This sample was taken to
Paris to study its application in the xenodiagnosis of Chagas disease.
A sample of this colony was then taken to a laboratory in San Sal-
vador, the capital city of El Salvador, where it was accidentally
released in 1913. From there they dispersed to neighbouring coun-
tries. This would explain the discontinuous distribution of R. pro-
lixus before it was eliminated from Central America. It was
present in Venezuela and Colombia and in the area between Nicar-
agua and south Mexico, but was never found in Panama nor in cen-
tral and south Costa Rica.R. prolixuswas detected in north Costa Rica
in 1953, but was rapidly eliminated applying lindane (Ruiz, 1953).

The sample collected in La Guaira and the fraction sent from the
Parisian colony to Central America involved drastic bottle-necks, so
the group of insects that arrived in San Salvador had very low
genetic variability (Dujardin et al., 1998). This could explain the
important differences found between the Central American and
South American populations of the species. South American
R. prolixus are larger and inhabit both sylvatic and domiciliary
habitats; Central American R. prolixus are found exclusively in
domiciliary habitats. It has been suggested that this latter charac-
teristic contributed largely to its rapid elimination (Dujardin et al.,
1998). In Colombia and Venezuela, the control of R. prolixus is more
difficult because both countries have high rates of R. prolixus
infestation in palm trees next to the households. The migration
of these insects to the houses keeps Chagas vector transmission
active despite the vector-control measures taken (Angulo et al.,
2012; Gómez-Núñez, 1969; Zeledón and Rabinovich, 1981). Direct
sequencing and microsatellite analysis confirmed that sylvatic
R. prolixus colonize homes (Fitzpatrick et al., 2008).

The Andean Countries Initiative for controlling Chagas disease
(including Venezuela, Colombia, Ecuador and Peru) was also
created in 1997 within the framework of the Hipólito Unanue
Agreement (Moncayo, 1999). It would then become partially
superposed by the Initiative of the Amazon Countries (including
Bolivia, Brazil, Colombia, Ecuador, Guyana, French Guiana, Peru,
Surinam and Venezuela) (Coura et al., 2014).

The objective of the Initiative of the Andean Countries was to
interrupt the transmission of Chagas disease via domiciliary vector
control and serological monitoring. With the coordination of the
Pan-American Health Organization, a substantial improvement
was achieved in blood bank surveillance, especially in Colombia
(Guhl, 2007). However, the progress in control activities has been
slower because some of the countries involved do not have
organized national programmes of domiciliary vector-control
(Salvatella and Schofield, 2006).

Despite the difficulties for controlling R. prolixus in these
countries, the X Meeting of the Intergovernmental Commission of
the Andean Initiative for Controlling Vector and Transfusion
Transmission and Medical Attention for Chagas Disease, held in
Bogota in 2014, certified the interruption of T. cruzi vector
transmission in ten municipalities from four endemic departments
in Colombia (OPS/OMS, 2014). Venezuela has still not interrupted
vector transmission in its endemic states.
Therefore, R. prolixus is still an important Chagas vector in some
areas of Venezuela and Colombia. Due to chemical control, it is no
longer present in Mexico or Central America. However, Chagas dis-
ease is still a problem in these countries due to the presence of
other triatomine vectors.
5.2. Resistance to insecticides

Pesticide resistance is a ‘‘genetically based decrease in suscepti-
bility to a pesticide” (Tabashnik et al., 2014). Along the generations
of insect populations, alleles conferring insecticide resistance
appear spontaneously. The application of insecticides is a strong
selective force that determines the elimination of susceptible indi-
viduals and survival of resistant specimens. Insecticide resistance
is mainly conferred by changes in the cuticle that reduce the entry
of the insecticide into the organism (reduced penetration resis-
tance), changes in enzymatic activity that enhance insecticide bio-
transformation (metabolic resistance), and changes in the site of
action that reduce binding to the insecticide (target site resistance)
(Tabashnik et al., 2014). The knowledge of the toxicological charac-
teristics and biological mechanisms of insecticide resistance is
indispensable for managing this problem when it is manifested
in the field. Two reviews were recently published on the history,
evolution and management of triatomine insecticide resistance
(Mougabure-Cueto and Picollo, 2015; Pessoa et al., 2015). Below
is a brief description of this subject regarding R. prolixus.

The first cases of triatomine insecticide resistance were
detected in R. prolixus populations from Venezuela towards the
end of the 1960’s. By then, the Venezuelan Anti-Chagas campaigns
had been using dieldrin for about a decade (Aché and Matos, 2001).
Upon reports suggesting that this insecticide was not generating
the expected results, the government implemented a programme
to investigate the cause. Bioassays carried out in 1969 showed that
individuals from the states of Cojedes and Trujillo survived dieldrin
concentrations that were lethal to the laboratory reared suscepti-
ble colony (Valdivieso et al., 1971). The highest survival rates were
observed in insects from Santo Domingo and other communities in
the state of Trujillo. This is considered the first report of resistance
to dieldrin in triatomines (Nocerino, 1976). Based on these results,
dieldrin was replaced by the organophosphate fenthion or the car-
bamate propoxur in the affected communities (Nocerino, 1976).
Two years later, a lower susceptibility to fenthion and propoxur
was reported in insects from Santo Domingo (Nocerino, 1976;
Nelson and Colmenares, 1979a). Meanwhile, due to toxicological
and cost reasons, dieldrin began to be replaced by lindane in Vene-
zuela. A few years later, some cases of lower susceptibility to this
insecticide were reported.

From a group of insects collected at a household in Trujillo in
1969, a colony was reared under laboratory conditions. After expo-
sure to sublethal concentrations of dieldrin during several genera-
tions, it became increasingly resistant to this organochlorine
(Nelson and Colmenares, 1979a; Nocerino, 1972, 1976). This might
apparently be the only case of laboratory-selected resistance to
insecticides in R. prolixus.

The first bioassays looking for dieldrin resistance had been car-
ried out exposing insects to filter papers impregnated with three
concentrations of insecticide, 0.8, 0.16 and 4%, that in the suscep-
tible colonies produced 40%, 86% and 100% mortality, respectively
(Valdivieso et al., 1971). The WHO then recommended topical
application of a higher number of doses (Nelson and Colmenares,
1979b). This allowed calculating LD50 values and with them, the
Resistance Ratio coefficient (RR) = LD50 in field insects/LD50 in
laboratory susceptible insects. The RR indicates the amount of
insecticide needed to produce the same mortality in field insects
as in laboratory susceptible insects.
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The RR values allowed quantifying the resistance of the afore-
mentioned laboratory-selected colony of R. prolixus (Nelson and
Colmenares, 1979b). Selection with dieldrin during various gener-
ations made the colony highly resistance to this insecticide, with
RR values over 550 (killing 50% of the resistant insects required
over 550 times more dieldrin than used for the susceptible colony).

The next published resistance study in R. prolixus was carried
out at the end of the last century. Bioassays were performed using
descendants of individuals collected in the Venezuelan state of
Carabobo. The insecticides tested were dieldrin and five pyre-
throids. The RR values for dieldrin was 3, while the values for the
pyrethroids varied between 4.5 (lambda-cyhalothrin) and 12.4
(cypermethrin) (Vassena et al., 2000). In the state of Carabobo,
triatomines were controlled using dieldrin, lindane and the
organophosphate fenitrothion, but no pyrethroids had been
applied. The results were interpreted as cross-resistance, a
phenomenon that is manifested when insects selected with a
determined insecticide become resistant to insecticides to which
they have not been exposed (Tabashnik et al., 2014). This can hap-
pen when insecticides belonging to different families share a same
metabolic pathway or act on the same primary target. Another
explanation proposed was that the population of R. prolixus might
have been exposed to the intensive use of pyrethroids for agricul-
ture in the state of Carabobo.

Studies on the mechanisms of triatomine resistance to insecti-
cides have only recently begun. Most of these have been carried
out with T. infestans, where metabolic and target site factors
involved in resistance have been identified (Mougabure-Cueto
and Picollo, 2015). Deltamethrin resistance in R. prolixus individu-
als from Carabobo was attributed to an increase in MFMO activity,
because the inhibition of these enzymes with pyperonil butoxide
decreased resistance (Vassena et al., 2000).

The only report of insecticide resistance in R. prolixus outside
Venezuela is from Colombia, where low values of RR to
deltamethrin were detected in two samples of R. prolixus from
the department of Casanare (Reyes et al., 2009).

6. Conclusions

The four main families of neurotoxic synthetic insecticides
(organochlorines, organophosphates, carbamates and pyrethroids)
are the substances that have been used the most for controlling
pests in the last seventy years. In particular, they are the only
insecticides that have been used for controlling R. prolixus in coun-
tries where this insect is a Chagas disease vector. These chemicals
have received a lot of attention by insect toxicologists and there-
fore their interaction with insects is well known. Nevertheless,
there are very few studies on their toxicokinetics and toxicody-
namics in R. prolixus. This is probably due to the fact that R. prolixus
is a pest that affects a few economically disadvantaged countries,
where it is the vector of a neglected disease. The insects of medical
and domestic importance used as models for studying the metabo-
lism and mode of action of the main insecticides are mosquitoes,
the housefly, and the American and German cockroaches. These
species are cosmopolitan and produce an enormous impact on
human health and goods.

Many details on the mode of action of insect growth or
development disruptors (juvenoids, chitin synthesis inhibitors,
precocenes, azadirachtin, lignoids) have been revealed in
R. prolixus. However, based on their particular mode of action,
these insecticides have not been used and probably will never be
used for controlling Chagas vectors (Zerba, 1999). The application
of insect growth or development disruptors produces delayed ecd-
ysis and abnormalities after moulting. Therefore, the effects of
these insecticides on triatomine populations would be slow
compared to the fast mortality obtained when applying
organophosphates or pyrethroids that drastically and immediately
reduce the risk of becoming infected with Chagas. Despite the high
selectivity and effectivity of some experimental and commercial
juvenoids in triatomines, R. prolixus is only susceptible to these
insecticides for a few days after feeding in the last nymphal stage.
This represents a minute fraction of a life cycle that lasts several
months.

It is only less than ten years ago that the mode of action of
insect repellents has began to be understood and it is a practically
unexplored subject in triatomines. One of the great questions that
awaits to be answered is why substances like DEET or IR3535, that
are so effective in mosquitoes, flies and other hematophagous
insects, present such low activity in T. infestans and R. prolixus.

The recent sequencing of the R. prolixus genome will have a
great impact on the study of this insect (Mesquita et al., 2015).
Regarding toxicology, this advance provides researchers with the
sequences of the genes encoding detoxification enzymes and the
action sites of all the insecticides. This information will be very
useful for understanding the molecular basis of resistance to these
chemicals (Schama et al., 2015). Genomics will allow performing
large-scale comparisons between the genomes of susceptible and
resistant individuals. These sort of studies carried out in Musca
domestica led to the identification of genes that were not suspected
of being related to insecticide resistance (Pedra et al., 2004).

Using genomic information, new potential molecular targets
could be identified for developing new insecticides. But the history
of Chagas disease vectors control indicates that the probability that
these findings lead to the development of new commercial tools
for controlling triatomines is practically null. The development of
new insecticides is an activity carried out by large international
companies seeking short term results. These companies use faster
means to identify new insecticides, such as random synthesis, and
the evaluation of natural compounds and their semi-synthetic
derivates.

It is highly likely that the future of toxicology of R. prolixus and
other triatomines continues to be dedicated to providing informa-
tion for Chagas vectors control programmes. Bioassays with new
insecticides and insecticide resistance monitoring will be priority
studies.
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