
RESEARCH ARTICLE

Genetic structure in the southernmost

populations of black-and-gold howler

monkeys (Alouatta caraya) and its

conservation implications

Luciana Inés Oklander1,2*, Carolina Isabel Miño1,2, Gabriela Fernández2, Mariela Caputo3,

Daniel Corach3

1 Instituto de Biologı́a Subtropical (IBS), Nodo Iguazú, Universidad Nacional de Misiones (UNaM) –
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Abstract

Black-and-gold howler monkeys Alouatta caraya, are arboreal primates, inhabitants of Neo-

tropical forests, highly susceptible to the yellow fever virus, considered early ’sentinels’ of

outbreaks, and thus, of major epidemiological importance. Currently, anthropogenic habitat

loss and modifications threatens their survival. Habitat modification can prevent, reduce or

change dispersal behavior, which, in turn, may influence patterns of gene flow. We explored

past and contemporary levels of genetic diversity, elucidated genetic structure and identified

its possible drivers, in ten populations (n = 138) located in the southernmost distribution

range of the species in South America, in Argentina and Paraguay. Overall, genetic variabil-

ity was moderate (ten microsatellites: 3.16 ± 0.18 alleles per locus, allelic richness of 2.93 ±
0.81, 0.443±0.025 unbiased expected heterozygosity; 22 haplotypes of 491-bp mitochon-

drial Control Region, haplotypic diversity of 0.930 ± 0.11, and nucleotide diversity of0.01±
0.007). Significant evidence of inbreeding was found in a population that was, later, deci-

mated by yellow fever. Population-based gene flow measures (FST = 0.13; θST = 018),

hierarchical analysis of molecular variance and Bayesian clustering methods revealed sig-

nificant genetic structure, grouping individuals into four clusters. Shared haplotypes and

lack of mitochondrial differentiation (non-significant θST) among some populations seem to

support the hypothesis of historical dispersal via riparian forests. Current resistance analy-

ses revealed a significant role of landscape features in modeling contemporary gene flow:

continuous forest and riparian forests could promote genetic exchange, whereas disturbed

forests or crop/grassland fields may restrict it. Estimates of effective population size allow

anticipating that the studied populations will lose 75% of heterozygosity in less than 50 gen-

erations. Our findings suggest that anthropogenic modifications on native forests, increas-

ingly ongoing in Northeastern Argentina, Southern Paraguay and Southeastern Brazil,

might prevent the dispersal of howlers, leading to population isolation. To ensure long-term
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viability and maintain genetic connectivity of A. caraya remnant populations, we recommend

preserving and restoring habitat continuity. To conserve the species genetic pool, as well,

the four genetic clusters identified here should be considered separate Management Units

and given high conservation priority. In light of our findings and considering complementary

non-genetic information, we suggest upgrading the international conservation status of A.

caraya to “Vulnerable”.

Introduction

Howler monkeys (Primates: Atelidae) are amongst the largest New World monkeys, inhabi-

tants of several Neotropical ecoregions, from central Mexico to northeastern Argentina [1].

Nowadays, these Primates are being increasingly affected by anthropogenic activities, such as

deforestation for agriculture and cattle ranching, and flooding of large areas for dam building

which derive in loss, modification, reduction or isolation of native forest habitats [2–5]. Such

changes trigger secondary processes in primate populations including dispersal restrictions,

resource depletion, and pathogen exposure [6–9], which can reduce genetic diversity and

effective population size, decreasing the adaptive potential of populations, increasing local

extinction risks, and affecting the long-term survival of species [10]. If distance between habi-

tat patches or modification of natural landscape structure prevents individual dispersal, gene

flow between populations can be prevented, compromising the adaptation capacity and sur-

vival of the species in the long-term [10]. Population genetics can therefore provide insights

into how anthropogenic changes affect primate populations, as well as into the historical and

contemporary processes that shape the population structure [10], including the influence of

landscape features on gene flow [8]. Describing the patterns of distribution of genetic diversity

can help define population units important for effective management and conservation [10].

Moreover, population genetic parameters can be used in a holistic framework to support rec-

ommendations regarding official international conservation rankings [11]. To date, while

some primate groups have been more explored regarding their genetic structure, others

remain poorly studied [12]. Relative to other primates, Neotropical species represent an under-

studied group regarding population genetics [13]. New studies can help deepen our under-

standing on the factors that influence gene flow in these primates.

Here, we focus on black-and-gold howler monkeys (Alouatta caraya; hereafter denoted as

BGHM), arboreal primates which inhabit several ecoregions in South America (Fig 1). Some

of these ecorregions, such as the Dry and Humid Chaco forests in Bolivia, Paraguay and

Argentina [2, 3], and the Atlantic Forest in Brazil, Paraguay and Argentina [5], are subjected

to major anthropogenic modifications, and are entirely fragmented, with native remnants

mostly isolated. Population densities and social organization of BGHM differ remarkably

along their distribution area [14]. Previous studies indicate that BGHM disperse through

riparian forests, which act as biological corridors [15, 16], but habitat fragmentation severely

limits their ability to disperse [7]. Demographic records show that both females and males

leave their natal groups (social units); therefore, within groups, the adults are expected to be

unrelated [17]. Although BGHM can survive in fragmented and impoverished habitats,

including those that have undergone selective logging [18], indiscriminate deforestation and

destruction of riparian forests could threaten their survival at the southernmost part of the spe-

cies range [19, 20].
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BGHM have major epidemiological importance because they are sensitive to the yellow

fever virus and show high mortality when infected, therefore acting as early sentinels for virus

detection [21]. BGHM abundance in the Atlantic Forest of Argentina drastically dropped after

the 2008–2009 sylvatic yellow fever outbreak [22] and a recent study reported no evidence of

the presence of BGHM in this area [15]. In southern Brazil, as well, the same outbreak deci-

mated many BGHM populations [23], and a recent outbreak in February 2017 caused thou-

sands of monkeys’ deaths [24, 25]. Currently, BGHM are globally classified as “Least Concern”

[26]. However, they are being increasingly affected by loss and modification of their native

habitat, hunting and trafficking for pet trade, and thus, considered “Near Threatened” in Brazil

[27] and Bolivia [28]. Moreover, in the southern limit of the specie’ range (Fig 1), BGHM are

classified even under higher risk categories, such as “Vulnerable” in Argentina [1], and

“Endangered” in southern Brazilian states [27], highlighting the effects of increasing deforesta-

tion and the vulnerability of the monkeys to the yellow fever epidemics. Under such degree of

pathogen exposure and habitat degradation, the long-term persistence of BGHM populations

is of high concern. In this sense, assessing the levels of genetic diversity and gene flow in small

and geographically distant remaining wild BGHM populations is fundamental to support their

conservation as well as to clarify the international ranking of the species.

In this study, we used nuclear and mitochondrial markers to investigate ten BGHM popula-

tions inhabiting different ecoregions of northeastern Argentina and southern Paraguay (Fig

1), and subject to different degrees of habitat loss, modification and degradation. Our specific

objectives were to: (1) describe past- and present-day levels of genetic diversity; (2) assess his-

torical and contemporary patterns of genetic structure; (3) investigate possible drivers of

genetic structure, specifically, geographic distance, differences between ecoregions, or variable

levels of habitat loss and modification; and (4) provide conservation guidelines and key infor-

mation for management or reintroduction projects involving these Neotropical primates, by,

for example, identifying Management Units (MUs) [29]. Given that historical dispersal routes

of BGHM have supposedly gone through unflooded and seasonally flooded riparian forests

Fig 1. Map of sampling sites. Maps showing: (A) black-and-gold howler monkeys Alouatta caraya sampling

locations in Northeastern Argentina and Southern Paraguay; populations (1 to 10) are represented by circles

color-coded to mirror their allocation to the four main genetic clusters identified by STRUCTURE analyses. The

different background colors indicate different ecoregions [31]. Main rivers are shown in blue font. The dotted

black bar next to population 7 indicates the location of the Yacyretá Hydroelectric Dam; (B) Map showing the

distribution range of BGHM modified from IUCN database with recent data from [17], with black dots showing

location of sampling sites. Full names of sampling sites are given in Table 1.

https://doi.org/10.1371/journal.pone.0185867.g001
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[16], populations connected by rivers in the past are expected to share mitochondrial similari-

ties. Moreover, given that BGHM disperse through continuous forests, effective dispersal will

be likely affected by anthropogenic modifications. Arboreal primates and non-primates are

expected to depend on forest continuity to disperse. Previous studies in BGHM occupying a

fragmented habitat interrupted by grassland extensions suggest a reduction in the dispersal

rate between groups residing at distances greater than 1000 m [7]. Therefore, landscape modi-

fication, such as crop monocultures or grasslands used for cattle ranching, may isolate popula-

tions because dispersing individuals from their natal groups would have to descend to the

ground, being highly susceptible to predation or other sources of mortality before reaching

another fragment [7, 30]. Thus, populations of BGHM not connected by continuous forests

are expected to show restricted gene flow and to be genetically different from one another.

Material and methods

Ethics statement

This study was carried out in strict accordance with Argentinean laws for research on non-

human primates, and following the recommendations of ‘Principles for the Ethical Treatment

of Primates’ of the American Society of Primatologists (available at: https://www.asp.org/

society/resolutions/EthicalTreatmentOfNonHumanPrimates.cfm). We received specific

approval to conduct this study by the Consejo Nacional de Investigaciones Cientı́ficas y Técni-

cas (CONICET) from Argentina (no. 11420110100322CO). Additional specific sampling per-

mits were obtained from Chaco and Corrientes Provinces, Argentina (Permit Number:

01071), and from Ministry of Ecology, Misiones Province, Argentina (Permit Number: permit

no. 04/15); tissue samples were collected as part of an investigation conducted jointly by the

Global Health Program, Wildlife Conservation Society and the Ministry of Ecology, Misiones

Province, Argentina (Permit Number: 304/09). All methods used for tissue sampling complied

with the guidelines recommended by the Protocol for Primate Sample Methods (available

from: http://www.vetmed.ucdavis.edu/ohi/local_resources/pdfs/PREDICT_Protocol_

Primate_Sampling_29Feb12.pdf). Fecal collection was conducted without capturing the ani-

mals and therefore does not cause any harm to the studied species. The specific coordinates

for each sampling location are: Pop1: 27,275˚S 57,684˚W; Pop2: 27,314˚S, 58,646˚W; Pop3:

27,550˚S, 58,679˚W; Pop4: 26,791˚S, 59,631˚W; Pop5: 25,970˚S, 58,177˚W; Pop6: 28,307˚S,

57,457˚W; Pop7: 27,467˚S, 55,827˚W; Pop8: 25,574˚S, 54,075˚W; Pop9: 26,500˚S, 53,833˚W;

Pop10: 29,445˚S, 56,800˚W.

Biological sampling and DNA extraction

We sampled 163 BGHM from ten populations inhabiting five ecoregions [31] (Fig 1), in the

southernmost edge of the species’ geographic range in northeastern Argentina and southern

Paraguay, subjected to different types and degrees of environmental modification. To mini-

mize the sampling of relatives, as BGHM generally disperse during juvenile stages [30], two

fecal samples were collected from each adult. In groups 4, 5, 6, 8, 9 and 10, feces were collected

immediately after defecation. In group 7, tissue samples were collected from individuals found

dead and kept refrigerated at 4˚C until necropsy. All samples were preserved at 24˚C in 50 ml

screw-top tubes containing solid NaCl [32] until DNA extraction (three months to one year

later). DNA was extracted from feces using the QIAamp DNA Stool Mini Kit, (QIAGEN,

Valencia, USA), following the manufacturer’s protocol with slight modifications, and from tis-

sue samples using standard SDS/Proteinase K digestion followed by phenol–chloroform

organic extraction [33]. Appropriate precautions were taken to avoid sample contamination:

Howler monkey genetic structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0185867 October 2, 2017 4 / 20

https://www.asp.org/society/resolutions/EthicalTreatmentOfNonHumanPrimates.cfm
https://www.asp.org/society/resolutions/EthicalTreatmentOfNonHumanPrimates.cfm
http://www.vetmed.ucdavis.edu/ohi/local_resources/pdfs/PREDICT_Protocol_Primate_Sampling_29Feb12.pdf
http://www.vetmed.ucdavis.edu/ohi/local_resources/pdfs/PREDICT_Protocol_Primate_Sampling_29Feb12.pdf
https://doi.org/10.1371/journal.pone.0185867


every step of the experiment was performed in designated laboratory spaces, under laminar

flow (with negative pressure) conditions, and using aerosol-resistant filter tips.

Microsatellites amplification

Genotypes from populations 1, 2 and 3 were obtained in previous studies [7, 32]. The remain-

der samples were amplified at ten autosomal STR markers, previously used in studies in

BHGM [34] (AC14, AC17, AC 45, D8S165, D17S804, LL1118, LL157, Tgms1, Tgms2 and

AB7), following a two-step multiplex PCR method [35] with minor modifications, in a 25-μL

final volume, with 50 ng of DNA (including negative controls with no template DNA),1xGo-

Taqbuffer (Promega, USA), 1.75 mM MgCl2, 0.2 mM of each dNTP, 1 U GoTaq DNA poly-

merase (Promega, USA), 4 pmol of each forward primer with an M13 tail, 4 pmol of each

reverse primer, and 0.4 mg of Bovine Serum Albumin (BSA, Promega, USA). The second step

consisted of a 12.5-μL reaction with 5 μL of a 5:100 dilutions of the first multiplex PCR product

as template, 0.875 mM MgCl2, 4 pmol of a forward primer with an M13 tail, 4 pmol reverse

primer, and 4 pmol 5´FAM or HEX-labeled M13 primer [34]. Cycling parameters were: initial

denaturation (95˚C for 4 min), followed by 35 cycles of denaturation (94˚C for 45 s), annealing

(90 s at 58–60˚C), and extension (72˚C for 60 s), and a final extension (5 min at 72˚C) [34].

Products from the second amplification step of different markers, labeled with different fluoro-

chromes, were combined and separated by electrophoresis on an ABI PRISM 310 Genetic

Analyzer. Alleles were manually scored by visual inspection of electropherograms after devel-

oping of the bin panel for each locus in GeneMapper ID-X v. 1.2 (Applied Biosystems), using

HD400-ROX as internal size standard. To detect possible genotyping errors due to allelic,

three independent amplification reactions were performed for each DNA extract (totaling six

independent PCRs per marker, per individual). Each homozygous genotype was re-amplified

and genotyped three additional times, from the two separate fecal samples per individual.

Mitochondrial DNA amplification

A491-bp fragment of the left domain of the mitochondrial DNA Control Region (mtDNA,

CR) was amplified using primers How RA-1 (5’-CTACCATCAACACCCAAAGC-3’) [16] and

RC-BugioR (5’-CCAGGTTAAGAGGGTGATAGC-3’, this paper). Amplifications were per-

formed at a final volume of 25 μL, containing 25 ng of single DNA extractions,1x GoTaq buffer

(Promega, USA), 1.75 mm MgCl2, 0.2 mM of each dNTP, 1 U GoTaq DNA polymerase (Pro-

mega, USA), 4 pmol of each primer, and 0.4 mg BSA. Cycling parameters were: initial denatur-

ation (5 min at 94˚C), followed by 35–40 cycles of denaturation (1 min at 94˚C), annealing (30

s at 50˚C), extension (1 min at 72˚C), and a final extension(3 min at 72˚C). All products were

sequenced bi-directionally in an Applied Biosystems 3500 Genetic Analyzer using BigDye1

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), and with

the samereverse and forward primers used foramplifications. Quality of the sequences was

eyed-checked inspecting the electropherograms in Sequencher 5.3 software (LifeCodes, USA).

Sequences were edited and aligned using the MUSCLEalgorithm [36] in MEGAv6.0 [37]. As in

[38], the possible presence of nuclear mitochondrial insertions (NUMTS) was inspected by

performing a BLASTn1 search in the National Center for Biotechnology Information (NCBI)

website (https://blast.ncbi.nlm.nih.gov/Blast.cgi). For this search, the filters and mask options

were clicked off, word size was set to a value of 28, match/mismatch scores were set to 1/-2 and

gap creation/extension penalties were set to ´linear´.
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Statistical analysis of microsatellites

Genetic diversity, effective population size and demographic parameters. Genotypes

were screened for null alleles, stuttering, or scoring errors using Micro-Checker v2.2.3 [39].

Conformation to Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) was

assessed performing exact tests in Genepop v4.2[40] with default settings for Markov chain

parameters.The number of alleles per locus, number of private alleles, observed heterozygosity,

unbiased expected heterozygosity, inbreeding coefficient, and the probability that two match-

ing genotypes taken at random come from siblings(PID-SIBS)[41] were computed in GenAlEx

v6.5 [42]. To account for differing sample sizes, we computed a rarefied measure of allelic

diversity (Allelic Richness) in Fstat v2.9.3.2[43], based on a standard sample size of n = 5, the

smallest sample with complete genotypes at all loci (Paraguay sample, see Table 1). Statistical

differences between groups regarding diversity statistics were evaluated using Kruskal-Wallis

rank-sum tests in R statistical environment [44], applying Bonferroni correction to adjust sig-

nificance levels for multiple comparisons. The pairwise relatedness estimator, R, of [45] was

computed to identify first-order relatives (i.e, R� 0.375) [46] that could lead to biased infer-

ences of the population structure. When necessary, we randomly removed one individual

from each of the highly related pairs and further analyzed the population genetic structure

using the trimmed datasets (see below). The effective population size (Ne) of each group was

estimated using a single-sample linkage disequilibrium method with jackknifing, as imple-

mented in LD Ne v3.1 [47], for a minimum allele frequency of 0.05 [48]. The premise of the

LD method is that the magnitude of the correlation between allele frequencies is a function of

the effective population size and reflects the past finite population history; also, as a function of

the sample size (n), the correlation in allelic frequencies arises from sampling a limited number

of individuals from the population for estimating gene frequencies and disequilibrium [49].

The LD method for estimating Ne is based on the expectation that small populations accumu-

late more disequilibrium over time [49]. The method is robust to population size reductions

and can be corrected for possible biases when the sample size is lower than the real Ne [47].

Genetic structure. We first investigated genetic structure using microsatellites geno-

typic data by running both individual- and population-based analyses, at fine and regional

spatial scales. For example, we evaluated spatial genetic autocorrelation at a fine scale, using

GenAlExv6.5. This method is appropriate when there is no a priori way to predict the genetic

Table 1. Sampling information and summary estimates of diversity at ten microsatellites for black-and-gold howler monkeys. Type of habitat

regarding tree-cover, population codes, names and number of sampled social units (groups) are given; n: number of samples analyzed (amplified at a mini-

mum of seven loci); Na: number of different alleles, AR: allelic richness, PA: number of private alleles, Ho: observed heterozygosity ± standard deviation, UHe:

unbiased expected heterozygosity ± standard deviation, FIS: inbreeding coefficient, with an asterisk indicating the significant value after Bonferroni correction

(adjusted significance level: 0.0005), and PID-Sibs: multilocus probability that two matching genotypes taken at random come from siblings.

Habitat Code Pop. name Groups n Na AR PA Ho uHe FIS PID-Sibs

Modified Pop 1 Paraguay 2 5 2.8 ± 0.44 2.59 1 0.38 ± 0.08 0.42 ± 0.07 0.11 0.009

Continuous Pop 2 Isla Brasilera 7 38 5.0 ± 0.91 2.80 6 0.50 ± 0.08 0.50 ± 0.08 -0.08 0.003

Modified Pop 3 EBCo 11 42 4.5 ± 0.93 2.60 2 0.46 ± 0.08 0.44 ± 0.07 -0.06 0.006

Modified Pop 4 PN Chaco 4 8 2.7 ± 0.26 2.30 1 0.39 ± 0.06 0.39 ± 0.05 0.01 0.013

Modified Pop 5 Guaycolec 6 10 3.5 ± 0.04 2.62 1 0.46 ± 0.06 0.46 ± 0.06 -0.01 0.005

Modified Pop 6 San Alonso 5 9 2.3 ± 0.39 1.96 0 0.41 ± 0.10 0.32 ± 0.08 -0.26 0.003

Continuous Pop 7 Garupá 3 6 2.7 ± 0.39 2.38 1 0.46 ± 0.10 0.36 ± 0.07 -0.24 0.002

Continuous Pop 8 Yacutinga 2 4 2.1 ± 0.34 2.10 1 0.45 ± 0.11 0.35 ± 0.07 -0.30 0.002

Continuous Pop 9 Piñalito 4 8 3.2 ± 0.44 2.70 2 0.34 ± 0.05 0.50 ± 0.05 0.29* 0.003

Modified Pop 10 Yapeyú 4 8 3.0 ± 0.39 2.44 2 0.35 ± 0.10 0.37 ± 0.08 0.05 0.002

https://doi.org/10.1371/journal.pone.0185867.t001
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structure. Under restricted dispersal, we would expect a pattern of positive autocorrelation,

where individual-by-individual genetic distances should be more similar at shorter geo-

graphical distances [50]. Geographical distance classes were chosen to ensure that the inter-

vals included an even number of pairwise comparisons, ranging from the minimum (0–27

km, the first distance class, including comparison of dyads within the same site) to the maxi-

mum distance between sampling sites (578 km). Statistical significance was assessed with

10,000 random permutations and one-tailed probability tests, and 95% confidence intervals

around the autocorrelation coefficient, r, were calculated with 10,000 bootstraps. The dis-

tance class at which r is no longer significant can be interpreted as an approximation of the

extent of detectable positive spatial genetic structure [51]. In addition, to assess contempo-

rary gene flow, we ran non-spatial Bayesian clustering using models in Structure v.2.3.4 [52].

A series of 20 independent runs per K (ranging from 1 to 10) was conducted using the

admixture model with correlated allele frequencies, sampling locations as prior (LOC-

PRIOR), and 1,000,000 MCMC iterations after a burn-in of 50,000 replicates. Given our

uneven sampling sizes we applied the correction method proposed by [53] to account for a

possible downward bias in the number of genetic clusters recovered by Structure. For this,

we analyzed: 1) the full dataset excluding first-order relatives (n = 138 individuals, 10 sites),

and three trimmed datasets prepared to achieve more even sampling schemes; 2) a dataset

obtained by randomly removing individual genotypes, without replacement, from the two

best sampled populations to reach a sample size of 15 individuals in each, plus all other sam-

ples (n = 88, 10 sites); 3) the original dataset, removing the populations with n� 6 (n = 123,

seven sites); and 4) the sub-sampled even-sized reduced dataset, plus removing the popula-

tions with n� 6 (n = 73, seven sites). For each one of these sampling strategies, runs were

performed with the above-mentioned settings. We then collected the outputs and computed

the corrected estimators MedMeaK, MaxMeaK, MedMedK, and MaxMedK[53] which repre-

sent the number of different clusters to which at least one of the populations (e.g., individuals

grouped by sampling location) belongs to. These indexes are robust to uneven sampling

schemes, and perform equally well or better than other commonly used clustering methods

[53].For each sampling strategy, we computed all four estimators with population member-

ship coefficient thresholds varying from 0.50 to 0.80. Then, to determine the number of clus-

ters in our sample, we looked for the K identified by MaxMedK and MedMedK for a 0.80

threshold, as these should be more conservative, less influenced by the presence of migrants,

and less affected by an incorrect a priori grouping of some individuals into populations [53].

We used Pophelper v.1 [54] to visualize the results of Structure analyses for the most likely

number of K, identified as detailed above.

Landscape analyses

We analyzed the possible influence of landscape features on the genetic structure of BGHM

by conducting analyses based on current theory in Circuitscape v 4.0 [55]. For this, we gener-

ated raster resistance maps representing the difficulty of BGHM to disperse through different

habitats. We drew raster maps with landscape cover of 2009 using data from the European

Space Agency portal (http://due.esrin.esa.int/page_globcover.php). The elements of the land-

scape were classified into three categories: 1) “tree cover” (including both native forests and

pine plantations, as these have been shown to be used by BGHM to disperse [7], 2) rivers,

and 3) crops/grassland/roads. Accordingly, we assigned resistance values representing the

cost of movements for BGHM through these features: a low-resistance value of one for tree-

covered pixels, an intermediate-resistance value of 25 for river pixels, and a high-resistance

of 50 for crops/grassland/roads pixels. Additional analyses changing these arbitrary values
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did not change our results significantly. We transformed resistance maps into pairwise resis-

tance distances between sampling sites, using an 8-neighbours correction scheme. Then,

using the ‘vegan’ v2.4–3 package [56] in R, we conducted Mantel tests between genetic

(Dps = 1 –proportion of shared alleles between populations) and resistance distances, as well

as partial Mantel tests between Dps and resistance, controlling for Euclidean distances (in

kilometers, computed from geographical coordinates), and between Dps and geographic dis-

tance, partialling out the effects of resistance distances [57]. The proportion of shared alleles

by pairs of populations was calculated with PopGenReport v2.2.2 package [58] in R. If land-

scape features influence gene flow, we would expect the Mantel statistic between Dps and

resistance and the partial Mantel statistic (controlling for the effect of geographic distance)

to be significant, whereas the partial Mantel statistic between Dps and geographic distance

(controlling for resistance distances), to be non-significant [57]. Population-based gene flow

measures (i.e., pairwise FST values) were also computed between all pairs of populations in

Fstat v2.9.3.2.

Statistical analysis of mitochondrial DNA

Haplotype frequencies, nucleotide composition, the number of transitions and transversions,

and the number of polymorphic sites were calculated in Arlequin v3.522 [59]. Haplotypic (h)

and nucleotidic diversity (ð) were calculated in DnaSP v5.0 [60]. Standard tests of selective

neutrality, R2[61], Tajima’s D [62], and Fu’s FS [63], and their 95% confidence intervals, were

conducted in DnaSP v5 with 1,000 simulations and a neutral infinite-sites model assuming a

large constant population size. A constant population size represents the null hypothesis

under the neutral model (i.e., the standard coalescent) [64]. Under the constant size hypothe-

sis, when sample sizes are small, as is the case for some of our samples, the statistical tests

Fu’s Fs and R2 have more power to reject the null hypothesis [64]. Selective neutrality was

rejected if small R2 and negative Fu’s FS values were significant. A Median-Joining haplotype

network [65] was built in PopArt program [66]. To inspect for historical demographic pro-

cesses undergone by the populations, we carried out an analysis of ‘mismatch distribution’

[67] in Arlequinv3.522with 10,000 bootstraps. Populations at a demographic equilibrium or

declining are expected to exhibit a multimodal distribution pattern of pairwise differences

between haplotypes, whereas populations that have experienced a sudden demographic

expansion are expected to display a unimodal distribution [68]. The smoothness of the mis-

match distribution curve was measured using the raggedness (Rg) and the Sums of Squared

Deviations (SSD) indexes [68]. The significance of the test was evaluated through 1,000 coa-

lescent simulations, assuming a neutral infinite-sites model and a constant population size.

The timing of the demographic processes was estimated by computing Tau [67], using the

formula τ = 2ut, where u is the mutation rate of the assayed fragment. We used 0.15 muta-

tions per site per million years, as in previous studies in howler monkeys [16]. To express the

time since the expansion in years, we used a generation time of 5 years, which is the average

age of first breeding of BGHM [69]. Finally, for mtDNA sequence data, genetic structure was

examined in ARLEQUINv3.522by conducting an analysis of molecular variance (AMOVA) [70]

comparing all sampling sites separately, as well as a hierarchical AMOVA grouping the popu-

lations within five ecoregions (1. Humid Chaco, HC: Pop 1, 3, 4, 5 and 6; 2. Paraná Flooded

Savanna, PFS: Pop 2; 3. Alto Paraná Atlantic Forest, APF: Pop 7 and 8; 4. Araucaria Moist

Atlantic Forest, AMAF: Pop 9; and 5. Southern Cone Mesopotamian Savanna, SCMS: Pop

10, see Fig 1 for further reference), and computing θST between populations and population

groups.
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Results

Genetic diversity, effective population size and demographic parameters

For most samples (n = 98) all ten loci were amplified, whereas in 40 samples a minimum of

seven loci were amplified. We found no evidence of linkage between any pair of loci (P< 0.05),

nor evidence of significant deviations from Hardy-Weinberg Equilibrium. We found evidence

of first-order relatives (R� 0.375) within populations (Pop) 2 and 3, and removed one individ-

ual from each of those dyads for further diversity and structuring analyses (final complete

dataset n = 138). BGHM populations exhibited moderate levels of microsatellite diversity

(Table 1). The mean number of alleles, NA, was3.16 ± 0.18; the mean allelic richness. AR,

was2.93 ± 0.81, the lowest value was detected in Pop 6, whereas the highest in Pop 2, the latter

also showing the highest number of private alleles. Mean unbiased expected heterozygosity

(uHe) was 0.443±0.025 overall populations; uHe of Pop 2 differed significantly from uHe of

Pop 6, 7, and 10, and uHe of Pop 9 differed significantly from that of Pop 7 and 8 (Kruskal-

Wallis tests, p< 0.05). A significant signal of inbreeding was found only in Pop 9 (Table 1). Ne
estimates were 40 (95%CI: 21–112) for Pop 2, and Ne = 26 (95%CI: 15–52) for Pop 3. The

remainder populations yielded Ne with infinite 95% CIs.

Thirty-six transitions defined 22 mtDNA CR haplotypes (n = 72), 15 of which were new to

this study (Genbank accession numbers MF095740, MF095741, MF095742, MF095743,

MF095744, MF095745, MF095746, MF095747, MF095748, MF095749, MF095750,

MF095751, MF095752, MF095753 and MF095754), an overall haplotypic diversity of 0.930 ±
0.11, and an overall nucleotidic diversity of 0.01± 0.007. Pop 2 was the most diverse in terms of

number of haplotypes, but these were moderately divergent from each other (Fig 2, Table A in

Fig 2. Haplotype network of black-and-gold howler monkeys. Median-Joining network of 22 haplotypes

observed in black-and-gold howler monkeys from northeastern Argentina and southern Paraguay. Circle

sizes are proportional to haplotypic frequencies; small black circles indicate median vectors; black lines

indicate mutational steps. Full names of populations are given in Table 1, and colors approximate to those

defining population clusters.

https://doi.org/10.1371/journal.pone.0185867.g002
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S1 File). Pop 3, 6, and 8 showed one haplotype each. Five individuals of Pop 9 showed one hap-

lotype (H_19) separated by a minimum of 20 mutational steps from its ancestral haplotype

(Fig 2). The BLAST search of the 491-bpmtDNA fragment of Alouatta caraya as a query

sequence retrieved only mitochondrial sequences from Platyrrhini primates from Atelidae

family (nine species) and Cebidae (three species) family. Identity of fragment sequences ran-

ged from 77% to 99% with E-values ranging from 0.00 to 0.0057, respectively. Therefore, the

presence of NUMTs in our fragment sequences can be considered negligible.

There was no correlation between mtDNA CR lineages and geographical distribution;

some haplotypes were shared between geographically distant populations and different line-

ages occurred within a population (Fig 2). For the complete BGHM dataset, D (-0.071), Fs
(-1.889), and R2(0.099) were non-significant, supporting the neutrality of the assayed frag-

ment. The unimodal pattern of the mismatch distribution (data not shown) was consistent

with a demographic expansion scenario estimated to have occurred 9,183 years ago

(Tau = 7,053). At the population level, significant SSD and Rg were observed in Pop 5 and

Pop 9, which could be interpreted as a demographic expansion (Table A in S1 File).

Genetic structure

The average inter-individual genetic distance was 7.0 ± 3.0. Results of spatial autocorrelation

analyses revealed a significant positive spatial structure (r = 0.067, P< 0.01) only at the first dis-

tance class (0–27 km), indicating that BGHM were more closely related to other members of

the same population than to BGHM from other populations (Fig 3). The results of the cor-

rected STRUCTURE procedure identified four genetically differentiated population clusters as

best explaining the nuclear genetic variation observed in BGHM. All datasets analyzed (i.e.,

the full corrected dataset as well as the sub-sampling strategies) resulted in the same number of

clusters (Table B in S1 File). The plots of ancestry membership proportions showed that the

four clusters comprise: i) Pop 1 and 2; ii) Pop 3; iii) Pop 4, 5, and 6; and iv) Pop 7, 8, 9, and 10

(Fig 4). In agreement, the maps produced in CIRCUITSCAPE showed a path of low resistance

comprising populations 7, 8, 9, and 10, and another comprising populations 2, 4, and 5,

whereas populations 1, 3, and 6 remained more isolated from the others (Fig 5). The Mantel

test between Dps and resistance distances was significant (r = 0.528, P = 0.006), while that

Fig 3. Spatial autocorrelation in black-and-gold howler monkeys. Spatial correlogram for howlers

(n = 138) showing the genetic correlation coefficient (r) as a function of geographic distance across defined

spatial distance classes. Dashed red lines represent upper (U) and lower (L) bounds of the null hypothesis of

no spatial structure based on 10,000 random permutations. Error bars represent 95% confidence intervals

about r based on 10,000 bootstraps. The asterisk denotes significantly positive r at α = 0.05. The number of

pairwise comparisons within each distance class is shown above the plot.

https://doi.org/10.1371/journal.pone.0185867.g003
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between Dps and geographic distances was not (r = 0.267, P = 0.081). The partial Mantel test

between Dps and resistance (partialling out geographic distance) was significant (r = 0.648,

P = 0.001), while that between Dps and geographic distance (partialling out resistance) was not

(r = 0.503, P = 0.061).

Fig 4. Genetic structure in black-and-gold howler monkeys. Membership bar-plots of black-and-gold

howler monkeys (n = 138) sampled across ten sites in northeastern Argentina and southern Paraguay,

resulting from Bayesian clustering analyses in STRUCTURE [52] based on genotypic data from 10

microsatellites. Individuals are represented by vertical lines (y-axis) broken into color-segments proportional

to their membership coefficients to each cluster (K = 4), and were grouped into populations of sampling,

separated with a white dashed line. Equally colored populations share genetic ancestry and are differentiated

from the others. Full names of populations are given in Table 1.

https://doi.org/10.1371/journal.pone.0185867.g004

Fig 5. Maps of connectivity between populations of black-and-gold howler monkeys. Current maps of

northeastern Argentina and southern Paraguay showing flow of current. Blue-colored areas represent highest

current densities (higher connectivity) whereas light yellow-orange areas represent highest resistance (lowest

current densities). Under the hypothesis of dispersal along tree-covered areas and riparian forests, areas in

blue will therefore facilitate gene flow whereas areas in light yellow may restrict gene flow. Maps were

generated in CIRCUITSCAPE program, and re-colored in ArcGIS v 10.1 (http://www.esri.com/software/arcgis/

arcgis-for-desktop); (B) Map of the studied region showing the 2009 tree cover surface used for CIRCUITSCAPE

analyses. For reference, the sampling sites are indicated with numbers (1–10).

https://doi.org/10.1371/journal.pone.0185867.g005
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The global FST for microsatellites was 0.13 ± 0.34 and significantly different from zero

(p = 0.001). Pairwise FST values between populations indicated substantial genetic differentia-

tion, with 32 significant out of 45 comparisons (Table C in S1 File). Global θST for mtDNA CR

fragments was 0.18 ± 0.22 and significantly different from zero (p = 0.001). Pairwise θST values

showed that Pop 3 and Pop 6 differed significantly from the others, except for Pop 1 and 2; in

turn, Pop 5 differed significantly from 6 and 10, and Pop 10 differed significantly from Pop 9

(Table C in S1 File). The hierarchical AMOVA for microsatellites grouping populations

belonging to the same ecoregion showed that 6.20% of variation was significantly distributed

among populations within ecoregions (p< 0.0001, d.f. = 5), and that 2.62% variation was sig-

nificantly partitioned among ecoregions (p< 0.0001,d.f. = 4); likewise, pairwise FST values

between ecoregions were significant, except for APF-AMAF and AMAF-SCMS comparisons.

In agreement, results of the hierarchical AMOVA for mtDNA showed that 46.14% of variation

was significantly distributed among populations within ecoregions (p< 0.0001, d.f. = 5) and

that 11.56% of variation was significantly partitioned among ecoregions (p< 0.0001, d.f. = 4).

Pairwise θST values showed significant genetic differentiation (p< 0.0001) between AMAF and

the other ecoregions, and between SCMS and all ecoregions except for PFS. The Mantel statis-

tic for mtDNA genetic distance and geographic distance between populations was non-signifi-

cant (null hypothesis: r� 0; Z = -38.90, r = 0.0009, p = 0.476).

Discussion

Loss or alteration of native forest and yellow fever outbreaks represent severe threats to black-

and-gold howler monkeys in the southernmost limit of the species range. In light of this sce-

nario, this study assessed their regional genetic diversity, gene flow and connectivity patterns,

revealing that they conform four genetically differentiated clusters. Our results may contribute

to the upgrade of BGHM conservation status, and provide guidelines for the future manage-

ment of remnant populations.

Genetic diversity and past demography of BGHM southernmost

populations

In natural populations, genetic diversity provides the basis for the maintenance of evolutionary

potential and adaptive capacity of individuals to face threats such as environmental change

and disease [10]. The populations of black-and-gold howler monkeys studied here occupy sites

in the southernmost part of the species’ range in northeastern Argentina and southern Para-

guay (Fig 1) and showed mean microsatellites’ diversity (0.420 ± 0.082) similar to or lower

than populations of congeneric species studied with some of the same markers employed here

(Alouatta pigra: 0.430 [71] and 0.588 [72], Alouatta belzebul:0.640 [73], Alouatta palliata: 0.584

[74], suggesting that they are genetically impoverished, compared to other howlers. The popu-

lation 2, located in the lower Paraná River, showed the highest genetic diversity estimates and

shared haplotypes (Fig 2, Table A in S1 File), suggesting that it historically exchanged migrants

with three other populations. Population 6, which inhabits the middle of the Iberá wetlands,

showed the lowest genetic diversity estimates, suggesting that it could have been founded by a

few individuals which faced dispersal limitations due to strong environmental restrictions.

Population 9, located in the Argentinean Araucaria Moist Forest, showed five individuals with

a unique, divergent haplotype (Fig 2), suggesting that it may be potentially reproductively iso-

lated from the others. Alternatively, individuals with intermediate mitochondrial variants may

have been extirpated by past yellow fever outbreaks in this region [22, 23]. BGHM from Pop 9

(sampled in 2006) showed a significant signal of inbreeding (Table 1), which could have been

caused by genetic drift, suggesting that those howlers were already facing the erosion of genetic
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diversity, common to small endangered populations and, therefore, could have been immuno-

logically depressed when the yellow fever virus attacked in 2007–2008. Our findings gain

major importance in the context of recent virus outbreaks, since small populations of BGHM

may exhibit increased susceptibility. In the next few decades, the high susceptibility of BGHM

to yellow fever [24, 25] could act synergistically with other threats, putting these small and iso-

lated populations at high extinction risk. It is worth noting that, in an epidemiological sense,

the BGHM populations of humid Chaco are of utmost importance as genetic reservoirs of the

species because yellow fever deaths have not been registered in this area during the last two

episodes (2008/9-2017) [24, and Almeida MAB, pers. com.].

Past population expansion estimated with mitochondrial DNA data suggests that the popu-

lations located to the west of our sampling area expanded earlier than those located to the east

(Fig 1, Table A in S1 File). Mismatch distribution results indicated that all populations

expanded in South America during the post-glacial period (Last Glacial Maximum: 20,000–

14,000 years ago, [75]). Moreover, the dating of the expansion event of populations 4 and 5

(Table A in S1 File), located in humid Chaco, is consistent with a recent comparative biogeo-

graphic study of neotropical primates, which suggests that most species currently inhabiting

drier open habitats (such as the humid Chaco) have arrived there in the Pleistocene, from

nearby rainforest habitats [76]. The lack of a strong evidence for demographic expansion in

populations 7 and 8, located in the Alto Paraná Atlantic Forest, suggests demographic stability

for this biome during the Pleistocene, in line with previous studies in other forest-dependent

taxa inhabiting this region (e.g., birds, [77]). Conversely, Pop 9, which lies in the extreme west

of the total distribution of the AMAF ecoregion (Fig 1), showed significant SSD and Rg
indexes, which could be interpreted as a demographic expansion (Table A in S1 File), but

more data are needed to explore this hypothesis.

Genetic structure of BGHM southernmost populations

Black-and-gold howler monkeys are arboreal primates still present in some patchy and impov-

erished forests [19, 30]. The different analytical methods with varying assumptions employed

in this study (Bayesian clustering, FST, hierarchical AMOVA, and landscape analyses) were

concordant in detecting significant present-day genetic structuring among the examined

BGHM populations (Fig 4, Tables B and C in S1 File). Four distinct genetic clusters seem to

best explain the nuclear diversity of BGHM inhabiting the southernmost part of the species

range. The observed clustering pattern cannot be explained by an Isolation-by-Distance model

(non-significant Mantel statistic), but, rather, seems to reflect the concurrent effects of multi-

ple ecological, environmental and contemporary anthropogenic factors acting on the popula-

tions inhabiting different ecoregions. For example, populations 1 and 2, which share genetic

ancestry and differentiate from others, are located nearby each other and connected by the

riparian forest remnants of the Paraguay and Paraná Rivers (Fig 1).This result, as well as the

mtDNA shared diversity and lack of historical differentiation among humid Chaco, Paraná

Flooded Savanna and Alto Paraná Atlantic Forest (as indicated by θST) seem to support the

hypothesis of dispersal via riparian forests, which act as biological corridors enabling the

movement of BGHM [16]. Past immigration of BGHM through the riparian forests of the

Paraná and Paraguay Rivers could have also contributed to the high genetic diversity observed

in Pop 2, compared to other BGHM populations (Table 1) However, more recently, the move-

ments of howlers through these dispersal routes may have been prevented by recent deforesta-

tion. In northeastern Argentina and southern Paraguay, the ecosystems were flooded as a

consequence of the building of the Yacyretá Hydroelectric Dam in the 1970s [3,4], interrupting

the terrestrial and riparian forest corridors that BGHM may have used in the past. In addition,
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we found that Pop 3, which lies in a remnant protected forest (Estación Biológica de Corrien-

tes), surrounded by grassland, crops, and urbanized areas, clustered separately from all other

populations. This significant genetic differentiation could have been caused a long history of

forest exploitation and disturbance in this area, promoted by non-native human settlements

documented since early 17th century [18, 78]. Populations 4, 5 and 6, which inhabit patches of

humid Chaco forest of different size and under variable degrees of protection, comprised

another genetically differentiated cluster. Finally, populations 7, 8 and 9, which all lie in Mis-

iones province in Argentina, upstream the Yacyretá Dam on the Paraná River, clustered

together with Pop 10, located in Corrientes province, more distant but connected to the others

via the Uruguay River riparian forest (Fig 1). Therefore, clusters 1, 2 and 3 involve populations

placed upstream the Yacyretá Hydroelectric Dam on the Paraná River, while cluster 4 includes

populations located downstream this dam. Misiones populations seem to maintain gene flow,

but remain genetically isolated from more distant western populations that are immersed in

more disturbed and isolated forest patches. This pattern of connectivity between nearby Mis-

iones BGHM populations could be promoted via dispersal through a relatively well-preserved

forest, as consequence of protection policies implemented in this province, such as the “Mis-

iones Green Corridor” [79].

Landscape resistance seems to play a significant role in influencing the patterns of genetic

structure observed in BGHM populations, as indicated by CIRCUISTSCAPE analyses (Fig 5), sig-

nificant partial Mantel statistic between genetic distance and resistance, and non-significant

partial Mantel statistic between genetic and geographic distance. The flow of the current

showed in the maps (Fig 5) connects populations in a manner that corresponds to the four

genetic clusters identified by microsatellites-based Bayesian approaches (Fig 4). Overall, our

results suggest that crop/grassland fields could exert resistance to dispersal, and, consequently,

to gene flow in BGHM. Populations connected by continuous forest or by relatively well-pre-

served riparian forests seem to share more similarities at nuclear loci than with populations

immersed in more disturbed forests or with populations isolated by anthropogenic modifica-

tions, such as deforestation or building of dams. Therefore, our findings suggest that different

levels of forest fragmentation that affect the studied populations may have exerted an impor-

tant impact on the dispersal of the howlers, indicating that connectivity of the monkeys’ habi-

tats is highly relevant for maintaining genetic connectivity across the landscape. These results

highlight the importance of preserving continuous native forests, including riparian vegeta-

tion, for BGHM dispersal. In line with previous studies in other mammals inhabiting this

region, our findings seem to indicate that anthropogenic modifications on native forests and

depletion of continuous riparian forests, increasingly ongoing in northeastern Argentina,

southern Paraguay and southeastern Brazil, prevent the dispersal of native fauna, and may lead

to population isolation [80].

Implications for the conservation and management of BGHM

Based on significant differences in allele frequency distributions and significant divergence in

mitochondrial and nuclear loci, BGHM populations inhabiting northeastern Argentina and

southern Paraguay comprise four different Management Units. Hence, we recommend that, to

preserve the BGHM gene pool in the species’ southernmost range, these four main differenti-

ated population clusters must be given high conservation priority. The pattern of significant

genetic differentiation and restricted gene flow between BGHM populations revealed in the

present study might result from increasing levels of forest loss and other anthropogenic modi-

fications, such as the flooding of large habitat areas, derived from dam building, which severely

limits the howlers’ ability to disperse and cross intermediate habitat regions [7]. In order to
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maintain or restore the natural gene flow between BGHM populations in the studied regions,

the continuous forest patches, as well as the remaining riparian forests, should be protected

and preserved. Further genetic studies spanning the entire geographical range of BGHM

should help expand our knowledge on the patterns of gene flow and complement these conser-

vation guidelines.

Based on the estimates of the effective population size obtained for the two biggest popula-

tions (Ne = 26 and 40), applying the equation for heterozygosity loss (Eqn. 4 in [11]), we can

anticipate that the studied BGHM populations will lose heterozygosity below the 25% quantile

of the current values in less than 50 generations. We also found that the populations at the

southernmost limit of the species range have a reduced effective size and may be genetically

depleted to face threatening events such as yellow fever outbreaks, which could rapidly affect

all individuals in most of the species’ distribution area. Therefore, following the recently pro-

posed genetic IUCN criterion (see Fig 2a in [11]), the studied BGHM populations should be

classified as “Endangered”. We considered that the current IUCN global classification of

BGHM as “Least Concern” [26] underestimates the treats to which each of the remaining

BGHM populations are subjected; therefore, we propose a re-classification of the global status

of the species to “Vulnerable”. This proposed global re-classification category is in line with

country-level rankings of Argentina (“Vulnerable”) [81] and Brazil (“Near Threatened”) [27],

that comply with the IUCN criteria “A4cd” which refers to a population reduction of 30% in 3

generations (4), where the reduction or its causes may not have ceased, may not be under-

stood, or may not be reversible; mainly due to: (c) a decline in the area of occupancy, extent of

occurrence, and/or quality of habitat, and (d) exploitation levels due to hunting or illegal traffic

(pet trade). Brazil also adheres to the criterion (e) which refers to the effects of pollutants,

introduced taxa, hybridization, competitors, pathogens, or parasites, referring to BGHM vul-

nerability to yellow fever epidemics. We recommend that, given the high susceptibility of

black-and-gold howler monkeys to the yellow fever virus, this criterion should be also adopted

by the international IUCN ranking. The current IUCN global status of Alouatta caraya seems

to rely heavily on the species’ wide geographic distribution range (Fig 1), which includes large

areas of unsuitable habitat and, therefore, does not adequately mirror the actual population

density. Thereby, as it occurs with other taxa [82], the actual distribution range of BGHM is

overestimated, while their level of risk is underestimated. Based on concurrent genetic and

non-genetic evidence mentioned above, we recommend that the IUCN upgrades the global

conservation status of Alouatta caraya to “Vulnerable”.

In sum, the present study contributes novel evidence supporting contemporary restricted

gene flow between BGHM inhabiting the southernmost portion of the species’ geographic dis-

tribution range, and identifies four distinct Management Units for conservation. We also

anticipate that most of the studied populations would loss heterozygosity in the mid-term and

recommend that the IUCN global conservation status of BGHM is upgraded to “Vulnerable”.

Lost habitat connectivity can play a significant role in preventing gene flow between isolated

populations and, if not reverted, such a pattern may severely affect the survival capacity of

BGHM. Our results have direct implications for the conservation of howlers and should be

taken into account by policy makers when taking decisions, drafting management plans or

designing reintroduction projects of these vulnerable Neotropical primates.

Supporting information

S1 File. Table A. Summary estimates of mitochondrial diversity. Genetic diversity esti-

mates, results of neutrality tests and demographic parameters for black-and-gold howler mon-

keys sampled in ten populations from Northeastern Argentina and Southern Paraguay, based
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on 491-bp mtDNA Control Region fragment sequences. H: number of haplotypes (n: number

of sequences). PS: number of polymorphic sites; h: haplotypic diversity± standard deviation
(SD); π: nucleotidic diversity ± standard deviation (SD); Tajima’s (1989) D; Fu’s (1997) Fs;
Ramos-Onsins and Rozas’s (2002) R2; SSD: Sum of Squared Deviations, Rg: Raggedness index;

Tau: mode of the unimodal mismatch distribution; TSE: time since population expansion (in

years before present). Table B. Results of modified STRUCTURE procedure. The most likely

number of differentiated genetic groups (K = 4, column shaded in grey) found to better explain

the variation observed in the genotypic dataset (ten microsatellite loci) of black-and-gold

howler monkeys from Northeastern Argentina and Southern Paraguay. The Max-ofMedian

(MaxMedK) and Median-of-Median (MedMedK) indexes (Puechmaille, 2016), taken at the

0.80 threshold of membership proportion, were used as conservative estimators of K. The dif-

ferent sampling schemes tested were: 1) the full dataset (n = 138, ten sites), 2) subsampling Pop

2 and 3 to obtain more even sample sizes (n = 88, ten sites), 3) original dataset but removing

the least sampled populations (n = 123, seven sites), and 4) the dataset obtained by a combina-

tion of the two latter strategies (n = 73, seven sites) (see main text for further details). For each

sampling scheme, 20 replicate STRUCTURE runs were performed from K = 2 to K = 10.

Table C. Genetic structure observed in populations of black-and-gold howler monkeys

from Northeastern Argentina and Southern Paraguay. Pairwise FST values for ten microsat-

ellite loci (below diagonal) and pairwise FST values for 512-bp mtDNA Control Region frag-

ment sequences (above diagonal). Significant values after Bonferroni correction are shown in

bold (α = 0.0005).

(PDF)
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