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The chemical engineer has nowadays a wide choice of tools, numerical libraries, and programming 

languages to perform computations. Actually, it is possible to use several well established commercial 

packages, implement dedicated solvers into specific programming languages, or use existing 

numerical libraries. Also, it is possible to combine these possibilities to get either superior 

performances or more robustness, according to the problem features through the so-called mixed-

language approach, which is increasingly spreading in the scientific communities. Since there is no full 

clarity on their benefits in handling numerical problems and their performances have not been yet 

compared in the literature, this paper is aimed at analyzing efficiency and robustness of some of the 

most widespread methodologies adopted for numerical computations: the conventional methods, the 

implementation of numerical libraries, the mixed-language, and the commercial tools. Specifically, the 

common case of differential systems is selected as comparison field. 

1. Introduction 

For several decades scientists and engineers have developed and implemented algorithms, numerical 

methods, programs, and computational tools in general to handle a wide range of problems (e.g.: linear 

algebra, nonlinear systems, ordinary differential and differential-algebraic equations systems, se for 

example Dongarra et al. (1990) and Boroni et al. (2009)). Since the evolution in numerical analysis is 

quite slower than the evolution of personal computers and power computing (Buzzi-Ferraris, 2011), it is 

frequent to see new and more sophisticated programs that use old, but evenly performing, numerical 

methods and computing procedures. This situation is typical of scientific programmers that use 

relatively younger languages and/or releases for computations so as to exploit new features (i.e. the 

object-oriented programming using Visual C++ or Java) and, sometimes, are forced to implement in 

their program existing and well-known codes and routines previously developed in other programming 

languages (i.e. the procedural routines of Fortran or Matlab) so as not to completely re-write the overall 

code and numerical methods. Furthermore, well-established and spread tools and solutions require 

new methods and more performing algorithms to solve increasingly larger systems. In this specific 

case, a usually older programming language should accept libraries and code samples developed in 

newer programming languages. This is the case of commercial packages for process simulation, which 

have a consolidated structure and graphical user-friendly interface originally developed using certain 

programming languages, that may need of external customizations for extending their application 
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domain by the use of more detailed models and improve their performances by new algorithms as well 

(Manenti et al. 2011). What is in common for these two opposite situations is the need to merge 

different programming languages and implement numerical libraries as well to achieve new objectives. 

From this point of view, there are no papers in the literature, to our knowledge, that compare 

advantages and disadvantages of mixed-language and other methodologies used to handle chemical 

engineering issues. This paper aims at investigating and comparing the numerical performance of 

different methodologies looking forward to their off-line and on-line use. The numerical topic selected 

for this study is the integration of differential systems, thus the process dynamic simulation. 

2. State-of-the-art and organization of the work 

It is currently more complex to perform comprehensive numerical comparisons with respect to the 

previous decades especially in the chemical engineering field where there is a strong penetration of 

numerical analysis at all the levels and areas. It is rather complicated since the numerical comparisons 

now should account for differences between object-oriented and procedural solvers, sequential and 

parallel computing, shared and distributed memory machines and, again, among software 

architectures, programming languages and other relevant features, whereas years ago there was more 

or less a single procedural programming language, the sequential calculation procedure only, and a 

few numerical libraries. Moreover, today there is the coexistence of many methodologies to solve 

numerical problems, and in turn the availability of many techniques and methods for each 

methodology, and the existence of multipurpose tools and solvers with specific performances 

according to the numerical field investigated as well as the selected conditions and input of the single 

problem. There is the need to clarify what methodologies can be used to address a numerical problem, 

whatever is the problem, and to highlight their possible pros and cons. There are many papers in the 

literature that compare numerical libraries for C++ and Fortran languages, algorithms to handle spoiled 

Jacobians in process control problems and commercial tools (Manenti et al., 2009). Conversely, there 

are no papers comparing the strategy we can apply, i.e., the philosophy adopted to set up the program 

and hence through: a) the use of commercial tools; b) the use of programming languages and their 

available conventional methods; c) the use of programming languages with the implementation of ad 

hoc solvers and d) the use of mixed-languages. 

2.1 Commercial tools 
The current commercial software available for dynamic simulation has a complex architecture including 

multipurpose graphical interfaces, thermodynamic libraries, model libraries for unit operations, 

differential and differential-algebraic solvers, and support tools. Many simulators are field-proven by 

industrial applications in many areas from the oil & gas to the fine chemical, from the power generation 

to the petrochemical, and their main advantage is in the intrinsic multipurpose nature and the user-

friendly interface, especially in large physical-chemical databases. The use of the main dynamic 

simulators allow to perform dynamic simulations of complex systems with relatively small effort since 

the user usually does not see any equation and needs basic tutorial to use them. Nevertheless, their 

current nature is becoming more and more a problem for chemical engineering issues for different 

reasons (i.e.: no detailed models within their libraries, slower in performances than programs 

developed in scientific languages and stiff structures for modifications). Within this context, looking 

forward to the assessment of performances and robustness, certain process dynamic simulators seem 

to be preferable than others. gPROMS is an equation-based simulator that gives the possibility to 

directly enter own code and to solve it by means of the gPROMS’s differential solvers. Since this is not 

possible for certain packages, this is the main reason for the selection of gPROMS as commercial 

simulator. Thus, in the following, we will refer to this methodology as the gPROMS. 

2.2 Programming languages 

All of the most used programming languages (Fortran, Pascal, C, Matlab) to solve numerical problems 

adopt a procedural programming philosophy, which is based on the possibility to write generalized 

pieces of code to solve problems of different natures. In the last two decades, object-oriented 

programming dramatically changed the way to think and develop numerical programs and it is slowly 

having the upper hand over the traditional procedural philosophy (Buzzi-Ferraris, 2011). For these 
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reasons, we selected two different programming languages for the comparison: a procedural one, the 

MATLAB, and an object-oriented one, the C++. MATLAB provides the essential basis for comparison 

since it is a spread programming and educational language with many well-established algorithms 

(thus, in the following, we will refer to this methodology as the Matlab); on the other hand, C++ offers 

the opportunity to assess the pros and cons in using external numerical libraries. 

2.3 Numerical libraries 

As mentioned above, there are many papers reporting library comparisons in order to assess their 

efficiency and robustness in solving certain numerical problems. The most frequent comparison is 

proposed between libraries for Fortran and libraries for C++. On the other hand, C++ libraries can be 

totally or partially based on the object-oriented programming, or no object-oriented at all. Numerical 

recipes by Press et al. (1988) and Press et al. (1997) are developed for both Fortran and C++ 

environments. Contrary to the existing papers, this research activity is not aimed at comparing 

performances of numerical libraries, rather to shows pros and cons of their uses with respect to the 

other methodologies. Thus, all the aforementioned libraries are evenly good for the scope. We selected 

the BzzMath (Buzzi-Ferraris, 2012) library, specifically the family of BzzOde solvers, since it is fully 

object-oriented and hence it should have superior performances and flexibility for target purposes. 

Lastly, certain general numerical issues that affect all numerical libraries (Buzzi-Ferraris, 2011) have 

been already fixed in BzzMath. Thus, in the following, we will refer to this methodology as the BzzMath. 

2.4 Mixed-language 
The mixed-language methodology is characterized by the use of more than a single tool. For example, 

the use of Fortran subroutines for calculations in C++ is a typical mixed-language approach (Buzzi-

Ferraris and Manenti, 2010). The commercial software adopted in this work, gPROMS, has a rather 

stiff programming structure, and some work-around had to be implemented in order to apply gPROMS 

simulations to our test cases. The tests consisted in the dynamic simulations of two processes under 

different conditions, using random-generated control variables’ profiles. For gPROMS to automatically 

read the corresponding input data and run the simulation it uses the options given by the package of 

running a gPROMS simulation or optimization from the MS-DOS command line, and of reading input 

data from a MS Excel sheet. A MATLAB code updates the data to be read, then calls the gPROMS 

executable to run the simulation. When gPROMS run ends, it computes the running time. Less 

complicated is the mixed-language adopted to couple Matlab and external libraries (BzzMath). The 

technique is called the Mex-function and is a particular feature of Matlab that allows it to recognize C++ 

code as its own, this way giving the possibility to create synergies between the power of C++ and the 

agility of matrix-oriented Matlab. In the following, we will refer to this methodology as the MEX function. 

3. Dynamic simulations 

3.1 Numerical methods and test models 
The numerical methods vary according to the selected methodology. MATLAB uses the Adams-

Bashforth and Adams-Moulton methods (Matlab, 2008). BzzMath library use multi-value algorithms 

(basing on their corresponding multi-step algorithms), it also implements a branched structure to 

handle the Jacobian matrix sparsity and structure (Manenti, 2011). gPROMS uses the DASOLV, which 

is based on variable time step/variable order Backward Differentiation Formulae (BDF). This solver 

uses the MA48 solver for linear algebra; it employs direct LU factorization algorithms designed for 

large, sparse, asymmetric systems of linear equations (gPROMS, 2004). Most of the ordinary 

differential equation (ODE) systems resulting in chemical engineering problems have the following 

characteristics: each function evaluation is highly time-consuming; the Jacobian matrix J is evaluated 

numerically (finite difference), and the number of equations is quite high. From this point of view, it is 

clear that function evaluations have the greatest impact on the overall computational effort. As the 

number of equations is increased, the Jacobian evaluation becomes relevant. Especially for this 

reason, we selected very simple examples to test and compare the different numerical methodologies. 

Two test models were selected: a binary conventional distillation column, which leads to an ODE 

system with 46 equations; and a batch brewery mashing process, which leads to a differential algebraic 

equations (DAE) system with 18 differential equations and 13 algebraic equations. Since the DAE 
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system is a stiff one, no distinctions between ODE stiff and nonstiff problems are provided. A binary 

conventional distillation column was selected as test case for the ODE systems (Luyben, 1990). The 

dynamic model undergoes the assumption that relative volatility α is constant across the column and 

theoretical trays. A single inlet feed F with composition z (molar fraction of the light component) enters 

the column at tray NF at bubble point conditions. The vapour flow exiting the top of the column is 

condensed by a total condenser and it is sent to a reflux drum with holdup MD. The flowrate that exits 

the reflux drum at bubble point conditions has uniform composition xD. The reflux R is sent through a 

pump to the top tray, whereas the distillate D exits the unit. The test case for DAE systems is a batch 

process involving the mashing step in beer manufacturing, which is described in detail in Durand et al. 

(2009). During the mashing process, solid starch grains undergo a transition into a gelatinized state, 

which is hydrolyzed by the action of dissolved α-amylase. The hydrolysis products are maltotriose and 

dextrins. Dextrins are converted into sugars (glucose, maltose) and limit dextrins by the action of 

dissolved β-amylase. The enzymes, α-amylase and β-amylase, undergo temperature deactivation 

during the batch cycle. Saccharose and fructose are not included in the model since their concentration 

in the wort is insignificant. During the mashing β-glucans are extracted from the grist to the liquid 

phase. Dissolved β-glucans are converted into shorter β-oligosaccharides by β-glucanases, which also 

suffer temperature deactivation. The arabinoxylans present in the grist dissolve and undergo 

degradation into oligo-β-xylosides by the action of the endo-xylanase enzyme. 

3.2 Simulations 
Industrial processes are constantly subject to several kinds of planned or unplanned operating 

transients. Since our both test cases are simple, it is very easy and fast for any of the methodologies 

tested here to solve them in their nominal values, thus preventing us to compare computing 

performance. Because of this fact, the models were tested under transients of variables with noticeable 

impact on their dynamics. Also, looking forward the use of dynamic models for online predictions and 

optimizations, many simulations are performed to assess the performances. The dynamic simulations 

of the distillation column were performed in closed loop and open loop modes using the data provided 

in Luyben (1990). For the closed loop mode a transient model profile was used for the feed flow. It is 

comprised of a step increase over the nominal value, starting at time tstart1, keeping that value for 

tlength1 time units, then a further step change to a decreasing of the same magnitude under the 

nominal value, continuing for tlength2 time units, and finally returning to the nominal value within an 

entire time horizon of 600 time units. For a more rigorous comparison, 100 hundred transient profiles 

were generated, with tstart1 following a distribution of N(0,1) multiplied by 50, within the [0,100] range, 

while tlength1 and tlength2 followed a N(100,10) distribution within the [50,150] range. Each one of the 

profiles was tested with amplitude variations of 5/10/15/20/25 %, numbering a total of 500 simulations 

per each methodology. The time horizon was discretized in time periods of one time unit, in order to 

apply the inputs from the proportional-integral control. Open loop mode simulations were performed 

following perturbation profiles comprising only the step change at tstart1, as further perturbations were 

enough to produce stopping numerical errors for all techniques. Again, 100 profiles were used for each 

of perturbation amplitudes 5/10/15/20/25%, resulting in 500 simulations per technique. Since the 

column mode was simulated in open loop mode, simulations were done in two runs, from time 0 to 

tstart1, then from tstart1 to time 300. Because this division resulted in a discretization in two time 

periods, open loop simulations required less computational effort. In breweries mashing batches are 

controlled by temperature profiles, containing 3, 4 or 5 steps where the temperature is kept constant in 

each one. Since all processes (enzymatic reactions, enzymes and metabolites solubilization and 

enzymes denaturization) are temperature dependent, the desired final concentrations are reached 

varying the temperature and length of each step. As in the previous test case, the simulations for the 

mashing model were carried out using a battery of random-generated temperature profiles. Each 

profile of 115 minutes used in the simulations involved 5 steps, with each successive step having 

higher temperature than the previous one. The starting point of each step (variables ts) were generated 

following a uniform distribution of U(20,115) minutes with checking to assure that a steps started at 

least 5 minutes after the previous one. The temperature of each step (variables TR) were generated 

using a U(42,80) Celsius degrees distribution. The temperature profiles were included in the model 

using sigmoid functions, thus allowing performing simulations without discretizing the time horizon. 
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4. Numerical discussion 

Tables 1-2 show the running simulation times for the test case of the distillation column. Simulations 

were done on an Intel P8600 at 2.40GHz system with 3.46 GB of RAM. Multicore processing options 

were disabled for all methodologies to prevent any numerical gaps due to the fact that different parallel 

strategies could affect the comparison among the methodologies. The BzzMath library tests and the 

C++ part of the “MEX function” tests were compiled using the MS Visual C++ 6.0 compiler. Each row of 

the tables shows the aggregated running time for 100 simulations. For the closed loop mode (shown in 

Table 1) in all methodologies, completing the 100 perturbation profiles for larger perturbation 

amplitudes was more time consuming, except when using gPROMS, where the tendency was not so 

obvious. This is a forced situation because larger perturbations cause more complicated dynamics and, 

thus, more correction actions for the PI control. Conversely, the complex numerical/graphical gPROMS 

architecture, typical of all commercial packages, hides this aspect. Table 2 shows the computational 

time required for simulations of the distillation column in open loop mode. As expected, aggregated 

running times for simulations of the open loop mode of the distillation column took less time than the 

closed loop mode. The curious point is that an open loop simulation with a perturbation of 5% on the 

feed flow shows the MEX function (that is the MATLAB using the BzzMath solvers) methodology is 

more efficient than the BzzMath one (used in C++ environment). This aspect is still to be investigated. 

In the closed loop simulations, while the amplitude of the perturbation increases, the computational 

times of BzzMath and MEX function increase too, but their relative gap in computations decreases. 

Their gap is null when the system becomes unstable and the numerical methods cannot solve it. In all 

cases the numerical library (BzzMath) was at least an order of magnitude faster than the general 

programming language (Matlab) and the commercial package (gPROMS), moreover, in the closed loop 

simulations BzzMath was two orders of magnitude faster than gPROMS and almost two than Matlab. 

An interesting result is that the mixed-language methodology “MEX function” had a very similar 

performance to the numerical library’s one. the mixed-language methodology required from 41.5 % 

higher computational time in the closed loop for perturbations on feed flow tests, to only 1.5 % higher in 

the closed loop for perturbations on feed composition. Table 3 shows the results of the simulation tests 

carried out for the brewery mashing model, for all four methodologies analyzed, done in the same 

system and same conditions as the column’s test case. Again, the numerical library outperformed the 

programming language and the commercial package, being one and three orders of magnitude faster, 

respectively. The mixed-language methodology “MEX function” required 76 % higher computational 

time, but it still was much closer to the BzzMath performance than the Matlab’s one. 

Table 1: Aggregated running times for simulations of the binary distillation column, closed loop mode 

Perturbation 

amplitude 

Methodology [s] 

BzzMath MEX function Matlab gPROMS 

5 % 27.093 48.448 753.030 4204.053 

10 % 32.219 50.074 759.322 4283.847 

15 % 37.672 51.456 770.288 4269.993 

20 % 40.734 52.737 785.574 4223.565 

25 % 43.907 54.149 798.189 4217.344 

Totals 181.625 256.864 3866.403 21198.802 

Table 2: Aggregated running times for simulations of the binary distillation column, open loop mode 

Perturbation 

amplitude 

Methodology [s] 

BzzMath MEX function Matlab gPROMS 

5 % 18.141 17.487 316.957 540.917 

10 % 16.500 16.711 289.093 556.429 

15 % 15.422 16.417 270.870 575.063 

20 % 14.672 16.290 257.503 597.011 

25 % 14.078 16.298 247.117 623.219 

Totals 78.813 83.202 1381.540 2892.639 
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Table 3: Aggregated running times for 500 simulations of the brewery mashing test model 

 
Methodology [s] 

BzzMath MEX function Matlab gPROMS 

Total 2.517 4.435 65.141 1837.135 

Average 0.005 0.009 0.130 3.754 

5. Conclusions 

This work proposed a comparison among numerical methodologies that can be adopted to solve 

typical chemical engineering problems. Specifically, for relevance and spreading reasons, the dynamic 

simulation of chemical processes, hence the integration of differential systems, was selected as 

comparison field. The selected methodologies are the use of commercial packages, the use of 

conventional numerical methods, the use of dedicated numerical libraries, and the mixed-language 

approach. An important aspect highlighted by the paper is that there is still a large performance gap 

between scientific solutions and commercial packages. No one of the commercial packages quoted in 

the paper can ensure an effective solution for online issues, since the computational times required to 

solve the simple test cases is too much and their structure is too stiff to accept different numerical 

kernels to speed-up calculations. In other words, it is not yet possible to use dynamic simulations 

developed with commercial packages for model predictive control. For example, the 500 simulations of 

the mashing system, which is a reasonable number of simulations required by a loop of nonlinear 

model predictive control, are solved in half an hour, a rather high computational time for having a 

prompt response. On the other hand, the use of dedicated numerical libraries can shrink the 

computational time (in the case of mashing to 2.5 s). The same concept can be extended to Matlab 

performance. In addition, the paper emphasizes an interesting possibility: the use of mixed-language 

approach allows exploiting the potentiality of numerical libraries in other programming environments 

and software while preserving their performances. 
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