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Summary: In this study the effect of freeze drying

on the microstructure, texture, and tenderness of
Semitendinous and Gluteus Medius bovine muscles

were analyzed applying Scanning Electron Micros-

copy combined with image analysis. Samples were
analyzed by Scanning Electron Microscopy at

different magnifications (250, 500, and 1,000�).

Texture parameters were analyzed by Texture
analyzer and by image analysis. Tenderness by

Warner–Bratzler shear force. Significant differences

(p< 0.05) were obtained for image and instrumental
texture features. A linear trend with a linear

correlation was applied for instrumental and image

features. Image texture features calculated from
Gray Level Co-occurrence Matrix (homogeneity,

contrast, entropy, correlation and energy) at 1,000�
in both muscles had high correlations with instru-
mental features (chewiness, hardness, cohesiveness,

and springiness). Tenderness showed a positive

correlation in both muscles with image features
(energy and homogeneity). Combing Scanning

Electron Microscopy with image analysis can be a

useful tool to analyze quality parameters in meat.
Summary SCANNING 9999:1–8, 2016. © 2016

Wiley Periodicals, Inc.
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Abbreviations
ASM energy
C cooked

CFD cooked freeze dried

CFDR cooked freeze-dried rehydrated
CHEW chewiness

COH cohesiveness

CON contrast
COR correlation

ENT entropy

GLCM gray level co-occurrence matrix method
GM Gluteus Medius
HAR hardness

HOM homogeneity
PCA principal component analysis

RES resilience

SEM scanning electron microscopy
SPRIN springiness

ST Semitendinous
WBSF Warner–Bratzler shear force measurement

Introduction

Meat is a widely consumed product; it is also a

perishable product. In order to enhance its quality, new
techniques are continuously developed and at the same

time, novel techniques are required for its efficient and

effective quality measurement and control.
Texture in foodhas beendefined as “all the rheological

and structural (geometric and surface) attributes of the

product perceptible by means of mechanical, tactile, and
where appropriate, visual and auditory receptors”

(Lawless and Heymann, ’98). Texture parameters are

usually measured by conventional techniques, such as
sensory and instrumental methods, which are time

consuming and destructive to the product. The relation-

ship of instrumental texture variables to the human
perception of texture has been a very active area of

research, with many researchers addressing this topic

(Guzek et al., 2013; Luckett et al., 2014).

Conflict of interest: None.

Address for reprints: Valeria Messina, The National Council for

Scientific and Technical Research (CONICET), Rivadavia 1917, Buenos

Aires C1033AAJ, Argentina

E-mail: vmessina@citedef.gob.ar

Received 3 February 2016; Accepted with revision 31 March 2016

DOI: 10.1002/sca.21321

Published online XX Month Year in Wiley Online Library

(wileyonlinelibrary.com).

SCANNING VOL. 9999, 1–8 (2016)

© Wiley Periodicals, Inc.



Multiple instrumentalmethods have been developed in
an attempt to assess the texture of meats, with a focus on

the “tenderness” of whole muscle meat products (Chen

and Opara, 2013; Wezemael et al., 2014). Among many
quality parameters, tenderness is regarded as one of the

most important attributes that affects the eating quality of

meat. It is positively correlated with juiciness and taste
and it has a substantial influence on overall customer

satisfaction (Rust et al., 2008; Juarez et al., 2012).
An interesting alternative for analyzing the surface of

food products and quantifying appearance character-

istics is to use computerized image analysis techniques

(Mendoza et al., 2012; Saini et al., 2014). Image
analysis can be a useful tool for characterizing food

morphology because the highly irregular structures of

many food materials elude precise quantification by
conventional means. This technique allows obtaining

measurements from digitalized images providing ob-

jective evaluations of the morpho-colorimetric features
of samples, a method that is more quantitative and less

biased than the common method of visual perception,

which is prone to variation due to the personal opinions
of inspectors or trained panels (Kono et al., 2014).When

microscopy techniques such as scanning electron

microscopy (SEM) and images analysis are used
together, they become a powerful tool to evaluate

microstructure changes of a product; cell size and

number of cells can them be measured and quantified
from the projected image. Employing image processing

with SEM, some important sensory attributes such as

texture, tenderness among others, could be predicted by
processing the surface and cross section images of a

product.

The aim of the present research was to study the
effect of freeze drying on themicrostructure, texture and

tenderness of Semitendinous andGluteusMedius bovine
muscles for instant meal applying image analysis
techniques on SEM micrographs performed at different

magnifications. Data obtained by image analysis was

correlated with instrumental analysis in order to
evaluate effectiveness of the method.

Material and Methods

Samples, Cooking Process, and Freeze Drying Cycle

Semitendinous (ST) (n¼ 4) and Gluteus Medius
(GM) (n¼ 4) sp: Aberdeen Angus bovine muscles were
provided by an abattoir center of Argentina. Preliminary

experiments were conducted to test different operative

conditions such as: sample shape, dimension and
thickness, method, time of cooking, various procedures

to manipulate the sample and freeze drying cycle. The

best operating conditions were: whole muscles were cut
to about 4� 2� 2 cm steaks with the fiber parallel to the

longest axis and were individually labeled and weighed.

Steaks were grilled in aluminum-folded strips and
cooked to an end point temperature of 71.5� 0.5˚C

(AMSA, 1995) using an electric grill (Philips, CABA,

Argentina). Internal temperature was monitored with
a T-type thermocouple inserted in the geometric

center of each steak. Samples were cooled at room

temperature (30min) and then chilled in a refrigerator at
4� 1˚C for 24 h.

Each cooked (C) steak was cut with a cork-bore to a

cylindrical form with 13mm diameter and 3 cm high.
The round shape was the best solution to reduce

variability caused by lateral sinking. Each cylindrical

sample were sliced in units of 1mm of thickness and
stored at 3˚C until freeze drying process.

Freeze drying process was carried out in a pilot plant

freeze dryer supplied with four trays designed by an
Industrial constructor (Rificor,BuenosAires,Argentina).

Freeze drying cycle was set at �50 during 24 h and then

dried at 40˚C during 48 h under a chamber pressure of
0.346Pa. Sampleswere packaged, individually identified

and stored in a dark place at room temperature until

analysis.
In order to analyze microstructure, instrumental and

image texture features of cooked freeze-dried rehy-

drated samples (CFDR), rehydration was performed
with tap water at 98˚C. The duration of rehydration

process in both muscles was fixed in 6min, as after that

time period there was nomore absorption of water by the
samples.

Scanning Electron Microscopy

Scanning Electron Microscopy was used for the

observation of the microstructure of cooked freeze dried
(CFD) and cooked freeze dried rehydrated samples of

ST and GM. Samples were cross sectioned using a

scalpel; the cut was always performed in the same
direction. Samples were mounted on holders and coated

with gold (Messina et al., 2014).Microscopic evaluation

was performed using a Scanning Electron Microscope
(SEM 515, Philips, Amsterdam, Netherland). Observa-

tions of the samples at magnification of 250, 500, and

1,000� were obtained for image analysis (Model
Genesis Version 5.21).

Brightness and contrast are the most important

variables that must be controlled during the acquisition
of images; therefore, the values of these parameters

were kept constant for each magnification during the

process of image acquisition.

Textural Profile Analysis (TPA)

Textural profile analysis of CST, CGM, CFDRST,
and CFDRGM was measured individually using a

Texture Analyzer (TA-XT-Texture Technologies,
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Corp., UK) with a 5 kg load cell using a two-cycle
compression method. Samples were compressed 3mm

with a time interval of 5 s at a speed of 5.0mm s�1.

Results were reported as an average value. Hardness
(HAR) was determined from the first test curve.

Cohesiveness (COH), springiness (SPRIN), chewiness

(CHEW), and resilience (RES) were also determined.
Samples were analyzed trice.

Image Texture Analysis

Image analysis was measured at different magnifi-
cations 250, 500, and 1,000� of CST, CGM, CFDRST,

and CFDRGM, respectively. Eighteen images of

1,024� 800 pixels were captured using an Scanning
Electron Microscopy and stored as bitmaps in a gray

scale with brightness values between 0 and 255 for each

pixel constituting the image. The size of each sample
(region of interest: 122� 122 pixels) was the same for

all the evaluated magnifications.

Texture parameters (energy [ASM], contrast [CON],
correlation [COR], homogeneity [HOM], and entropy

[ENT]) were calculated on SEM images using the gray

level co-occurrence matrix method (GLCM).
The textural feature angular second moment also

called ASM, measures the texture uniformity or

orderliness of an image (Ou et al., 2014). ASM values
indicate more directional uniformity in the image (Yang

et al., 2000). The textural feature CON is a measure of

the intensity contrast between a pixel and its neighbor
over the whole image. It measures the local variation in

the GLCM. CON can be seen as dynamic range of gray

level or sharpness of edges. The range of CON lies
[0 (size(GLCM,1)�1)2]. Furthermore, contrast is 0 for

a constant image (Laddi et al., 2013).
The textural feature COR is a measure of how

correlated a pixel is to its neighbor over the whole

image. Its range lies between �1 and þ1. Also, the

correlation is þ1 or �1 for a perfectly positively or
negatively correlated image. Correlation measures the

joint probability of occurrence of pixel pairs of GLCM.

The textural feature ENT shows how often a pixel with
gray-level (grayscale intensity) value i occurs horizon-

tally adjacent to a pixel with the value j (Karimi et al.,
2012). ENT is a statistical measure of randomness that
can be used to characterize the texture of the input

image. ENT is higher when all entries in p (i, j) are of

similar magnitude and small when the entries in p (i, j)
are unequal (Laddi et al., 2013). HOM shows the level of

uniformity on the image. High values of HOM show

improvement of uniformity and smoothness of the
image.

Five image texture features (Correlation [COR],

Energy [ASM], Homogeneity [HOM], Entropy [ENT],
and Contrast [CON]) were calculated using MATLAB

8.4 (The MathWorks, Inc., MA) (Eqs. 1–5):

CON ¼
Xn�1

i¼0

Xn�1

j¼0

ði� jÞ2Pd; uði; jÞ ð1Þ

ENT ¼ �
Xn�1

i¼0

Xn�1

j¼0

Pd; uði; jÞ2LogPði; jÞ ð2Þ

HOM ¼
Xn�1

i¼0

Xn�1

j¼0

Pd; uði; jÞ
1þ ji� jj ð3Þ

ASM ¼
XN�1

i¼0

XN�1

j¼0

Pd; uði; jÞ2 ð4Þ

COR ¼

PN�1

i¼0

PN�1

j¼0

ðijÞPði; jÞ
" #

� mxmy

sxsy

ð5Þ

WarnerBratzler Shear Force Measurement (WBSF)

Eight cores (1.27 cm diameters and 2.5� 0.2 cm in
length) were obtained from each steak parallel to the

muscle fiber’s orientation for WBSF determination. The

Warner–Bratzler shear test was performed using an
Instron universal testing machine (Instron, Model 4301,

Instron Ltd., UK) fitted with an inverted V shaped blade.

The WBSF scores were obtained for all cores extracted
from an individual sample and averaged the peak value

of the shear force for each core for the tenderness

reference value.

Statistical Analysis

Texture and WBSF values were subjected to linear

normalization prior to Principal Component analysis

(PCA) in order to efficiently suppress quantitative effects
on the multivariate data. Mean values were compared by

T-Student, regression equations and correlation coeffi-

cients (R2) between instrumental and image texture
features were obtained using SPSS-Advanced Statistics

12 software (SPSS Inc., Chicago, IL).

Results and Discussion

Scanning Electron Microscopy

Figure 1 shows microstructure at different magnifica-

tions (250, 500, and 1,000�) of CST, CFDST, and
CFDRST and Figure 2 ofCGM,CFDGM, andCFDRGM.

CST and CGM showed an organized structure with

compacted fibers without gaps among fiber. CFDST
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and CFDGM structures appeared organized showing

gaps among fiber bundles and between fibers.

Myofibrils were dehydrated and separated and par-
tially fragmented. CFDST and CFDGM samples

freezed at �50˚C showed a porous size structure

with larger and irregular cavities due to ice crystals

formed, CFDGM had higher porous size structure and

shrinkage of fiber when compared to CFDST. Amount
of pores (porosity) in samples depends on different

factors like cooking parameters, pressure and drying

Fig 1. Scanning micrographs performed at 250, 500, and 1,000� of cross sectional cooked (C), cooked freeze dried (CFD), and cooked
freeze dried rehydrated (CFDR) Semitendinous muscle (ST).

Fig 2. Scanning micrographs performed at 250, 500, and 1,000� of cross sectional cooked (C), cooked freeze dried (CFD), and cooked
freeze dried rehydrated (CFDR) Gluteus Medius muscle (GM).
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temperature. During subsequent freezing and freeze-
drying the ice sublimation creates pores; the amount of

pores (porosity) is related to the water uptake and is

higher when the water uptake is increased. The porous
structure is also influenced by the freezing process

and a fast cooling with a high undercooling leads to

smaller ice crystals and a larger inner surface. Due to
the high porosity the freeze dried cell suspension has

a high specific surface area; this influences the

sorption behavior as well as the rehydration (Mounir,
2015).

Higher amounts of pores (higher porosity) help to

maintain the structure without the deformations that
are inevitable in other drying methods (Leelayuth-

soontorn and Thipayarat, 2006). The degree of

porosity also has influence in texture and rehydration
ability, when the size of the air cells in porous material

are bigger, it allows a fast rehydration due that

water easily enters and reoccupies the empty spaces
(Oikonomopoulou et al., 2011).

CFDRST and CFDRGM showed that porous size

structure due to ice sublimation during freeze drying
process, water easily reoccupied the empty spaces in all

samples.

In general micrographs showed that changes in
microstructure a probably due to that drying process

induced faster denaturation of proteins and subsequently

more reduction in dimension of myofibrils and collagen,
resulting in shrinkage of muscle fiber diameter and

sacromere length (Kong et al., 2008; Reyes et al., 2011).

Image Texture Analysis

Table I shows image texture values for CST, CGM,

CFDRST, and CFDRGM at different magnification
(250, 500, and 1,000�). In texture image analysis,

COR indicates the linearity of the image. For an image

with large areas of similar intensities, a high value of
correlation is measured. HOM shows the level of

uniformity on the image. High values of HOM show

improvement of uniformity and smoothness of the
image (Karimi et al., 2012). ENT is a measure of

randomness, and takes low values for smooth images.

ASM represents the smoothness of an image, when
ASM is high the image has very similar pixels. CON is a

measure that shows the difference from one pixel to

others close to it. It is a measure of local gray variations
(Zheng et al., 2006). Low values in CON represent

diminish of local variation of pixels. The softer the

texture the lower the contrast, which is due to lower
pixel value difference between two neighbors.

CST and CFDRST at 250� magnification showed

significant differences (p< 0.05) for ASM, CON, ENT,
COR, and HOM; 500� for ENT; and 1,000� for ASM,

CON, ENT, COR, and HOM. Higher values of HOM,

COR, ASM and lower values of CON and ENT were
obtained at 1,000�, showing that at higher magnifica-

tion in SEM, images analysis showed to be homoge-

neous, a better correlation among neighboring pixel was
obtained, lower degree of local variations appeared, and

high linearity and smoothness was observed.

TABLE I Image texture values of cooked and cooked freeze dried rehydrated Semitendinous and Gluteus Medius bovine muscles
(Sp: Aberdeen Angus) at different magnifications

Image texture

Sample Magnification ASM ENT CON COR HOM

CST 250� 0.33ª 5.94b 0.47ª 0.68b 0.88ª

CFDST 250� 0.14 b 6.99ª 0.26b 0.78ª 0.8b

p-value 0.0001 0.0001 0.0001 0.0001 0.0053
CST 500� 0.22 6.30b 0.39 0.67 0.83
CFDRST 500� 0.21 6.51a 0.39 0.67 0.83
p-value NS 0.0015 NS NS NS
CST 1,000� 0.29b 6.53ª 0.70ª 0.81b 0.91b

CFDRST 1,000� 0.70ª 4.83b 0.23b 0.93ª 0.94ª

p-value 0.0001 0.0001 0.0001 0.0001 0.0001
CGM 250� 0.69ª 6.68ª 0.79ª 0.16b 0.79b

CFDRGM 250� 0.23b 6.57b 0.33b 0.74ª 0.85ª

p-value 0.0001 0.0001 0.0001 0.0001 0.0001
CGM 500� 0.20b 6.35b 0.38ª 0.77ª 0.83b

CFDRGM 500� 0.28ª 6.68ª 0.26b 0.74b 0.88a

p-value 0.0001 0.0001 0.0001 0.0001 0.0001
CGM 1,000� 0.86b 6.80ª 0.94ª 0.92b 0.95b

CFDRGM 1,000� 0.99ª 5.35b 0.88b 0.95ª 0.97ª

p-value 0.0056 0.0001 0.0001 0.0051 0.0054

NS, son significant; C, cooked; CFDR, cooked freeze dried rehydrated; ST, Semitendinous; GM, Gluteus Medius. Small letters in the same column
indicate that means are significantly different (p< 0.05) related to treatment (T-student)
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CGM and CFDRGM at 250, 500, and 1,000�
magnification showed significant differences (p< 0.05)

for ASM, CON, ENT, COR, andHOM.Higher values of

HOM, COR, ASM, and lower values of CON and ENT
were obtained at 1,000�.

CFDRST and CFDRGM showed lower values of

CON, which is related to lower stickiness (Meullenet
et al., ’98). CFDST showed higher values of CON when

compared to CFDRGM. Jeyamkondan et al. (2001)

reported in bovine beef that when image texture features
was evaluated at different magnifications, the use of

magnified images increases prediction accuracy on

texture features and reduces computation time.
Results revealed that CST, CGM, CFDRST, and

CFDRGM had lower CON values revealing a lower

degree of local variations which is typical of softer and
more homogeneous surfaces; whereas high values of

COR suggests strong correlation among neighboring

pixel in an image, lower degree of local variations
appeared, and high linearity and smoothness was

observed at 1,000�.

Instrumental Texture Analysis

Table II shows texture values of cooked and cooked
freeze dried rehydrated ST and GM. Statistical differ-

ence (p< 0.05) was obtained for CHEW, HARD, COH,

and SPRIN in CST, CGM, CFDRST, and CFDRGM,
respectively.

CFDRSTandCFDRGMhadhigher texturevalueswhen

compared to CST and CGM. In general, results revealed
that higher values of HARD, SPRING, CHEW, and RES

were obtained for GM samples when compared to ST.

Correlation Between Instrumental and Image Texture

In order to evaluate the capability of instrumental and

image analysis for texture, a linear trend with a linear
correlation under evaluated conditions were analyzed

with instrumental features (CHEW, COH, SPRING, and
HARD) versus image features (ASM, CON, ENT, COR,

and HOM) in ST and GM.

PCA was performed for each texture parameters
(instrumental and image). Two PC’s were found for

instrumental texture accounting 93.6% (ST) and 91.2%

(GM) of the total variance and two PC’s were found for
image texture accounting 90.8% (ST) and 89.5 (GM) of

the total variance. Each PC score was multiplied by the

respective variance. PC1 of instrumental and image texture
were combined using a linear combination. Figure 3 shows

linear trend with a linear correlation of PCA scores of

texture parameters (instrumental vs. image texture).
Results revealed a strong relationship between instrumen-

tal and image features for ST (R¼ 0.946) and GM

(R¼ 0.937), based on the resulting R2 value, the model
explained86.0%and84.0%, respectively, of thevariability

that associated instrumental with image features.

Image Texture Analysis and WBSF: Tenderness

Basset et al. (2000) stated that texture analysis could

be extended to prediction of tenderness in meat, because

themeat tissue characteristics that influencemeat quality,
and the connective tissue quantity and spatial distribution

that define the grain of meat are directly related to

tenderness. Some authors have reported that image
texture features can be applied to evaluate tenderness and

toughness in meat (Jackman et al., 2009; ElMasry et al.,
2012; Sun et al., 2012; Jackman and Sun, 2013).

In previous studiesBelew et al. (2003) andSullivan and

Calkins (2011) reported that threshold values for WBSF

between 31.38 and 38.25Nwere used as cut-off values for
very tender and tender beef respectively. Based onWBSF

threshold values reported by the stated authors mentioned

above (31.38N�X� 38.25N), mean values ofWBSF of
cooked samples (CST¼ 37.88N; CGM¼ 33.15N) were

higher than freeze dried rehydrated samples (FDRST¼
36.53N; FDRGM¼ 31.89N). ST showed higher WBSF
when compared to GM bovine muscle.

In order to correlate image texture features with

WBSF; threshold values for WBSF between 31.0 and
39.0N were used as cut-off values for very tender beef.

Principal Component Analysis was applied for image

texture features and WBSF data. Two PC’s for ST
muscles explaining 95.7% and 3.0% of the total variance

(98.7%) was obtained and two PC’s for GM, 93.5% and

4.1% of the total variance (97.6%; data non shown).
Results revealed that ASM and HOM were positively

correlated withWBSF (39.0�X� 31.0) and negatively

with COR, CON, and ENT in both muscles.
Kamruzzaman et al. (2013) reported in cooked lamb

meat that textural parameters based on WBSF, image

texture features such as COR and CON were positively
correlated with roughness (WBSF� 45N) and nega-

tively for tenderness (WBSF� 45N). On the other hand,

TABLE II Instrumental texture values of cooked and cooked
freeze dried rehydrated Semitendinous and Gluteus Medius
bovine muscles (Sp: Aberdeen Angus)

Instrumental texture

Sample HARD SPRING COH CHEW RES

CST 67.79b 0.44b 0.50b 16.72b 0.16
CFDRST 69.82a 0.47a 0.54a 17.89a 0.18
p-value 0.0001 0.0001 0.0001 0.0001 NS
CGM 71.35b 0.51b 0.49b 18.31b 0.19
CFDRGM 72.35a 0.55a 0.52a 19.10a 0.20
p-value 0.0001 0.0001 0.0001 0.0001 NS

NS, non significant; C, cooked; CFDR, cooked freeze dried rehydrated;
ST, Semitendinous; GM, Gluteus Medius. Small letters in the same
column indicate that means are significantly different (p< 0.05) related
to treatment (T-student)
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ASM and HOM were positively correlated for tender-
ness and negatively for toughness.

Jeyamkondan et al. (2001) explored textural features
based on the GLCM to predict tenderness in meat.
Instead of GLCM-based features, they chose to extract

features derived from the gray-level difference histo-

gram. Results revealed that image texture features
extracted from the full images predicted WBSF scores

with an R2 value of 0.5 and correctly classified the steaks

into categories of “tenderness” and “toughness” with a
79% success rate. Features extracted from the close-up

images predicted WBSF scores with an R2 value of 0.72

and classified the steaks with a 92% success rate.
Among these texture features evaluated, tender samples

in ST and GM always showed negative correlation with

CON, ENT, and COR features and positive correlation
with ASM andHOM.Overall, these results suggested that

the texture features extracted from images analysis could

be very useful to evaluate tenderness.

Conclusions

An imaging-based technique was developed to
approach texture properties in Semitendinous andGluteus
Medius bovine muscles for instant meal. Magnification at

1,000� showed to be the best option to evaluate image
texture due to that image texture analysis performed at

1,000� by gray level co-occurrence matrix had high

correlations with instrumental texture features when
compared to lower magnifications. On the other hand,

images of meat surface allowed classifying meat in terms

of texture—characterized by tenderness.
These results suggest the relevance of image analysis,

due to that prediction of texture and tenderness in meat

can be performed easily as a quantitative and non-
invasive technique that could be related in future studies

for quality in bovine muscles. Anyway, it would be

recommendable to investigate other magnifications in
future research in order to establish a general trend and

other bovine muscles should be evaluated to improve

research.
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