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On oligarchic growth of planets in protoplanetary disks
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Abstract

In this paper we present a new semianalytical model of oligarchic growth of planets considering a distribution of planetesimal sizes, frag-
mentation of planetesimals in mutual collisions, sublimation of ices through the snow line, random velocities out of equilibrium and merging of
planetary embryos. We show that the presence of several planetary embryos growing simultaneously at different locations in the protoplanetary
disk affects the whole accretion history, specially for the innermost planets. The results presented here clearly indicate the relevance of consider-
ing a distribution of planetesimal sizes. Fragmentation occurring during planetesimal–planetesimal collisions represent only a marginal effect in
shaping the surface density of solid material in the protoplanetary disc.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The core instability model (Mizuno, 1980; Bodenheimer and
Pollack, 1986; Pollack et al., 1996; Benvenuto and Brunini,
2005; Fortier et al., 2007) is at present the paradigm of gi-
ant planet formation. In the frame of this model, a planetary
embryo first grows by accretion of solid planetesimals. If it is
able to reach some Earth masses while the surrounding primor-
dial gas is still present in the protoplanetary nebula, the nebular
gas starts to be accreted onto the solid core in a runaway fash-
ion. Although the cause of the termination of the accretion of
gas is not yet well understood, the whole process ends up with
a giant planet formed by a solid core plus a dense gaseous en-
velope. The core instability process has been studied either by
analytical methods or numerical ones, with an increasing de-
gree of details during the last three decades (Mizuno, 1980;

* Corresponding author at: Facultad de Ciencias Astronómicas y Geofísicas,
Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Ar-
gentina.

E-mail address: abrunini@fcaglp.unlp.edu.ar (A. Brunini).
1 Member of the Carrera del Investigador Científico, Consejo Nacional de

Investigaciones Científicas y Técnicas (CONICET).
2 Member of the Carrera del Investigador Científico, Comision de investiga-

ciones Científicas de la Provincia de Buenos Aires (CIC).
0019-1035/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2007.11.013
Stevenson, 1982; Bodenheimer and Pollack, 1986; Pollack et
al., 1996). In this paper we will focus our attention to some as-
pects of the accretion process of the solid cores of giant planets.

In a protoplanetary disk, the first mode of solid accretion
is runaway growth (Greenberg, 1980), where the largest bod-
ies grow much faster than the smaller ones. In this regime, the
self interaction between planetesimals dominates the dynamical
evolution of the disk. The relative velocities are slow enough
so the gravitational cross section of the big planetesimals are
the bigger ones. However, at later times, the largest objects be-
come massive enough such that their influence dominates the
dynamical evolution of the surrounding planetesimals, increas-
ing the relative velocities. Then, the accretion process of these
embryos switches to a slower regime, where the growth rate
of adjacent protoplanets tends to unity over time. This mode
of accretion was called “oligarchic growth” (Kokubo and Ida,
1998, 2000, 2002). The transition from runaway to oligarchic
growth is produced very early, when the mass of the protoplan-
ets are still orders of magnitude smaller than one Earth mass
(Ida and Makino, 1993; Thommes et al., 2003). Therefore, since
very early times, the relevant regime for modeling the accretion
of solid cores of giant planets is the oligarchic growth.

Several models of oligarchic growth of solid cores have
been presented in the last years (Thommes et al., 2003;
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Chambers, 2006) each one including different physical phe-
nomena. Thommes et al. (2003) developed a model of oli-
garchic growth where the random velocity of the planetesimals
is assumed to be in equilibrium. They also considered a single-
sized population of planetesimals, including the effect of plan-
etesimal drift through the disc due to gas drag. Thommes et
al. (2003) found that the largest final protoplanet masses are
smaller than those given by the isolation mass. They conclude
that the oligarchic growth model appears to provide an upper
limit for the efficiency of giant planet formation. Chambers’s
model (Chambers, 2006) explicitly computes the evolution of
planetesimal eccentricities and inclinations, and includes also
other effects such as planetesimal fragmentation, the enhance-
ment of embryo capture cross section due to atmospheres and
embryo–embryo collisions. He shows that it is possible to form
10 Earth-mass cores at 5 AU within plausible values of the
model parameters. These models coincides in that the size of
the planetesimals plays an important role in the accretion of
planets.

Here we will present a new semianalitycal model of oli-
garchic growth which includes a realistic size distribution of
planetesimals, fragmentation through planetesimal mutual col-
lisions, sublimation of ices and embryo–embryo collisions in a
rather realistic way.

The present paper is organized as follows: in Section 2 we
describe the main ingredients of our model including the way
we handled the process of accretion, the description we as-
sumed for the velocities of planetesimals outside equilibrium
conditions, the treatment of the planetesimal drift due to gas
drag, the effect of the sublimation of ices through the snow
line. We also describe in this section the distribution of sizes of
planetesimals we have considered, presenting the way we han-
dled fragmentation. In Section 3 we detail the initial conditions
for our nominal models. In Section 4 we present the results of
our numerical simulations. Finally, in Section 5 we discuss the
relevance of the presented results and make some concluding
remarks.

2. The model

2.1. Accretion onto the cores

The core accretion process is well described by the “particle
in a box” approximation (Inaba et al., 2001)

(1)
dMP

dt
= 2πΣ(RP )R2

H

P
Pcoll,

where MP is the mass of the planet Σ(RP ) is the surface den-
sity of solids of the disk at the location of the planet, RH =
RP (MP /3M∗)1/3 is the Hill radius of the planet, RP is the ra-
dius of the orbit of the planet, M∗ is the mass of the central star
of the system, P is the orbital period, and the collision proba-
bility Pcoll takes several forms depending on the planetesimals’
random velocities (Chambers, 2006). In the high, medium and
low velocity regimes, Pcoll is given by

(2)Phigh = (R + r)2

2

[
IF (β) + 6RH IG(β)

(R + r)ê2

]
,

2πRH
(3)Pmed = (R + r)2

4πR2
H î

[
17.3 + 232RH

(R + r)

]
,

(4)Plow = 11.3

(
R + r

R2
H

)1/2

,

where R and r are the planet’s and planetesimal’s radius, re-
spectively. ê and î are the reduced eccentricity and inclination,
given by ê = eRP /RH and î = iRP /RH , respectively, with
β = î/ê; e and i are the r.m.s. eccentricity and inclination of the
planetesimals in the feeding zone. IF (β) and IG(β) are given in
term of complete elliptic integrals, but in the domain 0 < β � 1
they are well represented (within a 3% of error) by (Chambers,
2006)

IF (β) = 1 + 0.95925β + 0.77251β2

β(0.13142 + 0.12295β)
,

IG(β) = 1 + 0.39960β

β(0.0369 + 0.048333β + 0.006874β2)
.

The high-velocity expressions are appropriate in case
ê, î > 2 while the low-velocity expressions should be used if
ê, î < 0.2. In any other case, the medium-velocity expressions
have to be adopted.

Let us define the feeding zone as the ring around the proto-
planet where planetesimals can be accreted. The width of the
feeding zone is usually taken as b times the protoplanet’s Hill
radius, with b = 10 (Thommes et al., 2003). In order to properly
account for the width of the feeding zone, we have generalized
Eq. (1) by writing

(5)
dMP

dt
=

∫
FZ

2πψ(a,RH ,RP )
2πΣ(a)R2

H

P
Pcolla da,

where a is the distance from the central star. We have chosen
a functional form of ψ(a,RH ,RP ) imposing a normalization
condition

∫
FZ 2πψ(a,RH ,RP )a da = 1 (FZ indicates that the

integration extends over the feeding zone). In this paper we
have employed

(6)ψ(a,RH ,RP ) = 1

2π3/2b
exp

[
−

(
a − RP

bRH

)2]
.

The planetesimal-core relative velocity vrel may be de-
scribed as

(7)vrel =
√

5

8
e2 + 1

2
i2vk,

where vk is the Keplerian velocity at the distance RP . The rela-
tive velocity is governed by the gravitational stirring due to the
protoplanets and the damping due to gas drag. The former can
be modeled as (Ohtsuki et al., 2002)
(

d〈e2〉
dt

)
stirr

=
(

MP

3bM∗P

)
PVS,

(8)

(
d〈i2〉
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)
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=
(

MP

3bM∗P

)
QVS,

where PVS, QVS are given by



802 A. Brunini, O.G. Benvenuto / Icarus 194 (2008) 800–810
PVS =
[

73ê2

10Λ2

]
ln

(
1 + 10Λ2

ê2

)
+

[
72IPVS(β)

πêî

]
ln

(
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QVS =
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4î2 + 0.2î ê3
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]
ln
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1 + 10Λ2ê
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(9)+
[

72IQVS(β)

πêî

]
ln

(
1 + Λ2).

Λ = î(î2 + ê2)/12; IPVS(β) and IQVS(β) are given by elliptic
integrals that are well approximated by [Eqs. (21) of Chambers
(2006)]

IPVS(β) = β − 0.36251

0.061547 + 0.16112β + 0.054473β2
,

IQVS(β) = 0.71946 − β

0.21239 + 0.49764β + 0.14369β2
.

However, this velocity drops substantially as we go farther
from the protoplanet. Hasegawa and Nakazawa (1990) have
shown that when the distance to the protoplanet is >3.5–4 Hill
radius, the planet is no longer able to substantially excite the
planetesimal relative velocities. Therefore, we have represented
the eccentricity stirred by the protoplanet as

(10)

(
d〈e2〉

dt

)eff

stirr
= f (Δ)

(
d〈e2〉

dt

)
stirr

,

where

(11)f (Δ) =
(

1 +
∥∥∥∥ Δ

10RH

∥∥∥∥
5)−1

,

where Δ is the distance to the protoplanet. We adopted the same
prescription for the orbital inclination. f (Δ) guarantees that the
velocity profile along the planetesimal disk is smooth enough.
This is an important question in order to solve adequately the
redistribution of solids through the planetesimal disc due to gas
drag (see the next subsection). The fifth power in f (Δ) is rather
arbitrary, and it was adopted to make the effects due to the pres-
ence of a planetary object mainly restricted to its feeding zone.
It is worth noting that we have ran all our numerical simulations
using different powers finding no appreciable differences in the
final results.

The drag caused by the gaseous component of the protoplan-
etary disk damps out the orbital eccentricities and inclinations
of the planetesimals at a rate (Adachi et al., 1976)(

de

dt

)gas

= πer2CDρgasvk

2m

(
η2 + v2

rel

)
,

(12)

(
di

dt

)gas

= πir2CDρgasvk

4m

(
η2 + v2

rel

)
,

where r is the radius of the planetesimals, CD a dimensionless
drag coefficient (of order 1 for spherical planetesimals), m the
planetesimal mass and ρgas is the density of the nebular gas at
the distance a from the central star. η is the fractional differ-
ence between the gas velocity and the local Keplerian velocity,
arising from the partial pressure support of the gas disk, and it
is given by

(13)η = vk − vgas = π
(α + β)

(
cs

)2

,

vk 16 vk
where β is the temperature profile index of the nebula (T (a) ∝
a−β ) and cs the sound speed. We assume that the disk scale
height is z = 0.05a5/4, and therefore cs/vk = 0.05a1/4. Drag is
strongly dependent on the planetesimal sizes.

Some previous models of oligarchic growth assumed that
planetesimals attain an equilibrium relative velocity. Thommes
et al. (2003) proposed that this assumption is valid as long as the
embryos reach masses larger than 10−2–10−1 M⊕. Previous to
this condition, the equilibrium cannot be attained, because the
accretion timescale is shorter than the timescale to reach the
equilibrium. Nevertheless, it is not clear that an equilibrium
condition is ever achieved, specially for small planetesimals
(Chambers, 2006). Therefore, for each planetesimal population
(see below), at each distance from the central star, we integrate
Eqs. (10) and (12) by a semi-implicit Euler integrator (Gear,
1971). The employment of a semi-implicit method provides
numerical stability either near as well as far from equilibrium
conditions.

For this study we used a surface density of solids based in
the minimum mass solar nebula model (hereafter MMSN) of
Hayashi et al. (1985):

Σ(a) = 7.1

(
a

1 AU

)−3/2

g cm−2, a < 2.7 AU,

(14)Σ(a) = 30

(
a

1 AU

)−3/2

g cm−2, a > 2.7 AU.

The discontinuity at 2.7 AU is due to the condensation of
volatiles (the “snow line”) that in the present Solar System oc-
curs at this distance from the Sun. Because of numerical reasons
we follow Thommes et al. (2003) spreading the “snow line” in
a region of about 1 AU with a smooth function:

Σ(a) =
{

7.1 + (30 − 7.1)

[
1

2
tanh

(
a − 2.7

0.5

)
+ 1

2

]}

(15)×
(

a

1 AU

)−3/2

g cm−2.

For the gas density profile we used the mid-plane value of
the MMSN model which is given by

(16)ρgas = 1.4 × 10−9
(

a

1 AU

)−α

g cm−3,

with α = 11/4.
In this paper we assume that the gas of the protoplanetary

nebula uniformly decays throughout all the disk with an expo-
nential decay rate with characteristic timescale of 10 Myr. This
is a simplification to the actual situation in which the gas den-
sity of the disk should be computed by solving the equation of
angular momentum conservation (see, e.g., Pringle, 1981). We
shall account for this effect, beyond the scope of the present
work, in a further paper.

2.2. Planetesimal drift by gas drag

Planetesimals are subject to gas drag, which causes a radial
mobility of them and affects the distribution of solids in the
disk. As it was shown by Thommes et al. (2003) and Chambers
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(2006), this effect has a strong influence on the timescales of
accretion, and also on the final masses that planets achieve at
different locations in the protoplanetary disk. Planetesimal drift
is described by (Adachi et al., 1976)

da

dt
= − 2a

Tdrag

(
η2 + 5

8
e2 + 1

2
i2

)1/2

(17)×
[
η +

(
5

16
+ α

4

)
e2 + 1

4
i2

]
,

where

(18)Tdrag = 8ρr

3CDρgasvk

,

where ρ is the planetesimal density.
The planetesimal disk evolution obeys the continuity equa-

tion. If we integrate in the z-direction and assume axial symme-
try, it can be written as

(19)
∂Σ

∂t
− 1

a

∂

∂a

(
a

da

dt
Σ

)
= F(a),

where F(a) represents all the sink terms that subtract material
from the disc (see below for further details).

One of the sink terms is due to accretion onto one planet,
and it is given by

(20)Facc(a) = − dMP

2πa da dt
= −ψ(a,RH ,RP )

2πΣR2
H

P
Pcoll.

Of course, in the case that more than one planet is present we
should add the contributions to Facc(a).

This partial differential equation was numerically solved us-
ing a fully implicit method. Because of the characteristics of
the problem we are interested in here, we found it very ade-
quate to employ a logarithmic evenly spaced grid. The number
of zones has been variable. Initially we set a very fine grid of
8000 mesh points. This is important in order to allow for the
presence of some points inside the feeding zones of each proto-
planet. Notice that, initially, the planetary masses are very tiny
(≈1 × 10−3 M⊕) and so, the corresponding feeding zones.

2.3. Sublimation of ices

75% of the material beyond the snow line is composed of
volatile ices. When ice rich planetesimals coming from the
outer part of the disk reach the snow line, they sublimate like
cometary nuclei (it is worth noting that some comets become
dust mantled and dormant, and may retain a significant fraction
of their volatiles in their deep interior, but this possibility was
not taken into account in our model). The sublimation process is
indeed very complex, and a detailed model is out of the scope
of the present paper. We treat this effect in a very simplified
way, by including a sink term Fice with appreciable values on
a finite zone, as done for the shape of the initial density profile
[Eq. (15)]. The adopted expression is of the form

(21)Fice(a) = −0.75Σ(a)

Δice
√

π
vp exp

[
−

(
a − Rice

Δice

)2]
,

where vp is the radial velocity of the considered planetesimal of
a given radius. This prescription guarantees the evaporation of
the 75% of the planetesimal material on an annulus of ≈Δice/2,
because this sink term was applied only if a � Rice that we
set as Rice = 2.7 AU. For the parameter Δice a brief discussion
is in order. The sublimation lifetime depends on the planetesi-
mal radius. For a planetesimal of 1 km, composed of water ice,
Fernández (2005) estimate a lifetime of ∼1500 orbital revolu-
tions at 2 AU (a value computed for the conditions in the present
Solar System), being the lifetime proportional to the planetesi-
mal radius. This lifetime is much shorter than the characteristic
drift timescale in the disk due to gas drag. At 2 AU, planetesi-
mals spend

(22)Tdrag ∼ 2.7 × 107
[

r

1 km

]
yr,

to travel 1 AU. However, as it will be seen in Section 4, the max-
imum planetesimal drift velocity, which is reached around the
ice line, range between ∼300 cm s−1 for the smallest planetes-
imals to ∼30 cm s−1 for the largest ones, because inward drift
becomes faster when bodies move on eccentric orbits, which
is the case when nearby cores become large. Therefore, the
characteristic drift timescale may be much shorter than the one
computed by Eq. (22).

Assuming that the mass sublimation rate is proportional to
the surface area of the planetesimals, it results that the timescale
of sublimation of a planetesimal of radius r could be modeled
as

(23)Tsub = T0

(
r

1 km

)
,

where T0 is the timescale of sublimation of an object of r =
1 km, that we adopt as T0 = 5000 yr. The distance these plan-
etesimals travel during Tsub is

(24)Dist = Tsubvp.

Therefore, we adopt this distance as Δice in Eq. (21). vp is not
only a function of the planetesimal radius but also of the dis-
tance to the central star. Nevertheless we adopt a fixed value for
vp equal to its value at the snow line. It is worth noting that
for r = 0.1 km, Δice could reach at most a value of ∼0.3 AU.
Therefore the sublimation of the smallest objects takes place on
a narrow region around the ice line. On the contrary, for 100 km
planetesimals Δice may be very large (several AU). This implies
that these planetesimals are almost not sublimated at all. Nev-
ertheless, half of the total mass in our distribution is in objects
with r � 0.2 km, and therefore the snow line will be always
present in our simulations.

2.4. Size distribution of planetesimals

In previous studies of this same kind (Thommes et al., 2003)
an uniform size distribution, or at most a bimodal size distribu-
tion composed of planetesimals and fragments, was adopted.
As we have done in the previous sections, the effect of the
planetesimal size was addressed by making several independent
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simulations using different planetesimal sizes. Small planetesi-
mals makes accretion much faster, specially in the outer regions
beyond the snow-line. This is indeed a crucial point for the core
instability model, because the accretion of gas is only possi-
ble before its complete dispersal from the nebula. In view of
these questions, we have generalized our program in order to
deal with a spectrum of planetesimal sizes. To do this we have
divided the population of planetesimals in 31 mass bins, from
1 m to ∼100 km (each bin has objects with twice the mass of the
ones in the previous bin). We adopted a cumulative power law
mass distribution of planetesimals of the form dN/dm ∝ mα

with α = −2.5, consistent with the results of Kokubo and Ida
(1998, 2000) for the spectrum of masses of a population that has
relaxed to isolated runaway bodies. Each size has its own veloc-
ity evolution. Since the total mass is

∫
nmdm ∝ mα+2, most of

the disk mass is contained in the small bodies.
We evolved a generalized version of Eq. (5) to allow for the

presence of a distribution of planetesimal sizes

dMP

dt
=

∫
dist

dm

∫
FZ

2πψ(a,RH ,RP )

(25)× 2πΣ(a,m)R2
H

P
Pcoll(a,m)a da,

where dist stands for the integration over the distribution of
sizes of planetesimals. Here we have included explicitly the de-
pendence of quantities upon the planetesimal mass. For details
on how we performed the integral over the distribution of sizes,
see Appendix A.

When a distribution of planetesimal sizes is present, the con-
tinuity equation [Eq. (19)] has to be solved for each size simul-
taneously. It is important to remark that, fortunately, the sink
term due to accretion [see Eq. (20)] is diagonal, in the sense
that we are able to compute the migration of each size of plan-
etesimals separately. This were not the case, we would have to
solve for all the sizes and grid positions simultaneously. This
would be much more time consuming. The sink term due to
ices [Eq. (21)], is also diagonal.

2.5. Fragmentation

We have also included, in a rather simplified way, the ef-
fect of fragmentation through collisions. Collisional activity
generates small fragments that populates the smallest bins
and de-populate the largest ones. In addition, in absence of
migration due to gas drag, small fragments are more effi-
ciently accreted by protoplanets (Wetherill and Stewart, 1993;
Chambers, 2006), because they are quickly driven to circular
orbits by gas drag, enhancing the gravitational cross section of
the protoplanets respect to these small particles in a very sub-
stantial way (Chambers, 2006).

The impact relative velocity V and the shattering impact spe-
cific energy QS are two fundamental quantities determining, for
a given body, the outcome of the collision. QS is the amount
of energy per unit target mass needed to catastrophically frag-
ment a body, such that the largest resulting fragment has half
the mass of the original target, regardless of re accumulation
of fragments. Benz and Asphaug (1999) have shown that for
small bodies, with diameters <1 km, the material properties
control the impact strength in such a way that it decreases with
increasing size. On another hand, for diameters >1 km, gravity
dominates the impact strength which increases with increasing
size. Benz and Asphaug (1999) obtained an empirical expres-
sion for QS(r), averaged over different impact orientations:

QS(r) = 3.5 × 107
(

r

1 cm

)−0.38

(26)+ 1.36ρ

(
r

1 cm

)1.36

[erg/g].

The relative kinetic energy in a collision between two bodies
of masses ml and mj is given by

(27)Erel = 1

2

mlmj

ml + mj

V 2.

According to these definitions and assuming that the energy
is equi-partitioned between the two colliding bodies, for body k

fragmentation occurs if Erel � 2QS(rl)ml (a similar expression
holds for j ). We assume that in this case all the mass ml is con-
verted in collisional fragments, whereas if Erel < 2QS(rl)ml ,
only a fraction Erel/2QS(rl)ml of the mass is converted in frag-
ments. The relative velocity between l and j is computed as

(28)V =
√

v2
l + v2

j ,

where vl and vj are the planet–planetesimal relative velocities
of each population, given by Eq. (7). We assume that the planets
are on circular orbits. The number of collisions that planetesi-
mals of radius rl receives in time Δt by planetesimals of radius
rj is given by

(29)Nl,j = Σl

ml2hl

Σj

mj 2hj

π(rl + rj )
2V Δt,

where Σl is the surface density of planetesimals of radius rl
at the distance a and hl ∼ ail is their corresponding disk scale
height. In this expression we have considered gravitational fo-
cusing that could be important when the smallest planetesimals,
which have probably the smallest relative velocity, impact onto
the largest one, which have the largest escape velocity. The to-
tal number of impacts is therefore Nl = ∑

j Nl,j . The mass of
the disc in planetesimals of mass ml in the zone is reduced by
the amount −mlNlf (Erel) being

f (Erel) = Erel/2QS(l) if Erel < 2QS,lml,

(30)f (Erel) = 1 otherwise.

Correspondingly, the surface density Σl is reduced by the
quantity

(31)ΔΣl = −mlNlf (Erel)

2πaΔa
,

where Δa is the width of the zone. The mass loss from plan-
etesimals of mass ml , in the zone a is assumed to be redistrib-
uted in the form of fragments having a cumulative power low
mass distribution of the form N(> m) = mβ with β = −11/6
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(Dohnanyi, 1969). Therefore we redistribute this mass through
the mass bins l such that ml < ml , with this distribution law.

Regarding the way we handled fragmentation, we evolved
one time step and then considered the effect of fragmentation,
not including any sink term in the continuity equation (19). We
did so because fragmentation is essentially an off-diagonal con-
tribution. Then, our algorithm for solving the continuity equa-
tion may be regarded, in this sense, as semi-implicit.

In this model, we have not allowed for accretion or reaccu-
mulation of fragments.

3. Initial conditions

In a nascent planetary system, protoplanet–protoplanet grav-
itational interaction tends to increase their orbital eccentricities
and inclinations and expand their orbital separation. Dynamical
friction from planetesimals damps out the eccentricities and the
inclinations of the protoplanets in such a way that they expand
their orbital separation, but always keeping nearly circular and
coplanar orbits.

There is a typical orbital separation realized in the oligarchic
growth stage. Kokubo and Ida (1998) found that the typical or-
bital separation of protoplanets is Δa ∼ γ R̂H , where R̂H is the
mutual Hill’s radius given by

(32)R̂H =
(

(MP )1 + (MP )2

3M∗

)1/3
(RP )1 + (RP )2

2
.

In all our simulations we use γ = 10.
Ida and Makino (1993) derived the condition for the onset

of the runaway growth stage, where protoplanet–planetesimal
scattering dominates over planetesimal–planetesimal scattering
in determining the evolution of the random velocities in the
planetesimal disc. It is given by

(33)2ΣMMP ∼ Σm,

where m is the effective planetesimal mass and ΣM is the ef-
fective surface density of protoplanets in the planetesimal disc
at the planet location. It is given by

(34)ΣM = MP

2πaγ R̂H

.

In the simulations presented in this paper, Eqs. (32) and (33) are
solved to give the initial mass and location of the protoplanets
for a given disc. Nevertheless, using the effective planetesimal
mass m computed with the used distribution of planetesimal
sizes, we obtain a too large number of initial protoplanets,
making the numerical simulations impracticable. Thus we de-
cided to set effective planetesimal mass for the first protoplanet
m = 1 × 1023 g (r ∼ 200 km). The first planet was placed at
0.5 AU and the last one at ≈20 AU. In this way we have gen-
erated 326, 262, 229, and 207 initial planets for the cases of
1, 3, 6, and 10 MMSN, respectively. These masses are larger
than the ones given by Eq. (33), but we note that the initial ac-
cretion rate in most of the disk is so fast that they would have
been reached very quickly, after few years of evolution, and we
do not expect that our results could be sensitive to this assump-
tion. As the protoplanets grow their mutual Hill’s radii expands.
Fig. 1. The mass of the planets formed after 20 Myr as a function of the dis-
tance from the central star of the system. Circles connected with a solid line
represent the mass and position of the planets corresponding to the case of a
protoplanetary nebula of 1 MMSN. The results corresponding to the cases of 3,
6 and 10 MMSN are represented with hexagons (connected with a dotted line),
squares (connected with a short dashed line), and triangles (connected with a
long dashed line), respectively. The position of the snow line is shown for the
sake of comparison.

When the distance between two adjacent protoplanets becomes
less than 3.5RH , we allowed for the merging of them into one
single object. The mergers were considered perfectly inelastic.
Thus, the new protoplanet has the sum of the masses of the two
progenitors and it is placed at a new distance to the central star
by considering conservation of the orbital angular momentum,
assuming circular orbits.

As initial conditions for the r.m.s. value of the planetesimal
relative velocities, we used e = 1 × 10−4 and i = e/2.

4. Numerical results

In Fig. 1 we show the mass of the planets formed after
20 Myr as a function of the distance from the central star of
the system for the four nebulae considered in this paper. In
all explored cases, the most massive objects are formed in the
neighborhood of the ice line. It is remarkable that, while the
masses of the considered nebulae differ in an order of mag-
nitude, the most massive planet formed in the 10 MMSN is
≈100 times larger than the corresponding to the 1 MMSN. We
find that the mass of the planets is a strongly decreasing func-
tion at both sides of the position of the maximum. Also, there
are noticeable boundary effects at the edge of the regions where
we allowed for the presence of planets. Systematically, the out-
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Fig. 2. The limits of the zone inside which planets of more than 1 M⊕ (long
dashed lines) and 10 M⊕ are formed (solid lines) as a function of the mass of
the nebula inside which they have grown. For the case of 1 MMSN no planet
has reached 10 M⊕. The zone where objects more massive than 10 M⊕ can
form represents the places where the mass of gas bounded to the planets should
be relevant. There is where we should expect the occurrence of objects able to
reach runaway gas accretion conditions.

ermost/innermost planet in all the simulations is more massive
than its neighbors. This is because the neighbors have planets
on both sides competing for the accretion of material.

In Fig. 2 we show the limits of the zone inside which plan-
ets of more than 1 M⊕ and 10 M⊕ are formed as a function of
the mass of the nebula inside which they have grown. For the
case of 1 MMSN no planet has reached 10 M⊕. It is worth
noting that the gaseous envelope of the planets was ignored
in this paper. In the case of planets with a solid core with
a mass �10 M⊕, the amount of gas bounded to the core is
small and we expect the description presented in this paper
to be essentially correct. However, for the case of more mas-
sive cores, runaway gas accretion conditions may be reached,
and the mass of the planet may be much larger than this core
mass. The presence of a gas envelope has several consequences
that should be analyzed. On the one hand, it increases the
planet cross section as planetesimals are slow down by gas
drag within the planet atmosphere (Brunini and Melita, 2002;
Inaba and Ikoma, 2003). On the another hand, the mass of
the atmosphere increases the feeding zone, affecting also the
sequence of merging. These effects will be analyzed in a forth-
coming paper. The zone where objects more massive than
10 M⊕ can form represents the places where the mass of gas
bounded to the planets should be relevant. There is where we
should expect the occurrence of objects able to reach runaway
gas accretion conditions. Note that for plausible values of what
we think was the mass of the solar nebula, the region where
10 M⊕ could form is rather compact, in concordance with
some recent models of the formation of the outer solar system
(Tsiganis et al., 2005).
Fig. 3. The number of planets as a function of time for the four nebulae consid-
ered in this paper. We find that the number of objects is larger the lower is the
mass of the nebula. This is due not only to the fact that objects are initially more
numerous (see Section 4) but also because planets grow at lower rates, making
it more difficult to fulfill the conditions for the occurrence of merging (notice
that for the case of 1 MMSN planetary merging begins at ages ≈10 times larger
as compared to the case of 10 MMSN). Also, we see that for the case of mas-
sive nebulae, the accretion is almost negligible after 20 Myr of evolution. This
is not the case for the system corresponding to the 1 MMSN nebula.

In Fig. 3 we show the number of planets as a function of
time for the four nebulae considered in this paper. The number
of planets is larger, the smaller is the mass of the nebula. This is
not only due to the fact that the objects are initially more numer-
ous [because smaller planets are tightly spaced, see Eqs. (33)
and (34)] but also because planets grow slowly in less massive
nebulae, making it more difficult to fulfill the conditions for the
occurrence of merging (notice that for the case of 1 MMSN
planetary merging begins at ages ≈10 times larger as compared
to the case of 10 MMSN). Also, we see that after 20 Myr of
evolution, the planetary systems for the case of massive nebu-
lae have reached nearly equilibrium conditions. This is not the
case for the system corresponding to the 1 MMSN nebula, be-
cause the system is not completely depleted of solid material
and, in addition, accretion is still possible, because the plan-
ets are not massive enough to excite high planetesimal random
velocities and stop the accretion.

Fig. 4 depicts the mass of the most massive planet as a func-
tion of time for the four nebulae considered in this paper. Notice
that at early ages most of the mass of the most massive object
is gained by merging. However, the most important merging is
the last one in which it approximately increases its mass by a
factor of ≈2. For 1 MMSN, the largest planet has only ∼3 M⊕.
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Fig. 4. The mass of the most massive planet as a function of time for the four
nebulae considered in this paper. Notice that at early ages most of the mass of
the most massive object is gained by merging. However, the most important
merging is the last one in which it approximately increases its mass in ≈50%.

In Fig. 5 we show the sequence of merging during the evolu-
tion of the planetary system. From these plots we can visualize
the sequences of merging over the entire nebulae evolution. For
the case of 1 MMSN, merging occur initially at short distances
from the central star and even are repeated previous to the oc-
currence at farther distances. However, due to the planetesimal
depletion of the inner nebula, planets cease to undergo a large
growth and do not merge up to the end of our simulation. At
distances from 1 to 5 AU, there is still some material available
in the nebula, planets are still growing and are able to undergo
supplementary mergers. This region, around the snow line, is
the most favorable for the emergence of large planets. Farther
from the star, the planets reach low masses and then merging
are severely delayed.

In Fig. 6 we show the density profile of the planetesimal
disc corresponding to the case of 6 MMSN. We show this case
because it contains all the physical phenomenology which is
present in the four studied cases. Smaller planetesimals are
quickly accreted at the inner part of the disc. As they represent
most of the disc mass, a substantial accretion of planetesimals
at later times is almost inhibited for the planets there located.
At later times, planetesimal drift replenishes this zone with the
smaller planetesimals (see Fig. 7). For the cases of planetesi-
mals of 1, 10, and 100 km, neither accretion nor planetesimal
drift are efficient. As consequence, there appears a local mini-
mum in the density, located in the neighborhood of the ice line,
where the larger planets are formed. The depletion of planetes-
Fig. 5. The sequence of merging during the evolution of the planetary system
evolving in 1 MMSN (upper left panel), 3 MMSN (upper right panel), 6 MMSN
(lower left panel), and 10 MMSN (lower right panel) protoplanetary nebulae.
Horizontal lines represent the position of a planet. Merging of two planets cor-
responds to the merging of two lines. From these plots we can visualize the
sequences of merging over the entire nebulae evolution; e.g. for the case of
1 MMSN, merging occur initially at short distances from the central star. How-
ever, due to the planetesimal depletion of the inner nebula, planets cease to
undergo a large growth and do not merge up to the end of our simulation. At
distances from 1 to 5 AU, there is still some material available in the nebula,
planets are still growing and are able to undergo supplementary mergers. Far-
ther from the star, the planets reach lower masses and then merging are severely
delayed. For more details, see the main text.

imals of 1, 10, and 100 km, at the inner part of the disc and
advanced ages is due mainly to drift, and not to accretion or
fragmentation. For these sizes, with the exception perhaps of
1 km planetesimals, the conditions of replenishment are not
reached after 20 Myr because the drift is much slower as com-
pared to the case of the smallest considered objects of the dis-
tribution. As most of the mass is in the smaller objects, that
are quickly removed from the system, there is a deficit of pro-
jectiles able to catastrophically disrupt the largest ones. As a
consequence of this process, the production of fragments is not
intense enough as to modify substantially the size distribution.

The planetesimal drift velocity as a function of the distance
from the central star at different ages in the case of 6 MMSN
is shown in Fig. 7. Here we show the extreme cases of 0.1 and
100 km planetesimals. The maximum in the velocity drift oc-
curs in the neighborhood of the most massive planets, which
are always located near the snow line. These planetesimals are
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Fig. 6. The density profile of the planetesimal disc corresponding to the case of
6 MMSN. The smallest planetesimals (upper left panel) are quickly accreted at
the inner part of the disc. As they represent most of the disc mass, a substantial
accretion at later times is almost inhibited for the planets there located. At later
times, planetesimal drift replenishes this zone. For the cases of planetesimals
of 1, 10, and 100 km, neither accretion nor planetesimal drift are so efficient.
As consequence, there appears a local minimum in the density, approximately
located at the position of the ice line, where the larger planets are formed. The
depletion of planetesimals of 1, 10, and 100 km, at the inner part of the disc
and advanced ages is due mainly to drift. For these sizes, the conditions of
replenishment are not reached because the drift is much slower as compared to
the case of the smallest considered objects.

transferred to innermost regions where, as the velocity drift
is much slower, they accumulate. This accumulation indeed
occurs for the smallest planetesimals (see upper left panel of
Fig. 6).

However, for planetesimals of 100 km, this effect is not ap-
preciable even at an age of 20 Myr (see lower right panel of
Fig. 6), simply because in this case drift is much slower.

In Fig. 8 we show the time evolution of the size distribution
of planetesimals at different locations of the disc in the case
of 6 MMSN. The differences in the timescales of radial drift
and accretion for the different planetesimal populations, have
remarkable consequences in the distribution of sizes at the in-
nermost parts of the disc. Farther from the central star, the size
distribution remains almost unaltered respect to the initial one.

The time evolution of the r.m.s. eccentricity and inclina-
tion of the 0.1 km planetesimals at different locations of the
disc in the case of 6 MMSN is shown in Fig. 9. We observe
that the system evolves from the initial condition very fast.
This implies that the results are not sensitive to the initial e

and i we adopted. This is consistent with the results reported
by Chambers (2006). Equilibrium conditions in the dispersion
dominated regime (β ≈ 0.5) is partially reached only in the
neighborhood of the most massive planet (a ∼ 2 AU). In the
Fig. 7. The planetesimal drift velocity as a function of the distance from the
central star at different ages in the case of 6 MMSN. Here we show the cases
of 0.1 km (thin lines) and 100 km planetesimals (thick lines). The velocity
drift maximum occurs in the zone of the disc where the most massive planets
are located. This planetesimals are transferred to innermost regions where, as
the velocity drift is much slower, they accumulate. This accumulation indeed
occurs for the smallest planetesimals (see upper left panel of Fig. 6). However,
for planetesimals of 100 km, this effect is not appreciable even at an age of
20 Myr (see lower right panel of Fig. 6), simply because in this case drift is
much slower.

rest of the disc, it is never reached. This fact illustrates the im-
portance of adopting a time dependent evolution of e and i.
As small planetesimals represent most of the mass in the plan-
etesimal disc, results from models adopting equilibrium values
should be taken with caution. The abrupt drop of e, i at ∼20–
30 AU is due to the fact that we allowed for the presence of
planets only for a < 20 AU. (We have repeated the simulations
with planets up to 30 AU without noting any noticeable differ-
ence in the results.)

In order to asses the robustness of the results against some
of the parameters of the model, we have repeated our runs with
different sets of them. Firstly, we have performed runs with
a characteristic timescale for the depletion of the nebular gas
of 6 Myr. In this case the results were almost identical to the
already previously shown. Another check we have performed
is regarding to the initial mass of the protoplanets. We have
carried out simulations with an initial planet mass reduced by
a factor of 3 (a larger factor could imply a large number of
planets that cannot be handled with our present computational
resources). Although at very early ages the evolution of the
planetary systems present some differences with our standard
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Fig. 8. The time evolution of the size distribution of planetesimals at different
locations of the disc in the case of 6 MMSN. The differences in the timescales
of radial drift and accretion for the different planetesimal populations, have a
remarkable consequence in the distribution of sizes at inner locations. Farther
from the central star, the size distribution remains almost unaltered respect to
the initial one.

models, they quickly attain the same behavior (even quanti-
tatively). We conclude that our results are not sensitive to the
initial number of planets and the initial mass of them.

Another parameter we have varied is the initial eccentricity
(and inclination) of the planetesimals without any relevant dif-
ferences regarding to the previous results. We conclude that the
model is robust with respect to all these assumptions.

5. Conclusions

In this paper we have studied some aspects of the oligarchic
growth of planets. We have found that the presence of several
planetary embryos growing simultaneously at different loca-
tions in the protoplanetary disk, generates a number of inter-
esting features that affect the whole accretion history, specially
for the innermost planets.

The results presented here clearly indicate the relevance of
considering a distribution of planetesimal sizes. The density
profile of the planetesimal disk is a strongly dependent func-
tion of the planetesimal size. Small planetesimal are the most
affected by orbital drift and planetary accretion. This phenom-
enology is not possible to be adequately represented using a
single-sized planetesimal population.

In any case, we judge that our calculations are still simpli-
fied in a number of aspects. Notice that we have neglected the
gaseous component of the embryos that may be a substantial
contribution to the total planetary mass. Thus, the dynamics of
Fig. 9. The time evolution of the r.m.s. eccentricity and inclination of the 0.1 km
planetesimals at different locations of the disc in the case of 6 MMSN. The
bottom panel shows the parameter β = i/e. The dispersion dominated regime
(β ≈ 0.5) is only reached beyond the ice line. The abrupt drop of e, i at
∼20–30 AU is due to the fact that we allow for the presence of planets only
for a < 20 AU.

planetesimals should be deeply affected because of this portion
of mass. But even more, as we neglected the gaseous enve-
lope, we have neglected drag effects. Thus, we have grossly
underestimated the effective cross section for capturing plan-
etesimals which, in turn, is also a function of planetesimal size.
Once more, we have to note the importance to consider a realis-
tic distribution of planetesimal sizes. Nevertheless, beyond the
zone inside which planets of more than 10 M⊕ can form (see
Fig. 2) we expect that the description presented in this paper to
be essentially correct.

Thus the results presented in this paper should be considered
as a step in performing more realistic simulations of planetary
formation in the oligarchic growth regime.
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Appendix A. On the integration over the distribution of
planetesimals

One problem we faced in allowing for a distribution of plan-
etesimals is how to perform the integration of Eq. (25) over such
a distribution.

In order to present our results in a detailed, reproducible way
we shall briefly describe the employed algorithm. Notice that
the distribution of planetesimal sizes is a steep function which
contains most of the mass in small sized planetesimals. If we
are not careful at this point we can face losses of accuracy that
can spoil the whole simulation.

We found it very convenient to perform the integration∫
y dx over planetesimals distribution assuming the integrand

behaves as a power law y = axb + c for three consecutive
points. Because of the way we defined the planetesimal distri-
bution we have xj+1 = 2xj and j runs up to 31. Then, solving
for a, b, and c for the interval defined by j , j + 1, and j + 2,
we have

bj = − 1

ln 2
ln

(
yj − yj+1

yj+1 − yj+1

)
,

aj = yj − yj+1

xb
j (1 − 2bj )

,

cj = yj − ajx
bj

j .

The integral of the function over the interval (xj , xj+2) is

(A.1)Ij =
xj+2∫
xj

y dx = aj

41+bj

1 + bj

x
1+bj

j + 3cj xj .

And the integral over the whole distribution I is

(A.2)I =
15∑

j=1

I2j+1.

If two consecutive ordinates are equal we cannot employ the
power law approximation; if so we employ a Simpson rule. This
did not occurred for the present set of calculations.
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