TAXONOMY AND NOMENCLATURE

A key and checklist to the Neotropical forensically important “Little House Flies” (Diptera: Fanniidae)

Diana Grisales¹, Melise C. Lecheta², Fernando H. Aballay² & Claudio J.B. de Carvalho³

¹Grupo de Entomologia, Instituto de Biologia, Universidad de Antioquia, Medellín, Colombia.
²Laboratorio de Entomologia, IADIZA, CCT, CONICET. Avenida Adrian Ruiz Leal, CP 5500, Mendoza, Argentina.
³Departamento de Zoologia, Universidade Federal do Paraná. Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil.
*Corresponding author: E-mail: ochoa310@gmail.com

ABSTRACT. Fanniidae (Insecta: Diptera) is a relatively small family (ca. 350 spp.) with five genera, of which Fannia Robineau-Desvoidy, 1830 and Euryomma Stein, 1899 have Neotropical distributions. Some of these species are almost always found in forensic studies. Forensically relevant species have been neglected, despite recent forensic studies that suggest their importance for estimating post-mortem interval (PMI). Thus, current and updated keys to identify adults or larvae on carcasses are unavailable for the most important species. While immature stages are important in estimating PMI, evidence suggests that adults (Fanniidae as well as other families) may also be useful for this purpose. Here we provide a key to males of the species of Fanniidae (found on corpses and other decomposing organic matter) with a checklist of species that have been used in forensics in the Neotropical region. The key comprises all 38 species of Fannia and Euryomma that have already been successfully used in forensics, and species that are potentially useful for estimating PMI. These records were found after reviews of the literature and data from entomological collections. Photographs and illustrations of the main characters in the key are provided.

KEY WORDS. Fannia, Euryomma, forensic entomology, PMI.

Fanniidae (Diptera: Calliphoridae) is a small family comprising five genera, two of which (Fannia Robineau-Desvoidy, 1830 and Euryomma Stein, 1899) are found in the Neotropical region. In this region Fannia comprises ca 90 species (Carvalho et al. 2003, Couri 2004, 2005, Couri & Winagraski 2005, Domínguez 2007, Domínguez & Aballay 2008, Wendt & Carvalho 2009, Wendt 2010, Quiroga & Domínguez 2010, Grisales et al. 2012b) and Euryomma has 17 species (Wendt & Carvalho 2007, Grisales et al. 2012a). Some of these species may be useful in forensic studies, especially to estimate the post-mortem interval (PMI) (Quiroga & Domínguez 2010, Grisales et al. 2012a, 2012b).

Other families of flies (Calliphoridae and Sarcophagidae) are most commonly used to indicate PMI. However, while the Fanniidae are less often used, many species are prevalent in decomposing carcasses and corpses (Matyszewski et al. 2010, 2011, Aballay et al. 2012a). Because they are less abundant in corpses than other families, identification of forensically relevant species in the Fanniidae has been neglected. A recent key to the most common forensic South American flies includes Fannia but with only six species: Fannia obscurinervis (Stein, 1900), Fannia trimaculata (Stein, 1898), Fannia pusio (Wiedemann, 1830), Fannia femoralis (Stein, 1898), F. punctipennis Albuquerque, 1954, and F. canicularis (Linnaeus, 1761) (Carvalho & Melo-Patru 2008). Yet, many new species of Fannia and Euryomma found on carcasses have been described (Grisales et al. 2012a, 2012b, Domínguez & Aballay 2008, Quiroga & Domínguez 2010). Also, another key to newly described species of Euryomma from Colombia is the first to mention their potential for forensic importance, yet all species were collected on decomposing animal flesh (Grisales et al. 2012a). An additional key to species on decomposing flesh included 13 new species of Fannia (Grisales et al. 2012b). Thus, clearly these two genera may provide useful forensic information (Wolff et al. 2001, Centeno et al. 2002, Iannaccone et al. 2003, Perez et al. 2005, Aballay et al. 2008, 2012a, 2012b, Bättig Horenstein et al. 2010, Patitucci et al. 2011).

Immature stages of insects are commonly used in the forensic study of PMI, while adults of some species may also provide useful complementary information. In most necropha-
gos species, adults tend to arrive at carcasses after a predictable PMI (MATUNIEWSKI et al. 2010, MICHAUD & MOREAU 2009), hence their potential usefulness. These adults also avoid the confusion that may arise due to predation of some fly larvae on others, which may obfuscate the exact time that the first eggs were laid (ANDRADE et al. 2002, SHIAO & YEH 2008). In South America, during most of the forensic work involving Fanniidae, adults are collected with little attention given to the larvae. Perhaps this is not surprising, as among the newly described species of Fanniidae associated with decomposing flesh, only the third instar larvae of *Fannia yunguensis* has been described (QUIROGA & DOMINGUEZ 2010).

We begin to fill this gap in the forensic use of adult necrophagous Fanniidae in South America with this key as a tool that will permit identification using the sometimes difficult diagnostic characters of adult males. The male terminalia are very important because they allow the identification of species when the external structures are morphologically conserved and thus uninformative, especially among *Euryomma* and some *Fannia*. In addition to the key to identify adult males we provide a checklist of species with updated distributions.

MATERIAL AND METHODS

Diagnostic characters used in the key were based on original descriptions and examination of specimens from the following collections: DZUP – Coleção de Entomologia Pe. Jesus Santiago Moure, Curitiba, Brazil (Claudio J.B. de Carvalho), CEUA – Coleção Entomológica Universidade de Antioquia, Medellín, Colombia (Marta Wolff), IADIZA – Coleccion Entomológica, Instituto Argentino de Investigaciones de Zonas ÁRIDAS, Mendoza, Argentina (Sergio A. Roig). In the key we followed the morphological terminology of MCCALPIN (1981), STUCKENBERG (1999), WENDY & CARVALHO (2009) and GRISALES et al. (2012a, 2012b).

We include in this study all species reported as associated to decomposing bodies (human or pig), and traps baited with organic decomposing matter (fish, chicken viscera, beef and pork) from available literature as well as from collected material. Forensic references and geographical distributions of the species on the checklist were also obtained from available literature and revision of collections.

We use the following abbreviations: Head: (fr) frontal setae, (orb) orbital setae. Thorax: (acr) serial acrostichal setae, (dc) serial dorsocentral setae, (pra) pre-alar setae. Wings: (C): costal vein. Legs: (ad) anterodorsal seta, (av) anteroventral seta, (p) posterior seta, (pv) posteroverentral seta, (v) ventral seta.

A Leica DFC 500 camera was mounted on a Leica MZ16 stereomicroscope from the Rede Paranaense de Coleções Biológicas (Taxonline) to take the photographs, which were assembled using the program Auto-Montage Pro (Syncroscopy). Some of the illustrations presented here appeared previously in GRISALES et al. (2012a, 2012b).

RESULTS AND DISCUSSION

Six species of Fanniidae were identified by CARVALHO & MELLO-PATIU (2008) as the most common forensic species in South America: *F. obscurinervis*, *F. trimaculata*, *F. pusio*, *F. femoralis*, *F. punctipennis*, and *F. canicularis*. Based on our review of the literature and insect collections, we list a total of 38 species of Fanniidae of actual or potential forensic importance (that may be associated with carcasses or with decomposing organic matter) in South America, of which 29 are in *Fannia* and nine in *Euryomma* (see Checklist).

The Fanniidae included here were collected as adults because it is rare to find larval stages in collections, although a few were found. Immature stages were described or illustrated for only eight species (Table 1). Biological cycles and immature stages are unknown for the remaining South American species. Thus, further study of larvae is encouraged.

Identification key to Neotropical genera of Fanniidae (adult males)

1. Vein A2 slightly curved, (Fig. 1). Upper orbital setae usually present (Fig. 3). First presutural dorsocentral setae less than half the length of second. Bacilliform process absent (Fig. 5). Dichoptic (Fig. 3)......................... *Euryomma* Stein

1’. Vein A2 strongly curved, (Fig. 2). Orbital setae absent (except in *F. canicularis* (Fig. 4)). First presutural dorsocentral seta developed, longer than half the length of the second setae. Bacilliform process usually present (Fig. 6). Usually holoptic (Fig. 4)............................... *Fannia* Robineau-Desvoidy

Identification key to species of *Euryomma* (males)

1. Scutum with vittae (Fig. 7)..2

1’. Scutum without vittae (Fig. 8) *E. peregrinum* (Meigen, 1826)

2. Scutum with five vittae following acr and dc (Fig. 7)........3

2’. Scutum with three vittae following acr and dc (Fig. 9).......5

3. Wing brownish, darkened in apical third between C and apical half of R₃₄ (Fig. 10), haltere yellowish (dark basally or not), frontal vitta dark brown ..4

3’. Wing yellowish, haltere yellowish, frontal vitta orange-red with apical margins reddish (Fig. 11)............................... *E. cornutatum* Grisales, Wolff & Carvalho

4. Length of postpedicel 2.5 times the length of pedicel. Terminalia: epandrium has few, long setae, surstylus narrows apically, with few short setae on apical half, cerceal plate setulose and acute apically (Fig. 13)... *E. uwe* Grisales, Wolff & Carvalho

4’. Length of postpedicel 3.5 times the length of pedicel. Terminalia: epandrium has short setae, particularly on basal half, surstylus triangular, short, with few short setae on apex and inner surface, cerceal plate slightly setulose and round apically (Fig. 14) *E. guane* Grisales, Wolff & Carvalho
Table 1. Information on immature stages of Fanniidae of forensic importance in South America.

<table>
<thead>
<tr>
<th>Species</th>
<th>Described or illustrated stages</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euryomma peregrinum (Meigen, 1826)</td>
<td>Larva III</td>
<td>DOMÍNGUEZ & PONT 2014</td>
</tr>
<tr>
<td>Fannia femoralis (Stein, 1898)</td>
<td>Larva III</td>
<td>CHILCOTT 1961</td>
</tr>
<tr>
<td>Fannia scalaris (Fabricius, 1794)</td>
<td>Larva III</td>
<td>CHILCOTT 1961</td>
</tr>
<tr>
<td>Fannia trimaculata (Stein, 1898)</td>
<td>Egg, larva III, puparium</td>
<td>ALBUQUERQUE 1945*, COURI & CAVALHO 2005</td>
</tr>
<tr>
<td>Fannia yunguensis Quiroga & Dominguez, 2010</td>
<td>Larva III</td>
<td>QUIROGA & DOMINGUEZ 2010</td>
</tr>
</tbody>
</table>

*Instar not specified. *Here we treat the posterior leg as from *F. pusio*; however, COURI (1992) showed that some material in ALBUQUERQUE (1945) pertains to *F. pusio* and some to *F. trimaculata*.
5. Scape and pedicel dark brown with silvery pilosity E. carioca Albuquerque

5'. Scape and pedicel yellow .. 6

6. Hind tibia brown on apical half, yellow basally with a brown ring (Fig. 12), arista brown with basal third yellow. Terminalia: surstylus triangular (Fig. 15) .. 7

6'. Hind tibia yellow, arista brown. Terminalia: surstylus long and narrow (Fig. 16) .. 8

7. Dorsocentral vittae on scutum conspicuous and complete, middle vitta well defined, length of postpedicel 3.6 times length of pedicel. Terminalia: surstylus fused with epandrium, cercal plate strongly concave, pointed apically, with long curved setae (Fig. 15) .. E. tahami Grisales, Wolff & Carvalho

7'. Dorsocentral vittae on scutum relatively inconspicuous, well defined posteriorly to poststural dc, length of postpedicel twice the length of pedicel. Terminalia: surstylus articulated with epandrium, cercal plate elongate, concave, slightly pointed apically, with short setae and apex strongly setose (Fig. 16) E. aburrae Grisales, Wolff & Carvalho

8. Frontal vitta dark brown with apical margin yellowish, scape and pedicel brown with suture and apical margin yellowish, length of postpedicel 2.4 times the length of pedicel. Terminalia: surstylus straight with curved apex (Fig. 17), cercal plate fused on apical third (V-shaped), apex round (Fig. 17) E. chitarera Grisales, Wolff & Carvalho

8'. Frontal vitta dark brown, scape and generally pedicel yellow, occasionally brownish, length of postpedicel 1.5 times the length of pedicel. Terminalia: surstylus curved (Fig. 18), cercal plate fused on apical half (V-shaped), apex square (Fig. 18) E. muisca Grisales, Wolff & Carvalho

Identification key to species Fannia (males)

1. Hind coxa bare on posterior surface (Fig. 19) ... 2

1'. Hind coxa with setae on posterior surface (Fig. 20) 6

2. Acr and dc following pattern common in Fannia, acr 2:3 or 3:3, dc 2:3 .. 3

2'. Acr and dc with different pattern, acr 0:0, dc 0:1 or 0:2 (Figs. 22, 23) ... 5

3. Hind femur on ventral surface with preapical protuberance and large tuft of dense setae, forming a strong hook (Figs. 19, 21) .. F. grandis Malloch
3'. Hind femur on ventral surface with or without preapical protuberance, if protuberance present, tuft of setae not as described above...4

4. Large, black, metallic blue background colour. Palpus dark brown, slightly clavate, fore tarsus with tarsomere 1 flat and wide, partially yellowish-white with broad leaf-like spine (Fig. 24), hind femur on ventral surface with strong protuberance with differentiated setae that form a tuft (Fig. 25).. F. albitarsis Stein, 1911

4'. Small, greyish background color. Palpus orange-yellow, slightly spatulate, fore tarsus with tarsomere 1 brown and normal in size, hind femur on ventral surface without protuberance and weak tuft of setae on posteroventral surface (Figs. 26, 27).. F. fusconotata (Rondani)

5. Dc 0:1 (Fig. 23), hind femur on anteroventral surface without protuberance on apical half, ventral surface with a set of differentiated setae on the median third (Fig. 28).................F. quimbaya Grisales, Wolff & Carvalho

5'. Dc 0:2 (Fig. 22), hind femur on anteroventral surface with slight protuberance on apical half, ventral surface with setae forming slight tuft with the av setae (Fig. 29).....................F. pijao Grisales, Wolff & Carvalho

6. Mid coxa with strong hooked setae (Fig. 30), mid tibia with conspicuous preapical protuberance (Fig. 31)...F. scalaris (Fabricius, 1794)

6'. Mid coxa without strong hooked setae..7

7. Abdomen black with lateral margins of tergites lighter in color, or abdomen grey and trimaculate (Fig. 32).................................8

Figures 13-18. Euryomma, male, epandrium, cercal plate and surstyli, dorsal view: (13) E. uwa; (14) E. guane; (15) E. tahami; (16) E. aburrae; (17) E. chitarera; (18) E. muisca. Scale bars: 0.1 mm.

Figures 22-23. *Fannia*, male. (22) *F. pijao*, thorax, lateral view; (23) *F. quimbaya*, thorax, lateral view. Scale bars: 1 mm.

7’. Abdomen with translucent-yellow tergites (Figs. 33, 34)...
8. Wing brownish with upper third darker and cross veins darker (Fig. 35), abdomen black, not trimaculate, parafacial bare...
...F. obscurinervis (Stein)
8’. Wing yellowish, abdomen grey trimaculate, parafacial with short setae, sometimes inconspicuous (sub-group pusio)...9
9. Hind femur strongly curved (Figs. 36, 37).........................10
9’. Hind femur weakly curved or straight (Fig. 38)11
10. Eighteen frontal setae, sparse setulae on eyes, wing yellowish, hind coxa with four setae on posterior margin, hind tibia with row of 9-13 anterior setae on apical half, abdomen trimaculate..............F. chibcha Grisales, Wolff & Carvalho
10’. Eleven to twelve frontal setae, eyes bare, wing smoky, hind coxa with two setae on posterior margin, hind tibia with row of 8-9 setae on anterior surface, abdomen black
...F. yunguensis Quiroga & Dominguez, 2010
11. Hind femur with conspicuous preapical protuberance (Figs.
39, 40)...12
11’. Hind femur with small preapical protuberance13
12. Hind femur with 3-4 longer bristles inserted on the swelling, hind tibia on anterodorsal surface with three median bristles (Fig. 39).................................F. femoralis (Stein, 1898)
12’. Hind femur with many short bristles inserted on the swelling, hind tibia on anterodorsal surface with row of five setae (Fig. 40)..F. snyderi Seago
13. Hind femur with preapical ventral protuberance bearing strong setae ...14
13’. Hind femur with preapical ventral protuberance without setae as described above ..15
14. Hind tibia with 1-2 rows of long setae on ventral surface (Fig. 38), hind femur on ventral surface with preapical protuberance, anteroventral and posteroventral surfaces with long and curved setae on the protuberance (Fig. 38, 42)....
..F. pusio (Wiedemann, 1830)
14’. Hind tibia without rows of long setae on ventral surface, hind femur on anteroventral surface with 3-4 preapical setae with straight apex (Fig. 41) F. sabroskyi Seago
15. Hind femur with middle third of anteroventral surface with two rows of short and straight setae and apical third with one strong seta (Fig. 43), posteroventral surface with weak preapical protuberance and row of setae that increase in length towards the apex, ending in 3-4 setae inserted on the protuberance (Fig. 44) .. F. trimaculata (Stein, 1898)
15'. Hind femur on middle third of anteroventral surface without short and straight setae, if setae are present in the area, they form a tuft with the ventral setae on basal half..............16

16. Hind tibia on anterodorsal surface with 10 setae (Fig. 45), hind femur on ventral surface with preapical protuberance, anteroventral surface on basal half with series of 6-7 close, strong setae, preapical seta strong (Fig. 45)...*F. dodgei* Seago

16'. Hind tibia on anterodorsal surface with 5-8 setae, hind femur on ventral surface with preapical protuberance, anteroventral surface on basal half with or without a row of close, strong setae ...17

17. Hind femur on base of ventral surface up to preapical protuberance bare, posterior surface with row of long setae that increase in length and on the preapical protuberance form a set of longer setae with weakly curved apices, apical half setulose (Fig. 46). *F. magdalena* Grisales, Wolff & Carvalho
17'. Hind femur on ventral surface completely setulose or setulose at least from base to preapical protuberance, femur not with characters described above..18

18. Hind femur on posteroventral surface with row of long setae ending with hooked apices on protuberance (Fig. 47), ventral surface on basal half with dense setae towards the posteroventral surface where they become sparse (Fig. 48), hind tibia on anterodorsal surface with row of 6-8 setae and anteroventral surface with one median seta (Fig. 48)..............

.................................F. embera Grisales, Wolff & Carvalho

19. Upper orb present (Fig. 51)....F. canicularis (Linnaeus, 1761)

19'. Upper orb absent ..20

20. Scutum with three vittae following acr and dc rows (Fig. 52), scape and pedicel yellowish or brownish (Fig. 53)........21

20'. Scutum without vittae, scape and pedicel completely brown or with yellowish parts (Fig. 54)..............................25
21. Arista completely yellowish ... 22

21'. Arista completely dark or part of it yellowish 23

22. Parafacial with setae on the ridge, 5 fr, proboscis yellowish (Fig. 55), 1 pra, fore and mid legs yellowish, hind leg brownish .. F. longipila Albuquerque

22'. Parafacial without setae on the ridge, 9 fr, proboscis brownish, 0 pra, legs brownish F. bahiensis Albuquerque

23. Arista black with basal third yellow, palpus black, thorax black, brownish pollinose, scutum on postsutural area with brown median vitta extending to the pleural region, apex of scutellum silver and yellowish, hind femur with approximately 10 long preapical pv, not forming a tuft (Fig. 56) ... F. flavicincta (Stein)

23'. Arista light brown and not with characters as described above ... 24

24. Thorax with brown vitta along acrostichal line, broader brown vitta along dorsoventral lines which dissolves between 4th and 5th dorsoventral setae, and brown postsutural vitta along supraalar line, hind femur with one row of long and hair-like pv, forming a long and curled preapical tuft (Fig. 57) ... F. heydenii Wiedemann

24'. Thorax with three brown vittae along acrostichal line and dorsoventral line, hind femur on v and pv surface on the
protuberance with tuft of long setae with curved apex, tuft diminishing to the base of the femur (Fig. 58) ..F. yenhedi Albuquerque

25. Basal hind tarsomere wide, on p surface with torsion apically (Fig. 59), hind tibia on ventral surface with very long and strong curved seta that almost reaches apex of basal tarsomere (Fig. 59). ..F. carvalhoi Couri

25'. Basal tarsomere without expansion or apically torsion, hind tibia on ventral surface without setae26

26. Three stripes on the scutum, calypter yellowish or whitish ..27

26'. Scutum without stripes, calypter brownish.................28

27. Wing brownish with transverse veins dark brown, calypter and halter yellowish, 10 fr, 1 pv, hind tibia with 1 ad setae and 5 av setae (Fig. 60)..............F. punctipennis Albuquerque

27'. Wing yellowish with transverse veins not dark brown, calypter whitish and halter yellowish, 12 fr, 1 pv, hind tibia with 2 ad and 3-4 av (Fig. 61)F. tumidifemur Stein

28. Wing with upper third brownish, hind femur with preapical protuberance on ventral surface and tuft of setae with curved apex, hind tibia with 5 av and 2 ad (Fig. 62)......................F. lamosca Grisales, Wolff & Carvalho

28'. Wing without upper third brownish, hind femur with a row of pv that forms long preapical tuft (Fig. 63), hind tibia with 3 av and 5 adF. sanihue Dominguez & Aballay

Checklist of the Neotropical forensically important Fanniidae

Fannia bahiensis Albuquerque, 1954: 388. Type locality: Brazil, Bahia. Reference: Brazil (Gomes et al. 2002).

Fannia embera Grisales, Wolff & Carvalho, 2012b: 24-25. Type locality: Colombia, Chocó. Reference: Colombia (Grisales et al. 2012b).

Fannia grandis Malloch, 1912: 3. Type locality: Panama, Porto Bello. Reference: Colombia (Grisales et al. 2012b).

Fannia lamosca Grisales, Wolff & Carvalho, 2012b: 30-32. Type locality: Colombia, Antioquia. Reference: Colombia (Grisales et al. 2012b).

Fannia longipila Albuquerque, 1954: 385. Type locality: Brazil, São Paulo. Reference: Brazil (Gomes et al. 2002).

A key and checklist to the Neotropical forensically important “Little House Flies”

Grisales, Wolff & Carvalho, 2012b: 34-36. Type
Grisales
Wolff
Wolff & Carvalho,
Quiroga-
Quiroga & Dominguez, 2010) and doctoral
grant to ML. CJBC is a fellow of CNPq (process 304713/2011-2). MCD and FHA thanks to CONICET and ANPCyT (PICT 2012-0231 and PICT 2013-514) Argentina, for financial support.

LITERATURE CITED

Aballay FHA, MURUA F, ACOsta JC, CENTEnO N (2008) Primer re-
Aballay FHA, DOMINGUEZ MC, CAMPON FF (2012a) Adult Fanniidae

ACKNOWLEDGMENTS

We are thankful to the curators of the entomological collec-
tions for facilitating access to specimens. We also thank the anon-
ymous reviewers for their helpful comments on the manuscript.

James J. Roper improved the English language and provided help-
ful comments. Financial support was provided by a CNPq (Brazil)
postdoctoral grant to DG (process 158870/2014-0) and doctoral

A ballay 2012), Colombia (GARCIA 2010).
Fannia penicillaris Stein, 1900: 205. Type locality: Bolivia, Songo.

Aknowledgments

We are thankful to the curators of the entomological collections for facilitating access to specimens. We also thank the anonymous reviewers for their helpful comments on the manuscript. James J. Roper improved the English language and provided helpful comments. Financial support was provided by a CNPq (Brazil) postdoctoral grant to DG (process 158870/2014-0) and doctoral

LECHETA MC (2009) Ocorrência e chave pictórica para os machos das espécies de Fanniidae (Diptera) de interesse forense associados à carcaça de coelho durante o outono e primavera em Curitiba, Paraná. Curitiba, Bachelor's Dissertation, Programa de Pós-Graduação em Entomologia, Departamento de Zoologia, Universidade Federal do Paraná.
Available online at: http://acervodigital.ufpr.br/bitstream/handle/1884/27996/R/20%-20%20MELISE%20CRISTINE%20LECHETA.pdf?sequence=1

