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Abstract
Wepropose a feasible experimental scheme to directmeasure heat andwork in cold atomic setups.
Themethod is based on a recent proposal which shows that work is a positive operator valuedmeasure
(POVM). In the present contribution, we demonstrate that the interaction between the atoms and the
light polarization of a probe laser allows us to implement such POVM. In this way thework done on or
extracted from the atoms after a given process is encoded in the light quadrature that can bemeasured
with a standard homodyne detection. The protocol allows one to verify fluctuation theorems and
study properties of the non-unitary dynamics of a given thermodynamic process.

1. Introduction

The study of out-of-equilibrium thermodynamics has received a significant thrust thanks to the experimental
advances in the control andmanipulation ofmicroscopic systems. From a fundamental point of view, these
endeavours aim at clarifying the foundations ofmodern thermodynamics and its connection to information
theory. From amore applied perspective, these studies aim at understanding limitations ofmicroscopic engines
and buildingmore efficient ones.Heat andwork, two ubiquitous concepts in traditional thermodynamics,
assume in this context the role of stochastic variables whose fluctuations can be ingeniously related to
equilibriumproperties, as is the case of the celebrated Jarzynski equality [1].Many physical systems have been
realized to investigate non-equilibrium thermodynamics, including for instance strands of RNA [2], single
electron boxes [3], levitated or trapped nanoparticles [4, 5], and colloidal particles trapped in optical
potentials [6].

In the last decade, general interest has been directed towards the quantum regime of out-of-equilibrium
thermodynamics. In this regime, the dynamics of a small quantum system is dominated by quantum rather than
thermalfluctuations. Althoughmany open questions remain unanswered, some of the concepts of non-
equilibrium classical thermodynamics have been translated into the quantumdomain (see for example [7, 8]). A
measure of work based on a two-measurement scheme is now commonly accepted [9] and can be shown, for
isolated systems, to fulfill a quantum extension of the Jarzynski equality [10]. For open systems the Jarzynski
equality still holds if one considers changes of energy in the system and the environment together [11].However
if we consider energy changes in the systemonly, the fluctuation relation for the system energy ceases towork
and contains a correction that depends on the properties of the environment [12, 13]. In fact Jarzynski equality is
still valid if the corresponding evolution superoperator is unital4, i.e., if the completelymixed state
(corresponding to infinite temperatures) remains unaltered after the open system evolution.

Although implementing directly the two-measurement scheme has proven to be challenging, alternative
routes tomeasurework in quantum systems have been proposed. One of these employs a Ramsey scheme
[14, 15] and has been experimentally implemented in a nuclearmagnetic resonance setup [16]. These proposals
have also been extended to the open system scenario [17, 18]. Other proposals tomeasurework in the quantum
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domain relies on counting phonon excitations in trapped ions [19, 20] or counting electrons in single electron
boxes [3].

Recently, two of us proposed a differentmethod tomeasureworkwhich is based on the fact that, for
quantum systems, work can always bemeasured by performing a positive operator valuedmeasure (POVM) at a
single time [21]. This simple observation, that remained unnoticed until recently, implies that work can be
measuredwith a single projectivemeasurement on an extended system. Thus, it is always possible to devise a
measurement apparatus that yields thework valueWwhich is a randomvariable distributedwith thework
probability P(W). In this paper wewill generalize thismethod and showhow to use it tomeasurework and heat
in gases of cold atoms.

There has been a lot of interest in applying ideas of non-equilibriumquantum thermodynamics in the case of
isolated quantummany-body systems [22–30]. Despite the experimental advances in the field of ultracold
atoms, an ideal platform for the quantum simulation ofmany-body systems [31], an experimentally feasible
proposal formeasuring heat andwork in these systems is stillmissing. The Ramsey schemementioned earlier is
based on the global coupling of an auxiliary two-level systemwith the systemunder consideration andmight not
bewell suited for a cold atomic system.

The proposal we present tomeasurework and heat in quantum gases generalizes themethod proposed in
[21] and consists in coupling the atomswith a continuous degree of freedomwhich can be realized by the light
quadratures. The interactionwill be chosen in such away to induce a phase-space translation of the continuous
variable position that is conditional on the value of the energy of the systemunder consideration. In short, the
method consists of three steps: first we let atoms interact with light in such away that correlations between them
are established. Second, while light is stored in a quantummemory, we drive the atomswith the thermodynamic
process we are interested in. Third, we retrieve the light beam from thememory and redirect it into the atomic
ensemble enforcing a second interaction between them. After these three steps, a standard homodyne detection
of the output light is performed. The key of themethod is that the statistical distribution of work and heat on the
atoms if fully encoded in the statistical distribution of the light quadratures.

The paper is organized as follows: in section 2we present the key ingredients of themethod, which
generalizes the one presented in [21]. Then, in the following sections we showcase two cold atoms settingswhere
our proposal can be implemented using a quantumnon-demolitionmeasurement based on the Faraday effect
[32]. Thefirst one is designed formeasuringwork in cold atomic ensembles and is described in sections 3 and 4;
the second example is for ultracold atoms in optical lattices, described in section 5wherewe showhow to
measure heat andwork for the atoms. In the latter case, themeasurement scheme allows us to discern if the open
systemdynamics is unital or not, by checkingwhether the Jarzynski equality is fulfilled. Finally in section 6we
summarize.

2.Measuringworkwith a POVM

Let us consider a process where a quantum systemwith an initial state ρ is driven froman initialHamiltonianH
to afinal one H̃ . Thework valueW in each realization is defined as the energy difference = −W E E˜

m n, where En
are the eigenvalues ofH (i.e. ϕ ϕ∣ 〉 = ∣ 〉H En n n ) and those of H̃ are denotedwith Ẽm (i.e., ϕ ϕ∣ 〉 = ∣ 〉H E˜ ˜ ˜ ˜

m m m ).
Thus,W is a randomvariable distributed according to the following probability distribution:

∑ δ= − −∣ ( )P W p p W E E( ) ˜ ,
m n

n m n m n

,

⎡⎣ ⎤⎦

where ϕ ρ ϕ= 〈 ∣ ∣ 〉pn n n and ϕ ϕ= ∣〈 ∣ ∣ 〉∣∣p U˜
m n m E n

2 andUE is the unitary operation that represents the driving. As

wemention in the introduction, there aremany protocols that were proposed to experimentally reconstruct this
probability distribution.

Recently an alternativemethod that allows to sample thework probability distribution has been put forward
in [21]. Themethod is based on the idea that workmeasurement is actually a POVM.As it is well known, any
such generalizedmeasurement can be implemented as a standard projectivemeasurement on an enlarged
system. A simple example of such strategy to implement thework POVM is depicted infigure 1.We assume that
a system is coupled to an auxiliary system in such away that gets entangledwith keeping a coherent
record of the energy at two times. In the simplest case (whichwill be generalized below), the interaction between

 and is such that it can be described by the unitary evolution operators = κ−U eI
PHi and = κ−Ũ eI

PHi ˜ .
The auxiliary system is a continuous degree of freedomand P is the generator of translations in the

position quadrature. In between the two entangling operations the system is drivenwith the operatorUE. At the
end, the ancillary system ismeasured in theX basis and themoments of theX variable can be estimated. The key
of themethod, as shownbelow, is that the distribution of resultsP(X) is a coarse-grained version of the full
probability distribution of work.

2
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To see how thismethodworks we consider an initial thermal state for, i.e. ρ =β
β

β
− Ze H with

=β
β−Z tr e H the partition function. In turn, forwe consider a general stateσ0 (this is a generalization of the

treatment presented in [21], wherewas assumed to be a position eigenstate). The total state of the combined
 − Universe can be obtained after the sequence of evolutions =U U U U˜

T I E I
†. Now let us see the state after

each step of the algorithm. Initially the state isσ ρ⨂ β0 and an entangling operation is applied, after this step the

state can bewritten as

∑σ ρ σ ϕ ϕ⨂ = ⨂β

β

β

κ κ
−

−( )U U
Z

e
e e .I I

i

E
PE PE

i i
†

0
i

0
i

i
i i

Then,UE is applied to system and, after the last entangling operation, thefinal state ρ σ ρ= ⨂ βU U( )I T T0
†

can bewritten as

∑ρ χ χ σ ϕ ϕ= ⨂
β

β

−

Z
T T

e ˜ ˜ ,I
i m n

E

m i n i m i n i m n
, ,

, ,
* , 0 ,

†
i

where the transition elements are χ ϕ ϕ= 〈 ∣ ∣ 〉U˜
m i m E i, .Moreover, the operatorsTm i, translate the state of by an

amount that depends on the energy difference −E E( ˜ )m i . Thus, they are defined as

κ= − −( )T i P E Eexp ˜ .m i m i,
⎡⎣ ⎤⎦

From the total state ρI we can compute the reduced densitymatrix of the auxiliary system  ρ ρ≡ tr I . Thus,

 ∑ρ χ σ=
β

β

−

Z
T T

e
. (1)

i m

E

m i m i m i

,
,

2
, 0 ,

†
i

From this expressionwe can compute themoments of the position variable of, defined as ρ=X Xtr [ ]n n
I0
.

They turn out to be

∑

∑

χ σ κ

κ σ

= + −

=

β

β

−

=

− −

{ }

( ) ( )

( )X
Z

X E E

n
k

X W

e
tr ˜

tr . (2)

n

i m

E

m i m i
n

k

n
n k k n k

,
,

2
0

0

0

i ⎡⎣ ⎤⎦

This equation establishes a simple relation between themoments of the position variable of and those of the

work distribution, which are defined as χ= ∑ ∣ ∣ −
β

β

−
W E E( ˜ )n

i l Z l i l i
n

,
e

,
2

Ei

. In particular, for the first two

moments the equations are particularly simple. They read

κ= +X X W , (3)0

κ κ= + +X X X W W2 , (4)2 2

0
0

2 2

where〈 〉0 denotes average on the initial stateσ0. These equations can be used to obtain simple relations between

the dispersion (defined as Δ = −X X X( )2 2 ) and the skewness (defined as Δ = −X X X( )3 3 ) of theX

coordinate, and those of thework distribution. Thus,

Δ Δ κ Δ
Δ Δ κ Δ

= +
= +

X X W

X X W

,

. (5)

2
0
2 2 2

3
0
3 3 3

This also shows that the scheme can also be used to test linear response results which relate the dissipated energy
to the variance of thework distribution [1]. The above equations are worth analyzing: it is clear that the choice of
the initial stateσ0 imposes strong constraints on the accuracy of the estimation of the properties of thework
distribution. In fact, it is clear that in order to estimate ΔW n bymeasuring ΔXn, it is better to choose initial states
with small dispersions. The only states for which such dispersions vanish are the position eigenstates, whichwere

Figure 1.Quantum circuit that describes themethod tomeasure work as a POVM.
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considered in [21].However, for a continuous variable system such as the onewe are considering here, these
states are unphysical. Instead, in this paperwewill consider realistic scenarios for which the initial state is,
typically, a coherent state (or a squeezed one). If instead of pure states we usemixed ones, it is obvious that we
lose accuracy. In fact, if the initial state is thermal (for a harmonic oscillator with frequencyω) we have

ωβ〈 〉 ∝X coth[ 2]2 . Therefore, the precision of the estimate of work dispersion decreases with the temperature
(or, equivalently, to achieve the same precision in the estimate of thework dispersion, wewould need tomeasure
the dispersion inXwithmuch higher accuracy).

There is another generalization of themethod presented in [21] that turns out to be useful for our purpose
here. In fact, wewill consider amore general interactionHamiltonians between and. Aswewill show, if the
Hamiltonian is nonlinear in themomentumof then the estimate of themoments of thework distribution
may be simpler, and evenmore precise. To see this we consider an interactionHamiltonianwhich induces an

evolution operators given as = κ α
U eI

P Hi , for integer values ofα. In this case, it is simple to extend the previous
results and to obtain an analytic expression for themoments of thework distribution. In fact, we find that

Δ Δ κ Δ= + α−( )X X WP , (6)n n n n
0 0

1

a formulawhich is valid for =n 1, 2, 3. A particularly simple case is attained forα = 2. Then, the second
moment satisfy

κ= +X X W P .2 2

0

2 2 2

0

wherewe assumed〈 〉 =X 00 as is the case of a thermal symmetric state. This has an obvious interpretation: by
considering an initial state which is squeezed in positionwe reduce ΔX0. Then, the estimate of ΔX (forfixed
accuracy in themeasurement of ΔX) is higher than in the linear case. Again, all these results are independent of
the initial state of the apparatus andwill be useful inwhat follows.

3.Work on an atomic ensemble

In this sectionwe start by explaining a scheme to reconstruct the probability distribution of thework done on or
extracted froma cold atomic ensemble. The state of the ensemble, composed byN2-level atoms, can be
described in terms of the collective angularmomentum J that is the sumof the atomic spins. The components of
the angularmomentumoperator fulfil the usual commutation relations (assuming throughout the paper that

= 1): =J J iJ[ , ]x y z and all the cyclic permutations. The ensemble is subject, as in previous experiments, to a
magnetic fieldB t( ) that can be continuously changed in time along any direction. TheHamiltonian governing
the dynamics of the ensemble is therefore:

γ= − B JH t t( ) ( ) · , (7)

where γ is the gyromagnetic ratio and ≡ ∣ ∣B Bt n t n t n t( ) ( ( ), ( ), ( ))x y z thuswe are assuming that only the
directionn t( )of themagnetic field and not itsmagnitude changes in time. The instantaneous eigenstates ofH(t)
coincidewith those of the projection of J along themagnetic field directionn t( ) andwe label them as∣ 〉mn t( )

with eigenvalue γ= − ∣ ∣BE t m( ) nm t( ) .
We now compute thework done on the atomic ensemble, initially in the state ρ (0), due to the variation of

themagneticfield fromB (0) to τB ( ) in a time τ. The ensemble state at any time can be calculated as
ρ ρ=t U t U t( ) ( ) (0) ( )† wherewe have defined the unitary evolution operatorwhich fulfills Schrödinger
equation:

∂
∂

=i
t

U t H t U t( ) ( ) ( ) (8)

with the initial condition = U (0) .Wewould like to stress here thatwe are notmaking any assumption on the
time variation, slow or fast, of the direction of themagnetic field.

Taking as a definition the two time protocol, workW is a classical stochastic variable with probability
distribution:

∑ δ τ= − +
′

′ ′P W p p W E E( ) ( ) (0) , (9)
m m

m m m m m

,

⎡⎣ ⎤⎦

where ρ= 〈 ∣ ∣ 〉p m m(0)n nm (0) (0) is the probability tofind the initial state in the initialHamiltonian eigenstate
∣ 〉mn (0) and
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τ= ′ τ′p m U m( )n nm m ( ) (0)
2

is the conditional probability that evolvingwith the evolution operator τU ( ) the initialHamiltonian eigenstate
∣ 〉mn (0) the state of the system is found, at time τ, in thefinalHamiltonian eigenstate∣ ′ 〉τmn ( ) .

We start with a simple case wherewe assume that the initialmagnetic field is pointing along the zdirection
and, at t=0, is instantaneously rotated to the y axis, thus τ = U ( ) .We assume that the ensemble is initially in
thermal equilibriumwith inverse temperature β (assuming the Boltzmann constant kB=1) so that its state is:

ρ = β−
Z

(0)
1

(0)
e , (10)H (0)

where = β−Z (0) tr e H (0) is the initial partition function ensuring the normalization of the state densitymatrix.
In this case thework probability distribution (WPD) depends on the overlaps∣〈 ′ ∣ 〉∣m my z

2 between the angular
momentum eigenstates along the z and y directions. These can be calculated in terms of theWignerD-matrix
but the result is cumbersome andwill not be reported here. The results for theWPDcan be found infigure 2. It
can be observed that for very low temperatures the probability distribution resembles aGaussian function. This
can be explained as follows. The initial state is polarized along the z direction, so each spin is in a superposition of
the up and down states along the y axis. As the total state is the tensor product of each spinwavefunction, the
resulting distribution is binomial, thus approaching aGaussian shape for large number of atoms.More precisely,
for a large number of particles, and usingHolstein–Primakoff approximation, the atomic state can be regarded
as a coherent state. For the instantaneous quenchwe are considering, theWPDdepends only on the transition
probabilities ′ ∣pm m which, in theHolstein–Primakoff picture, represents thewave function squared of such

coherent state, therefore aGaussian function, its position-like operator being proportional to the angular
momentum Jy along the finalmagnetic field.

For large temperatures this is not true anymore, and other transitions from initial excited states acquire a
higherweight. These give rise tomanymore peaks distorting theWPD to a skewed function.We have studied the
normalized skewnessSkew[W]of theWPDas a function of temperature. The normalized skewness is defined as:

σ
= −

Skew[W]
W W

, (11)
W

3⎛
⎝⎜

⎞
⎠⎟

whereσW is thework standard deviation.
The results, reported infigure 3, show that the skewness is always negativemeaning that, althoughmost of

the probability is located to the right of themaximumof the distribution, there is a long tail of small probabilities

Figure 2.Work probability distribution for an atomic ensemble, withN=40, initially in thermal equilibriumwith amagnetic field
pointing along the zdirection and instantaneously rotated to the y axis.We consider an ensemble initially at zero temperature
(β =+∞, top) and onewith inverse temperature β = 1 (bottom). Dots represent the strength of theDirac delta function from
definition (9). The blue solid line is an appropriately rescaled continuous coarse grained version of theWPD.
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to the left of themaximum. This is not uncommon for theWPD [19, 28] and sometimes it gives rise to non-zero
probability for negative work values. Figure 3 shows also an interesting result: the skewness approaches zero for
very small, as we said earlier, or very large temperatures. In the large temperature limit the skewness also
approaches zero because the initial state is proportional to the identitymeaning that all energy eigenstates are
equally probable. This leads to a symmetric distribution as the transitions probabilities are symmetric:
∣〈 ∣ 〉∣ = ∣〈 − ∣ 〉∣ = ∣〈 ∣ − 〉∣ = ∣〈 − ∣ − 〉∣m m m m m m m mz y z y z y z y

2 2 2 2. ThusP(W) is symmetric around zero and

the skewness reduces to zero. For intermediate temperatures βγ∣ ∣ ∼−B( ) 51 there is amaximumof the absolute
value of the skewness.

We now consider a slow quench of themagnetic field and calculate thework done on the ensemble for
different speedsω τ= 1 .We therefore assume that themagnetic field rotates at constant angular speedω as:

ω ω= +( )B B k jt t t( ) cos ˆ sin ˆ . (12)

For this particular choice the eigenenergies Em do not depend on time and there are no degeneracies.We thus
expect that for sufficiently small angular speedω the evolution to be (quantum) adiabatic: since there are no
transitions induced by the time variation of theHamiltonian, the state populations do not change in time and
the state at all times remains in thermal equilibrium. In this regimewe expect the averagework〈 〉W to approach
the free energy difference ΔF which, for the process we consider, is null. For higher speedωwe expect the
process to excite the system and bring it out of equilibrium. This in turn produces irreversible work defined as:

Δ= − =W W F W , (13)irr

where the last equality follows fromour assumptions that themodulus of themagnetic field does not change.
The results for〈 〉W are shown infigure 4. Aswe expected, for very smallω the averagework tends to zero

while growing and approaching a limiting value for very fast quenches. This value coincides with the average
work calculated assuming instantaneous quenches τ = U ( ) . Thefigure also shows the dependence of the
averagework for different temperatures. For high temperatures the averagework reduces as the system initially
occupiesmany excited states. In the limit of infinite temperature, the initial state of the system is the unitary

Figure 3. Skewness of the probability distribution of thework done on an atomic ensemblewithN=40 atoms after an instantaneous
rotation of itsmagnetic field from the direction z to the direction y.

Figure 4.Average work done on the atomic ensemble for rotating themagnetic field form the z to the y direction at constant angular
speedω and for different temperatures β1 . As before, we usedN=40.

6
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invariant completelymixed state proportional to the identity. In this limit, the averagework is zero because any
transformation leaves the state unaltered.

4. Reconstructing thework distribution using light

4.1. The scheme
Wepropose a scheme, following [21], to experimentally reconstruct the probability distribution of thework
done on an atomic ensemble when varying the appliedmagnetic field. To this endwe use a light-matter interface
based on the Faraday rotation [33]. If light polarized along the x axis propagates along the YZ plane and
illuminates the atomic ensemble at an angle αwith the z axis, the interactionHamiltonian reads:

α α α= +( )H
a

T
S J J( ) cos sin , (14)I z z y

where a is the coupling constant andT is the duration of the pulse. The Stokes operators are defined as:

= −( )S a a a a
1

2
, (15)x x x y y

† †

= +( )S a a a a
1

2
, (16)y y x x y

† †

= −( )S
i

a a a a
1

2
, (17)z y x x y

† †

where the operators ax and ay annihilates a photonwith polarization along x and y, respectively.We assume that
the light pulse is strongly polarized along the x axis: ≈ 〈 〉 =S S N 2x x ph whereNph is the number of photons.
Within this approximation, we can treat the Stokes operators in the two perpendicular directions as conjugated
variables: =S P N 2z ph and =S X N 2y ph , so that =X P i[ , ] .

Using these assumptions the evolution operator corresponding to a pulse withHamiltonian (14) is:

α κ α= −U i PJ( ) exp[ ( )], (18)I

where κ = a N 2ph and α α α= +J J J( ) (cos sin )z y .With atomic ensemble at room temperatures the

coefficient κ could be very small for our purposes, as wewould need a value κ ≈ 1. For ultracold atoms the
optical depth, and therefore κ, could bemade larger although results in this direction have not yet been
demonstrated.We could alsowrite the transformation αU ( )I as:

α κ α=U i PH( ) exp ˜ ( ) , (19)I A
⎡⎣ ⎤⎦

where α γ α= ∣ ∣BH J( ) ( )A , which is equivalent toH(t) in equation (7), andwe set κ κ γ= ∣ ∣B˜ ( ). Thus it is clear
that transformation αU ( )I is a spatial translation of the continuous state of light conditional on the atomic
ensemble energy. It is this conditional interaction thatmakes it possible to read theWPD from the state of the
light.

We now follow the idea from [21]. Initially the polarization fluctuation state of the light is assumed to be
characterized by aGaussianwave function,∣ = 〉X 0 L centred in zerowith varianceσ2. Although the vacuum

would correspond toσ = 1 22 we carry on our analysis for generic σ thus encompassing also squeezed states. For
the sake of simplicity we assume that the atoms are initially in a pure state ψ∣ 〉A, but the same exact schemeworks
also formixed states.

As illustrated infigure 5, the protocol consists in shining the atomswith a laser beam, strongly polarized
along x and propagating along a direction on the yz plane and forming an angleα π+0 with the z axis. During
thisfirst step, light and atoms interact with aHamiltonian proportional to αH ( )A 0 .While the beam is stored in a
quantummemory, the atoms undergo the process duringwhich themagnetic field is rotated eventually pointing
to the direction in the yz plane forming an angleα1with the z axis. The atomic state is evolvedwith evolution
operatorU(t) fulfilling equation (8). Finally, the light beam is retrieved from the quantummemory and let pass
through the atoms along a direction forming an angleα1with the z axis. During this step light and atoms interact
with aHamiltonian proportional to αH ( )A 1 . Thus, at the end the state of the light encodes the difference
between the final and initial energy for each posible quantum trajectory. It is at the very end, when the
measurement is performed, that coherence is destroyed. In this way themethod samplesWwith probability
P(W).

7
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Mathematically the state of atoms and light before light ismeasured is

∑
Ψ α α ψ

κ

= =

= = −
′

′ ′ ′( )
U U t U X

c c E X E E

( ) ( ) ( ) 0

, (20)
AL I I A L

m m

m m m m A m m
L

1
†

0

,

where ψ= 〈 ∣ 〉c Em A m A and = 〈 ∣ ∣ 〉′ ∣ ′c E U t E( )m m A m m A andwhere states like κ∣ = − 〉′X E E( )m m L represent the
initial state of light rigidly translated by the quantity κ −′E E( )m m .

The reconstructedwork distribution can be found from the probability density distribution of theX
quadrature of light (assuming no degeneracies):

∑
πσ

κ

σ
= −

− −

′
′

′( )( )
P X p p

X E E
( )

1

2
exp

2
, (21)L

m m
m m m

m m

,
2

2

2

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

wherewe have identified = ∣ ∣p cm m
2 and = ∣ ∣′ ∣ ′ ∣p cm m m m

2. Notice the difference with thework distribution in

equation (9): apart from the conversion factor κ the light distribution corresponds to a coarse grained version of
P(W) whereDirac delta functions have been replaced byGaussians withwidth σ.We therefore expect a faithful
reconstruction of theWPDwhenσ κ is sufficiently smaller than the energy change −′E Em m.

Using equations (3) and (4)we can obtain the first twomoments of the light distribution:

κ=X W . (22)

And for the secondmoment:

σ κ= +X W (23)2 2 2 2

so that the variance of the light distribution is:

Δ σ κ Δ= +X W (24)2 2 2 2

Therefore provided that κ is sufficiently strongwe can estimate the first twomoments of thework
distribution bymeasuring the lightfluctuations. A similar two- ormultiple-passage protocol has been previously
discussed in [34] for the implementation of a quantummemory.

4.2. An example
To showcase our proposal we consider the process described in section 3. The atoms are initially in thermal
equilibrium and subject to amagnetic field along the z direction. Themagnetic field is suddenly rotated to the y
direction andwewant to reconstruct theWPDof this process and compare it with the exact one calculated in
section 3.

The distribution for the light quadratureX can be found by inserting in equation (21) the expressions for pm
and ′ ∣pm m used in section 3. The light probability distribution is shown infigure 6 for zero temperature and for a

Figure 5.Proposed setup tomeasure the probability distribution of thework done on an atomic ensemble. A beamof light strongly
polarized along the x axis propagates along the z direction illuminating the atomic ensemble thus reading the initial energy. The beam
is then stored in a quantummemory (QM)while themagnetic field of the ensemble is changed in time. Finally the beam is retrieved
from the quantummemory and let pass through the ensemble along the negative y direction. The polarization fluctuations of the
emerging beamare thenmeasured using homodyne detection (HD).
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temperature β =− 11 . The light distribution is the sumof narrowGaussians at each of the red points offigure 2.
Therefore it represents a coarse grained version of it. Nevertheless, all the important features such as the first few
moments and the overall shape agree with the exact result. So evenwithmodest resources like using coherent
statesσ = 1 22 and a coupling κ = 2 it is possible to reconstruct quite faithfully thework probability
distribution.

The ultimate test of our reconstructedWPD is Jarzynski equality [1]

= =β βΔ− −e e 1, (25)W F

where the last equality follows from the fact that for us the free energy difference ΔF is zero.
Since thework variableW corresponds to the renormalized quadrature κX we compute:

∫

∑ σ β
κ

σ β
κ

σ β
κ

=

=

= =

β κ β κ

β

β

−
−∞

∞
−

′
′

− −

−

′( )

P X X

p p

e e ( )d

e exp
2

e exp
2

exp
2

, (26)

X X
L

m m
m m m

E E

W

,

2 2

2

2 2

2

2 2

2

m m

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Figure 6. Light quadrature probability distribution for an atomic ensemble initially polarized along the negative z direction and
instantaneously quenched along the y axis. The initial temperature of the ensemble is zero (top) and β = 1 (bottom). Parameters:

κ σ= = =N 40; 2; 1 22 .

Figure 7.Correcting factor to the Jarzynski equality as a function of the coupling constant κ. Parameters: σ β= = =N 40; 1 2; 12 .
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where in the last equality we used Jarzynski relation (25). Thus, Jarskynski equality is estimatedwith a correction
that decreases with the coupling κ and the temperature and decreases with thewidth σ of the initial light
polarization state. A similar results was found for generalized energymeasurements [35].

Using the following parameters: κ σ β= = = =N 40; 2; 1 2; 12 , we obtain

=β κ−e 1.06 (27)X

which is only 6% from the expected result. A plot of the correcting factor σ β
κ

exp
2

2 2

2

⎡
⎣⎢

⎤
⎦⎥ is shown infigure 7where it

is clear that values of κ above 5 gives a negligible correction to the Jarzynski equality.

5.Measuring dissipated energy in an open system

5.1. Generalities onfluctuation relations in open quantum system
So farwe have discussed amethod to reconstruct the probability distribution of work done or extracted from an
isolated system.Wenow extend themethod to a non-unitary evolution inwhich the system S is coupled to an
environment E during the process. Relaxing the assumptions of unitary processes, we have to be careful when
talking aboutwork. The system in fact exchanges energy, whichwemaywell call heat, with the environment.
Thus it ismore accurate to talk about the energy change of the system and itsfluctuation relations [36].We are
assuming as in the previous section that we perform a two-time energymeasurement on the system, the only
difference is that now the system evolution is not unitary.

In the open quantum system scenario, it is common to introduce a complete positive trace preserving
(CPTP)mapΦ acting on the initial densitymatrix ρ (0)S (assuming no initial system-environment correlations)
to obtain the evolved densitymatrix at time t. If the evolution of the combined systemplus environment is
unitary and governed by the operatorUSE themap can be expressed as:

ρ Φ ρ ρ ρ= = ⨂t U U( ) (0) Tr (0) (0) . (28)S S E SE S E SE
†⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Themap can be conveniently cast in terms of Kraus operators:

∑Φ ρ ρ= A A(0) (0) , (29)S
k

k S k
†⎡⎣ ⎤⎦

where, due to the trace preserving nature of themap, theKraus operators fulfil∑ = A Ak k k
† . It is possible to

define a dualmapΦ* as

∑Φ ρ ρ= A A* (0) (0) (30)S
k

k S k
†⎡⎣ ⎤⎦

which however is not in general trace preserving. AmapΦ is called unital if the corresponding dualmapΦ* is
trace preserving. This condition is equivalent to requiring thatΦmaps the completelymixed state S into itself:
Φ = ( )S S.

It has been shown before [12, 13] that when calculating an analogous relation to Jarzynki’s one obtains a
result that depends on the dualmap:

Figure 8. Scheme formeasuring energy dissipated in an array of spins trapped in an optical lattice. The lattice is formed by an array of
double wells where a single atomic spin occupies each of the twowells.We consider the spin in the left well as the system and the spin
in the right as the environment. A laser pulse (yellow) isfirst shone onto the atoms in a standingwave configuration created by a
mirror so that it illuminates only the system atoms. The light pulse is then stored in a quantummemory (QM)until a unitary
transformation between system and environment spins is generated. Then the beam is retrieved, passes through a half-wave plate
where its polarization is rotated by 180 degrees and is redirected to the atoms again thus completing the reading protocol. Finally, the
laser pulse is analysedwith homodyne detection (HD).
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 ρ Φ=β− e Tr (0) ( ) , (31)S
⎡⎣ ⎤⎦

where ρ =
β

β

−

−(0)S
e

tr e

HS

HS
and the quantity on the right-hand side has been called efficacy of the process. Thus,

Jarzynski equality for the energy change is fulfilled, i.e. the right hand side is 1 aswe are considering zero free
energy change, if and only if themapΦ is unital.

5.2. An examplewith atomic spins in optical lattices
To test the ideas discussed in the previous paragraphs, we consider the setup sketched infigure 8. A superlattice
potential of double wells is createdwith the aid of two standingwaves withwave vectors having a ratio of 2. For
large enough intensities, and assuming no vacancies, eachwell will contain exactly one atom, i.e. the system is in
aMott insulator with unit filling. Probing ultracold atoms in superlattice potentials has been proposed in [37].
We assume the atom sitting in the left well to be the system and the atom in the right well to be the environment.
In this limit tunnelling is suppressed and a super-exchange interaction between the pseudo-spin internal levels
can be induced by lowering the barrier between the twowells. The spins are initially in thermal equilibrium at
the same temperature:

ρ = =
β

β

−

−
R S E(0)

e

Tre
, , (32)R

H

H

R

R

with σ=H BR x
R andS E, indicates the system and environment spins, respectively.

Tomeasure energy change , wefirstmeasure the initial energy of the systemby projecting the initial density
matrix on the eigenstates∣〉+ and∣〉− ofHS. Then the thermodynamic process consists in coupling system and
environment with the XXZ interaction:

σ σ σ σ Δσ σ= + +H (33)SE x
S

x
E

y
S

y
E

z
S

z
E

and evolving it in time for a time twith the evolution operator = −U iH texp [ ]SE SE . In equation (33),Δ is the
interaction anisotropywhich can be tuned by accurately changing the atoms scattering length near a Feshbach
resonance [31].

We then consider the reduced densitymatrix of the systemonly andmeasure again the energyHS. The
probability distribution of the energy change is:

 




ρ ρ δ
ρ ρ δ
ρ ρ δ
ρ ρ δ

= + + + +
+ + + − − −
+ − − + + +
+ − − − −

+

+

−

−

P t

t B

t B

t

( ) (0) ( ) ( )

(0) ( ) ( 2 )

(0) ( ) ( 2 )

(0) ( ) ( ), (34)

S

S

S

S

where

ρ ρ= ± ± ⨂±
−t( ) Tr e (0)e . (35)E

iH t
E

iH tSE SE⎡⎣ ⎤⎦
It is easy to check that the probability distribution equation (34) is normalized. From equation (34) is it

possible towrite an analogous of Jarzinsky equality:

 β Δ= +β− B t te 1 tanh ( ) sin (2 ) sin (2 ). (36)2

Thus, not surprisingly we get a time-dependent correction to Jarzinsky equality due to the openness of the
system evolution.

However, notice that for Δ = 0, corresponding to the XXZmodel, the Jarzynski equality is fulfilled at all
times. This is because theCPTPmapΦ that evolves the systembecomes unital for Δ = 0. In fact, applying the
map to the completelymixed state, we obtain:

Φ =
 g t

g t2

1

2

1 ( )

( ) 1
, (37)S⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

where β Δ=g t B t t( ) tanh ( ) sin (2 ) sin (2 ). Thus the 1-normof the difference ofΦ [ 2]S from the identity is
related to the violation of the Jarzynski equality:

Φ − =
 

g t
2 2

1

2
( ) . (38)S S

1

⎡
⎣⎢

⎤
⎦⎥
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5.3. Scheme to reconstruct energy change in optical lattices
Wefinally consider the reconstruction of the dissipated energy distributionwith the Faraday rotation scheme.
As shown infigure 8 the scheme is very similar to the onewith an atomic ensemble. This time, the pulse produces
a standingwavewith a double periodwith respect to the optical lattice. Thismeans that only the left-most spin in
each doublewell is strongly illuminated by the light probe. In this waywe canmeasure the total energy of all the
identical system spins in the lattice.

The pulse isfirst sent through the atomic array and then stored in a quantummemory, as before. In this first
stage the light polarization fluctuation contains information about the initial energy of the system. Then, while
the light is stored, the atoms interact according to the XXZ interaction described before. After this, the light pulse
is retrieved from thememory, its polarization is rotated by 180 degrees by a half-wave plate, and let pass through
the atoms again, thus reading the final energy of the system spins. The pulse isfinally analysedwith a homodyne
detection.

As in section 4, the reconstructed distribution is obtained from equation (34)with the substitution:

 δ
π σ σ

κ→ − −X( )
1

2
exp

1

2
( ) . (39)

2
2

⎡
⎣⎢

⎤
⎦⎥

Thus the probability distribution of the light quadratureX is a coarse-grained version of the true energy change
probability distribution. The average exponentiated energy for a single spin is corrected by a factor:

=β κ β− −σ β
κe e e (40)X
2 2

2 2

therefore ifσ κ≪ the reconstruction is possible. Notice thatwhen themap is unital (Δ = 0) the reconstructed
Jarzynski quantity is time independent. Therefore even if the reconstructed result differs from the correct one,
from its time dependence, it unambiguously signals the unitality of themap.

So far, we have calculated the dissipated energy distribution for a pair of spins. As the light interacts with all
theN pairs of atoms in the lattice, the total dissipated energy is the sumof all the energies of each system atom. As
these behave independently the joint probability distribution is factorized, so that the expectation value of the
exponential becomes theNth power of the results in (36) and (40).

6. Conclusions

In summary, we have proposed an experimentally feasiblemethod to reconstruct the full distribution of the
energy change, specifically work and heat, of ultracold atomic gases. Although our proposal employs a light-
matter interface based on the quantumFaraday rotation, we stress that it could be adapted to other similar
setups, for example a Bose–Einstein condensate in a cavity. Finally, our proposal is able to reveal fundamental
properties of non-unitary evolutions that can be exploited for quantum environment engineering.
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