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In this work we study the modal characteristics of localized surface plasmons in graphene-coated, circular
cross-section wires. Localized surface plasmons are represented in terms of cylindrical multipole partial
waves characterized by discrete, complex frequencies that depend on the size of the wire and that can be
dynamically tuned via a gate voltage. We consider both intrinsically nonplasmonic wires and intrinsically
plasmonic wires. In the first case the localized surface plasmons are introduced by the graphene coating,
whereas in the second case the localized eigenmodes of the graphene coating are expected to hybridize
those already existing in the bare wire. We show that the approach presented here, valid for particle sizes
where the retardation effects can be significant, agree well with analytical expressions obtained in the
limit when the particle size is very small compared to the wavelength of the eigenmode. © 2015 Optical

Society of America
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1. INTRODUCTION

The coherent coupling of photons to free electron oscillations
at the interface between a conductor and a dielectric results
in the formation of surface electromagnetic modes known as
surface plasmons. In bounded geometries these modes, called
localized surface plasmons (LSPs), are characterized by discrete,
complex frequencies that depend on the size and shape of the
object to which they are confined. Excitation of LSPs results
in an enhancement of the local electromagnetic field as well as
in the appearance of intense absorption bands. Moreover, the
efficiency of light scattering from plasmonic particles is also
enhanced under resonant excitation of LSPs, a fact that plays
key roles in many areas that requires control, manipulation and
trapping of light [1]. For example, the high surface sensitiv-
ity of LSPs from single nanoparticles can be used to monitor
single-molecule chemical events [2] and the enhancement of
the local electromagnetic field can be used to largely enhance
single-molecule fluorescence [3].

Apart from noble metals –the plasmonic materials most fre-
quently used for visible and near IR applications– recent ad-
vances have created other plasmonic materials that allow dy-

namic manipulation of carrier densities, such as doped semicon-
ductors nanocrystals [4]. In the search for plasmonic materials
with lower losses and greater confinement of the electromag-
netic energy [5], the advent of graphene [6] has led to many
promising new opportunities for future plasmonic applications.

Graphene is a 2-D sheet of carbon atoms arranged in a hon-
eycomb lattice [6] that supports long-lived, electrically tunable
surface plasmons [7] and potentially enables new optoelectronic
applications in the terahertz frequency range [8]. The propa-
gation characteristics of graphene plasmonic waveguides have
been investigated in different planar structures, such as infinite
sheets [9], ribbons [10, 11] or grooves [12]. Recent experiments
showing that, thanks to the van der Waals force, particles with
various shapes and sizes can be wrapped up with graphene
sheets [13–20], have been the motivation for two kind of theo-
retical studies on plasmonic graphene layers wrapped around
dielectric core objects, one devoted to the propagation of graphene
plasmons along the axis of graphene-coated nanowire waveg-
uides [21–23] and the other to the excitation of LSPs with an
electromagnetic plane wave in spherical [24, 25] and cylindrical
particles [26, 27]. This paper is devoted to the study of LSPs
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Fig. 1. Graphene–coated cylinder with circular cross–section.
The graphene layer is characterized by a frequency dependent
surface conductivity σ.

supported by graphene coated circular cross-section wires. Our
main objective is to obtain the full characteristics (complex fre-
quencies and field distributions) of these LSPs, but instead of
using a scattering approach with an incident electromagnetic
wave to produce the excitations (the procedure used in Refs.
[24] and [25] for spheres and in Refs. [26] and [27] for cylinders),
here we formulate the LSP problem in absence of incident fields,
a formulation which is better suited for the determination of
both plasmon resonance frequencies and plasmon decay rates
(or damping times). This is so because in the formulation with
incident fields (inhomogeneous problem), plasmon resonance
frequencies and plasmon decay rates can be determined only
indirectly, through the observation of positions of maxima or
widths of resonances in scattering cross-section spectra. On the
other hand, in the formulation without incident fields presented
here (homogeneous problem), plasmon frequencies and plas-
mon decay rates appear as intrinsic eigenproperties obtained in
a direct manner from the real and imaginary parts of complex
modal frequencies. The dependence of these complex frequen-
cies on the size of the wire, the conductivity of the graphene
coating and the electromagnetic constitutive parameters of the
core is essential for controlling the spectral properties of plas-
monic particles for technological or diagnostic applications. The
real part of the complex frequencies gives the position of maxima
in scattering spectra, whereas the imaginary part, an important
parameter for transient and nonlinear phenomena [28], provides
useful information about the full characteristics of surface plas-
mons, such as radiation and ohmic losses, and is closely related
to the spectral width of the resonant coupling and to the lifetime
of surface plasmons. This fact is important for most applications
that requires to control the spectral response of the plasmonic
particle, such as the ability of plasmonic nanoantennas in receiv-
ing and transmitting radiation [29].

The plan of this paper is as follows. In section 2 we describe
LSPs in graphene-coated, circular cross-section wires in terms
of cylindrical multipole partial waves characterized by complex
frequencies and we give the main steps for the derivation of
the dispersion equation for the eigenfrequencies and the calcu-
lation of their corresponding field distributions.The method is
not limited to any particular range of radius/wavelength ratios

and applies for large particles, where retardation effects may
be significant. In section 3 we offer alternative simpler results
obtained using the small-argument asymptotic expansions for
the Bessel functions and valid in the quasistatic regime in which
the radius/wavelength ratio is small. In this regime we pro-
vide analytical expressions for the plasmon resonance frequency
and the plasmon decay rate for two different kind of wire cores:
nondispersive dielectric (nonplasmonic) cores and Drude dis-
persive (plasmonic) cores. The characteristics of LSPs, including
dispersion relation, mode patterns and their dependence on
wire radius, substrate permittivity and chemical potential of
graphene are illustrated in Section 4. In the last part of this
section we correlate the homogeneous problem results obtained
with this approach with those obtained through the observation
of positions of maxima and widths of resonances in scattering
cross-section spectra. Finally, in Section 5 we summarize and dis-
cuss the results obtained. The Gaussian system of units is used
and an exp(−iωt) time–dependence is implicit throughout the
paper, with ω the angular frequency, t the time, and i =

√
−1.

2. HOMOGENEOUS PROBLEM

We consider a graphene–coated cylinder with circular cross–
section (radius R) centered at x=0, y=0 (see Figure 1). The wire
substrate is characterized by the electric permittivity ε1 and the
magnetic permeability µ1 and may be dielectric or conducting.
The wire is embedded in a transparent medium with electric
permittivity ε2 and magnetic permeability µ2. The graphene
layer is treated as an infinitesimaly thin, local and isotropic
two-sided layer with surface conductivity σ given by the Kubo
formula [30, 31]

σ(ω) =
i e2 µc

πh̄2(ω + iγc)
+

e2

4h̄

{
Θ(h̄ω− 2µc)−

i
π

ln
∣∣∣ h̄ω + 2µc

h̄ω− 2µc

∣∣∣},

(1)
where Θ(x) is the Heaviside function, e is the electron charge
and h̄ is the reduced Planck constant. Apart from the angular
frequency ω, the value of σ depends on the chemical potential µc
(controlled with the help of a gate voltage), the ambient tempera-
ture T and the carriers scattering rate γc. The first term in Eq. (1)
– the term which dominates at low temperatures µc >> kB T –
is a generalization of the Drude model for the case of arbitrary
band structure and represents contributions from intraband tran-
sitions, whereas the second term in Eq. (1) – the term which dom-
inates for large doping– represents contributions from interband
transitions.

In order to derive complex frequencies and field distribu-
tions of LSP modes in terms of the radius R of the wire, the
constitutive parameters of substrate and ambient media and the
parameters of the graphene surface conductivity, we use an accu-
rate electrodynamic formalism which closely follows the usual
separation of variables approach. The problem is formulated
in absence of incident fields. For surface plasmons localized
around the cylinder section the modal problem can be handled
in a scalar way since in this case the most general electromag-
netic field can be described as a linear combination of solutions
obtained in two fundamental scalar problems: electric field par-
allel to the main section of the cylindrical surface (p polarization
or Ez=0 modes) and magnetic field parallel to the main section of
the cylindrical surface (s polarization or Hz=0 modes). Moreover,
LSPs are not supported in s polarization since in this case the
electric field in the graphene coating can only induce electric cur-
rents directed along the wire axis, and not along the azimuthal

florencia
Resaltado

florencia
Resaltado

florencia
Resaltado

florencia
Resaltado

florencia
Nota adhesiva
este termino nes despresiable para mu grande, sino que se hace importante para altas frecuencias.

florencia
Resaltado

florencia
Nota adhesiva
y sobre todo cuando mu es grande!



Research Article Applied Optics 3

direction ϕ̂ as is required for LSPs to exist in the graphene circu-
lar cylinder. The magnetic field ~Hn(ρ, ϕ, t) corresponding to the
n-th LSP mode is written as

~Hn(ρ, ϕ, t) = Fn(ρ, ϕ) exp (−iωnt) ẑ , (2)

where ωn is the modal frequency. Taking into account that, due
to radiation losses and relaxation processes plasmon oscillations
are always damped, the modal frequencies must be represented
by complex numbers. The spatial part of the magnetic field
F(ρ, ϕ) is expanded as series of cylindrical harmonics in the
internal and external regions.

Fn(ρ, ϕ) =

{
cn Jn(k1ρ) exp inϕ , ρ < R,

an H(1)
n (k2ρ) exp inϕ , ρ > R,

(3)

where an and cn are complex coefficients, n = 1, 2, . . . ∞, kj =
ω
c
√

ε jµj (j = 1, 2), c is the speed of light in vacuum, and Jn and

H(1)
n are the n-th Bessel and Hankel functions of the first kind

respectively. The boundary conditions for the graphene–coated
cylinder at ρ = R are

1
ε2

∂Fn

∂ρ

∣∣∣∣
R+

=
1
ε1

∂Fn

∂ρ

∣∣∣∣
R−

, Fn

∣∣∣∣
R+

− Fn

∣∣∣∣
R−
=

4iπ
ωε1

σ
∂Fn

∂ρ

∣∣∣∣
R+

. (4)

Introducing expressions (3) into the boundary conditions, a set
of two homogeneous equations is obtained

k2
ε2

anH′(1)n (k2R) =
k1
ε1

cnJ ′n(k1R), (5)

anH(1)
n (k2R)− cnJn(k1R) =

4π

c
σi

ck1
ωε1

cnJ ′n(k1R), (6)

where the prime denotes the first derivative with respect to the
argument of the function. In order to have a nontrivial solution,
the following condition is required

µ2hn − µ1 jn +
4π

c
σ

ω

c
iRµ1µ2 jnhn = 0, (7)

where

jn =
J ′n(k1R)

k1RJn(k1R)
hn =

H′(1)n (k2R)

k2RH(1)
n (k2R)

(8)

Equation (7) is the dispersion relation for the plasmonic eigen-
modes of the graphene-coated cylinder and it gives the complex
frequency ωn for the LSP represented by the cylindrical multi-
pole partial wave given by Eq. (2). Once the eigenvalues and
their corresponding complex amplitudes an, cn have been found,
the spatial part of the electromagnetic field for the nth mode is
given by

~Hn =


Jn(k1ρ) exp inϕ ẑ , ρ < R,
k1 ε2
k2 ε1

J ′n(k1R)
H′(1)n (k2R)

H(1)
n (k2ρ) exp inϕ ẑ , ρ > R, (9)

~En =



ick1
ωε1

(
inJn(k1ρ)

k1ρ ρ̂−J ′n(k1ρ)ϕ̂
)

exp inϕ , ρ < R,

ick1
ωε1

J ′n(k1R)

H′(1)n (k2R)

(
in
H(1)

n (k2ρ)

k2ρ
ρ̂−

H′(1)n (k2ρ)ϕ̂
)

exp inϕ , ρ > R.
(10)

3. QUASISTATIC APPROXIMATION

A. Non retarded dispersion relation
Equation (7) gives the fully– retarded dispersion relation. When
the size of the wire is small compared to the eigenmode wave-
length (R � λn = Re 2πc/ωn), we use the quasistatic ap-
proximation. Using the small argument asymptotic expansions
for Bessel and Hankel functions [32], it follows that the func-
tions in Eq. (8) can be approximated by jn(x) → n/x2 and
hn(x)→ −n/x2 and therefore Eq. (7) adopts the form

ε1 + ε2 = −4π

c
σ

c
ω

i
R

n. (11)

This is the resonance condition for a collective electron oscillation
in a graphene–coated thin wire that is excited by an electric
field polarized perpendicular to the wire axis. When σ = 0, it
reduces to the plasmon resonance condition of a thin metallic
wire [33]. From Eq. (11) it is evident that for graphene coatings
with Im σ > 0 , LSPs may exist in a dielectric wire even when
ε1ε2 > 0, although in the absence of a coating the existence of
LSPs usually requires a metallic medium, i.e., ε1ε2 < 0.

Fig. 2. Comparison between the exact real part of the modal
frequency values computed from Eq. (7) and the curve
Re ω(kSP) corresponding to a perfectly flat graphene sheet
(continuous lines) with γc = 0.1 meV, ε1 = 2.13, µ1 = µ2 =
ε2 = 1. a) R = xxµm, b) R = yyµm,

Taking into account that in the nonretarded regime the
wavenumber kSP for propagating surface plasmons in perfectly
flat, infinite graphene sheets can be approximated by [9]

kSP =
ω

c
i

ε1 + ε2
4πσ/c

, (12)

we observe that the dispersion Eq. (11) for localized surface plas-
mons in graphene–coated cylinders can be rewritten in the form

kSP 2πR = 2π n , (13)

which can be interpreted in the way that the n−th LSP mode of
a graphene–coated cylinder accommodates along the cylinder
perimeter exactly n oscillation periods of the propagating surface
plasmon corresponding to the flat graphene sheet. A rather sim-
ilar result has been obtained in graphene–coated nanospheres
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in an uniform background, but for LSPs with high values of
the orbital angular momentum order [24]. For the cylinder case
considered here the result (13) is valid for all multipolar orders,
although it is restricted to the limits of the quasistatic approx-
imation and the higher the multipole modal frequency ωn the
better this approximation holds, since the effective wavelength
of higher multipoles become shorter and the LSP modes per-
ceive the circular graphene sheet as increasingly flat. To test the
prediction from Eq. (13) we compare in Figure 2 the real part
of the exact modal frequency computed from the fully retarded
dispersion relation Eq. (7) against the curve omega versus kSP
corresponding to the perfectly flat graphene sheet (continuous
lines). Como ven, propongo poner acá las curvas de la dis-
cretización del plasmón del plano, en vez de las que estaban.
De ser así, ponemos dos valores de R, uno grande y uno chico?
Tiene sentido comparar también las partes imaginarias? We
observe that in the case R = xx the agreement is excellent for
all the multipolar modal frequencies ωn, whereas in the case
R = yy the approximation (13) ceases to be valid for the lowest
modal frequencies.

B. Analytical expressions for ωn

Although useful to provide an enlightening connection be-
tween localized and nonlocalized graphene surface plasmons,
Eq. (11) requires numerical schemes to find its complex roots ωn.
For large doping (µc >> kB T) and relatively low frequencies
(h̄ωn < µc) the intraband contribution to the surface conductiv-
ity (the first term in Eq. (1), the Drude term) plays the leading
role. In this case, Eq. (11) takes a simpler form

ε1 + ε2 =
4e2µc n

h̄2 R (ω + iγc)ω
, (14)

which allows us to obtain analytic expressions for the plasmon
eigenfrequencies in the particular cases of non–dispersive and
dispersive interiors.

Let us first consider a non–dispersive dielectric interior such
as a polymer. In this case Eq. (14) can be rewritten as

(ε1 + ε2)ω2 + i (ε1 + ε2) γc ω−ω2
0n = 0, (15)

where ω2
0n = 4 e2 µc n/(h̄2R) is the effective plasma–frequency

of the graphene coating for the n−th mode . Solving this
quadratic equation, we obtain the following analytical expres-
sion for the eigenmode frequencies

ωn =

√
ω2

0n
ε1 + ε2

−
(γc

2

)2
− i

γc

2
≈ ω0n√

ε1 + ε2
− i

γc

2
, (16)

the second equality holding when γc << ω0.
In the second case, we consider that the substrate of the

graphene–coated wire is a dispersive, metallic-like material,
with ε1(ω) represented by the Drude model

ε1(ω) = ε∞ −
ω2

p

ω2 + iγmω
, (17)

where ε∞ is the high–frequency dielectric permittivity, γm is the
damping constant and ωp is the plasma frequency. Equation (17)
is used to describe strongly doped semiconductors much larger
in extent than the Fermi wavelength [4]. Replacing Eq. (17) into
Eq. (14) we obtain

ε∞ + ε2 =
ω2

p

ω2 + iγmω
+

ω2
0n

ω2 + iγcω
, (18)

which can be rewritten as

ω2(ε∞ + ε2) =
ω2

p

1 + ix
+

ω2
0n

1 + iy
, (19)

with x = γm
ω and y = γc

ω . After expanding the right hand side of
Eq. (19) in powers of x and y and retaining only the first order
terms, Eq. (19) can be rewriten as

(ε∞ + ε2)ω
3 − (ω2

p + ω2
0n)ω + (ω2

pγm + ω2
0nγc)i = 0. (20)

Separating the frequency into its real and imaginary parts, ω =
ωR − iωI , ωR > 0, ωI > 0 we get

E[ω3
R − 3ωRω2

I ] + iE[ω3
I − 3ω2

RωI ]−Ω2ωR + Ω2iωI + Γi = 0,

where we have neglected cubic and quartic terms in ωI and
E = ε∞ + ε2, Ω2 = ω2

p + ω2
0n, Γ = ω2

pγm + ω2
0nγc. Finally, the

following analytical expressions are obtained for the real and
imaginary parts of the eigenmode frequencies

ωRn =

√
ω2

p + ω2
0n

ε∞ + ε2
ωIn =

ω2
pγm + ω2

0nγc

2(ω2
p + ω2

0n)
. (21)

4. RESULTS

We illustrate the characteristics of LSPs in two different kind of
graphene coated wires, one with nondispersive dielectric, intrin-
sically nonplasmonic cores and the other with Drude dispersive,
intrinsically plasmonic cores. In all the examples the core is non
magnetic (µ1 = 1) and is embedded in vaccuum (ε2 = µ2 = 1).

A. Nondispersive dielectric wires
For nondispersive dielectric cores and for the case considered in
Figure 2a we have already seen that the values Re ωn computed
with the fully–retarded (FR) dispersion equation Eq. (7) agree
well with those obtained with the quasistatic (QS) approximation
Eq. (11). In Table 1 we compare FR ωn values with those obtained
using the analytical approximation (AA), that is, Eq. (16) for
R = 0.5 µm, µc = 0.5 eV, γc = 0.1 meV, ε1 = 2.13 (corresponding
to Polymethylpentene) and 1 ≤ n ≤ 10. Since the radius of the
wire is small compared with the eigenmode wavelengths, good
agreement is obtained between the complex FR and AA ωn val-
ues, even when the AA assigns Im ωn = −γc/2 to all multipolar
plasmon modesm, i.e., Im ωn/c = −0.5γc/c ≈ −0.00025 µm−1.
Maps of the internal modal magnetic field ~Hn(ρ, ϕ) calculated

n FR AA

1 0.2159− i0.88 10−3 0.xxxx− i0.25 10−3

2 0.3066− i0.26 10−3 0.xxxx− i0.25 10−3

3 0.3759− i0.25 10−3 0.xxxx− i0.25 10−3

4 0.4342− i0.25 10−3 0.xxxx− i0.25 10−3

Table 1. FR and AA ωn/c values in µm−1 for the first four
modes, R = 0.5µm, γc = 0.1meV, ε1 = 2.13 and µ1 = µ2 =
ε2 = 1.

with the first equation in (9) at a fixed time are shown in Figure
3a for the first four modes shown in Table 1. We observe that the
field distribution follows typical dipolar, quadrupolar,hexapolar
and octopolar patterns. The angular dependence of the modes,
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Fig. 3. (a) Map of Hnz(ρ, ϕ) at a fixed time for the first four
modes of the wire considered in Table 1. Red, positive values,
orange, negative values. (b) Radial dependence of Hnz (top)
and Enϕ (bottom) near ρ = R at ωn/c. The parameters are
γc = 0.1 meV, R = 0.5µm, ε1 = 2.13 and µ1 = µ2 = ε2 = 1.
Propongo sacar c y d, para que se luzcan las figuras de los
campos que son muy lindas. Y no cansar con el tema disper-
sión. Por ahora comenté esta parte en el texto, pero se puede
volver a incluir.
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Fig. 4. FR values of Re ωn (a) and Im ωn (b) for 1 ≤ n ≤ 4
as functions of the permittivity ε1, for ε2 = 1, R = 0.5 µm,
µc = 0.5eV, γc = 0.1 meV and µ1 = µ2 = 1.

given by exp( i nφ), is the same for all the field components.
Therefore, in order to visualize field distributions we evaluated
the radial behavior described by Eq. (9). Figure 3b shows these
ρ-dependent amplitudes for the field components Re Hnz(ρ) and
Im Enφ(ρ), with n = 1, 2, 3 and 4. We have chosen the normal-
ization |Hz| = 1 at the boundary of the wire (ρ = R). Since
the values ωn are almost real numbers, (|Re ωn/Re ωn| ≈ 10−3,
1 ≤ n ≤ 4), the arguments of the Bessel and Hankel functions
in (9) and (10) are almost real numbers. As a consequence,
the ρ-dependent part of Hnz(ρ) takes almost purely real values
whereas the ρ-dependent part of Enφ takes almost purely imag-
inary values. Due to the presence of a surface current density
jφ = 4π

c σ Eφ induced on the graphene sheet and according to
the boundary conditions in Eq. (4), a discontinuity at ρ = R is
observed in Figure 3b for Hnz(ρ), whereas Enφ(ρ) is continuous
at ρ = R. Strong field confinement are also observed near ρ = R,
with higher confinements for the higher modes.

In order to evaluate the dependence of the complex eigenfre-
quencies on the contrast between external and internal consti-
tutive parameters, in Figures 4a and 4b we show the FR values
of Re ωn and Im ωn, 1 ≤ n ≤ 4, as functions of the permittivity
of the internal medium ε1, the other parameters as in Figure ??.
We observe that Re ωn/c is maximum for the case of a graphene
cylinder in a uniform background (ε1 = ε2 = 1) and decreases

monotonously when ε1 is increased from this value. This be-
haviour is consistent with Eq. (16), which predicts that Re ωn/c
is proportional to 1/

√
ε1 + 1. On the other hand, Figure 4b

shows that Im ωn/c are increasing functions of ε1, i.e., the multi-
polar plasmon damping rates (|Im ωn|) decrease as the value of
the permittivity ε1 increases. This behaviour, due to an increase
in radiation losses when ε1 → ε2, is not explained by Eq. (16).

To investigate the size dispersion of the localized plasmonic
modes of graphene coated wires, in Figure ??(a) we plot the
multipolar plasmon resonance frequency for 1 ≤ n ≤ 4 modes
as a function of R, remaining fixed parameters ε1 = 2.13 and
µc = 0.5 eV. We can see that for R values between 0.1 µm and
4 µm the quasistatic limit given by equation (16) is a good ap-
proximation. For R < 0.1 µm, the interband term in equation (7),
corresponding to the full retarded dispersion scheme, redshifts
the resonances significantly. This same behaviour have been
observed when the quasistatic limit approximation is applied
to graphene coated dielectric spheres [? ]. For large values of
radious (R > 0.4 µm) the quasistatic limit blueshifts the reso-
nances, an already observed feature in large bare particles [? ].
In Figure 5(b) we illustrate the imaginary part of eigenfrequen-
cies calculated with the FRD formulation (7) and the value of
=ωn/c = −γ/2 calculated with the quasistatic approximation
(16) (continuous line). We can see that the initial increase of
the damping rates starting from the values |Im ωn/c| ≈ γ/2
for given 1 ≤ n ≤ 4 eigenmodes is followed by a decrease
of |=ωn/c| for sufficiently large particles. The initial increase
of |=ωn/c| with particle size, followed by the subsequent de-
crease for sufficiently large radius, as is illustrated in Figure
5(b), has been reported for the mode damping of silver and gold
nanospheres [29].

B. Drude dispersive wires
In order to investigate the plasmonic features that a graphene
coating can produce in intrinsically plasmonic wires, we con-
sider graphene coated wires made of metallic-like substrates,
that is, intrinsically plasmonic wires, where the localized sur-
face plasmons of the graphene coating are expected to modify
the localized plasmons already existing in the bare particle. We
assume that the dispersive behavior of the interior electric per-
mittivity is described by the Drude model given by equation
(17). This model is applied to describe strongly doped semi-
conductors much larger in extent than the Fermi wavelength
[4], which allow dynamic manipulation of carrier densities and
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Fig. 5. Re ωn (a) and Im ωn (b), n = 1, 2, 3, and 4, as functions
of R. The paremeters are µc = 0.5eV, ε1 = 2.13, γc = 0.1
meV, µ1 = µ2 = 1 and ε2 = 1. Curves represent values
obtained using Eq. (16), scatter symbols represent FR values.Si
les parece, se puede separar en dos paneles, uno arriba del
otro, para que no quede tan apretada
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Fig. 6. Real (a) and imaginary (b) parts of the modal complex
frequency for the nth mode (1 ≤ n ≤ 4) as functions of the
chemical potential µc for a graphene coated metallic wire with
radious R = 50 nm. The solid line curves corresponds to val-
ues calculated in the full retarded dispersion scheme (7) while
the scatter symbols corresponds to values calculated by us-
ing the quasistatic approximation (equation (16)). The green
dashed lines represents the values corresponding to the bare
particle, for n = 1, 2, 3, and 4. The solid line in figure (a) sep-
arates two regions: region (i), where the interband transitions
occur and region (ii), where only intraband transitions occur.
ε1(ω) is given by equation (17), with ε∞ = 3.72, γm = 0.01 eV
and h̄ ωp = 0.5 eV. Other parameters are γc = 0.1 meV, and
µ1 = µ2 = ε2 = 1.

have plasma frequencies in the same range that the realizable
Fermi energies of graphene. In Figures 6a and 6b we plot the
curves corresponding to the plasmon resonance frequency and
the corresponding damping rate, respectivelly, as a function of
the chemical potential µc for 1 ≤ n ≤ 4 eigenmodes. The inte-
rior electric permittivity ε1(ω) is given by equation (17) with
ε∞ = 3.72 (corresponding to the residual high–frequency re-
sponse of ZnO), γm = 0.01 eV and h̄ ωp = 0.5 eV. The multipolar
plasmon eigenfrequencies (1 ≤ n ≤ 4) for the bare metallic cylin-
der are also given as a reference (green dotted line). Since the
bare cylinder complex eigenfrequencies of the first four modes
coincide in three significant figures, these modes are superim-
posed in Figures 6a and 6b. This behavior changes dramatically
when the cylinder is wrapped with a layer of graphene, since
as shown in the Figure 6a, the plasmon resonance frequencies
of the modes are separated into more determined levels with
increasing the chemical potential. For chemical potential values

where interband transitions occur (region i in Figure 6b), Figure
6b shows an increment of the multipolar damping rates with
respect to the bare cylinder case. On the contrary, for µc values
where only intraband transitions occur (region ii in Figure 6b),
we see a decreasing of the damping rates with respect to the
bare cylinder case. This behaviour, already noted in the recent
work for spheres [? ], is caused by the envelope of the graphene
monolayer and can be used to reduce damping rates by varying
the chemical potential µc. On the other hand, Figure ?? shows
the corresponding multipolar eigenfrequencies curves (scatter
curves) calculated by the quasistatic approach (21). As expected,
we observe that this approach agree well with the values of com-
plex frequencies calculated by using the full retarded dispersion
scheme, in the whole range where only intraband transitions
occur (region ii in Figure 6).

Falta comentar la figura que compara H vs NH y el caption.

5. CONCLUSION

In conclusion, we have presented a theorical and numerical
treatment to find the full characteristics of localized surface plas-
mons for circular cross–section wires coated with a graphene
monolayer. The method can be regarded as an extension to
the complex domain of the scattering formalism already used to
evaluate the response of graphene–coated wires [? ]. The method
has been used to investigate how the size and dielectric permit-
tivity of the wire sustrate, as well as the chemical potential of the
graphene monolayer, affects the complex eigenfrequencies of
localized plasmonic modes supported by the wrapped graphene
wire. We also compare resonant frequencies and damping rates
calculated from this framework with those calculated from ana-
lytical expressions derived within of the quasistatic approxima-
tion. We presented examples for both dielectric (non–plasmonic)
and like–metallic (plasmonic) wire substrates. In both cases, the
examples show that the good tunability of the graphene coating
leads to unprecedented control over the location and magnitude
of the particle plasmonic resonances.

Fig. 7. Esta es la figura que compara H vs NH
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