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Abstract. In this paper we present two flavors of a quantum extension
to the lambda calculus. The first one, λρ, follows the approach of clas-
sical control/quantum data, where the quantum data is represented by
density matrices. We provide an interpretation for programs as density
matrices and functions upon them. The second one, λ◦

ρ, takes advantage
of the density matrices presentation in order to follow the mixed trace
of programs in a kind of generalised density matrix. Such a control can
be seen as a weaker form of the quantum control and data approach.

Keywords: Lambda calculus · Quantum computing · Density matri-
ces · Classical control

1 Introduction

In the last decade several quantum extensions to lambda calculus have been
investigated,e.g. [5,6,11,19,22,23,31]. In all of those approaches, the language
chosen to represent the quantum state are vectors in a Hilbert space. However,
an alternative formulation of quantum mechanics can be made using density
matrices. Density matrices provide a way to describe a quantum system in which
the state is not fully known. More precisely, density matrices describe quantum
systems in a mixed state, that is, a statistical set of several quantum states. All
the postulates of quantum mechanics can be described in such a formalism, and
hence, also quantum computing can be done using density matrices.

The first postulate states that a quantum system can be fully described
by a density matrix ρ, which is a positive operator with trace (tr) one. If a
system is in state ρi with probability pi, then the density matrix of the system
is

∑
i piρi. The second postulate states that the evolution of a quantum system

ρ is described with a unitary operator U by UρU†, where U† is the adjoint
operator of U . The third postulate states that the measurement is described by
a set of measurement operators {πi}i with

∑
i π†

i πi = I, so that the output of
the measurement is i, with probability tr(π†

i πiρ), leaving the sate of the system
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as πiρπ†
i

tr(π†
i πiρ)

. The fourth postulate states that from two systems ρ and ρ′, the

composed one can be described by the tensor product of those ρ ⊗ ρ′.
Naturally, if we want to use the output of a measurement as a condition in the

classical control, we need to know that output. However, density matrices can
still be used as a way to compare processes before running them. For example
the process of tossing a coin, and according to its result, applying Z or not to a
balanced superposition, and the process of tossing a coin and not looking at its
result, may look quite different in most quantum programming languages. Yet
both processes output the same density matrix, and so they are indistinguishable.

In [20], Selinger introduced a language of quantum flow charts, and an inter-
pretation of his language into a CPO of density matrices. After this paper, the
language of density matrices has been widely used in quantum programming,
e.g. [9,14,15,25,28]. Indeed, the book “Foundations of Quantum Programming”
[27] is entirely written in the language of density matrices. Yet, as far as we
know, no lambda calculus for density matrix have been proposed.

Apart from the distinction of languages by how they treat the quantum
states (vectors in a Hilbert space or density matrices), we also can distinguish
the languages on how the control is considered: either quantumly or classically.
The idea of quantum data/classical control stated by Selinger in [20] induced
a quantum lambda calculus in this paradigm [22]. Later, this calculus was the
base to construct the programming language Quipper [16], an embedded, scal-
able, functional programming language for quantum computing. The concept of
quantum data/classical control declares that quantum computers will run in a
specialized device attached to a classical computer, and it is the classical com-
puter which will instruct the quantum computer what operations to perform
over which qubits, and then read the classical result after a measurement. It is a
direct consequence from the observation that quantum circuits are classical (i.e.
one cannot superpose circuits or measure them). Several studies have been done
under this paradigm, e.g. [2,16,19,22,31].

Dually to the quantum data/classical control paradigm, there is what we can
call the quantum data and control paradigm. The idea is to provide a compu-
tational definition of the notions of vector space and bilinear functions. In the
realm of quantum walks, quantum control is not uncommon (e.g. [1,3]). Also,
several high-level languages on quantum control have been proposed in the past
(e.g. [2,8,29,30]), however, up to now, no complete lambda-calculus with quan-
tum control have been proposed. We benefit, though, from the long line of works
in this direction [4–7,13].

In this paper, we propose a quantum extension to the lambda calculus, λρ, in
the quantum data/classical control paradigm, where the quantum data is given
by density matrices, as first suggested by Selinger’s interpretation of quantum
flow charts [20]. Then, we propose a modification of such a calculus, called λ◦

ρ, in
which we generalise the density matrices to the classical control: That is, after a
measurement, we take all the possible outcomes in a kind of generalised density
matrix of arbitrary terms. The control does not become quantum, since it is
not possible to superpose programs in the quantum sense. However, we consider
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the density matrix of the mixed state of programs arising from a measurement.
Therefore, this can be considered as a kind of probabilistic control, or even
another way, perhaps weaker, of quantum control.

Outline of the Paper. In Sect. 2 we introduce the typed calculus λρ, which
manipulates density matrices, and we give two interpretations of the calculus.
One where the terms are interpreted into a generalisation of mixed states, and
another where the terms are interpreted into density matrices. Then we prove
some properties of those interpretations. In Sect. 3 we introduce a modification
of λρ, called λ◦

ρ, where the output of a measurement produce a sum with all
the possible outputs. We then extend the interpretation of λρ to accommodate
λ◦

ρ, and prove its basic properties. In Sect. 4 we prove the Subject Reduction
(Theorem 4.4) and Progress (Theorem 4.7) properties for both calculi. In Sect. 5
we give two interesting examples, in both calculi. Finally, in Sect. 6, we conclude
and discuss some future work. A long version of this paper, with detailed proofs
in a 10-pages appendix, has been submitted to the arXiv [10].

2 Classical-Control Calculus with Probabilistic Rewriting

2.1 Definitions

The grammar of terms, given in Table 1, have been divided in three categories.

1. Standard lambda calculus terms: Variables from a set Vars, abstractions and
applications.

2. The four postulates of quantum mechanics, with the measurement postulate
restricted to measurements in the computational basis1: ρn to represent the
density matrix of a quantum system. Unt to describe its evolution. πnt to
measure it. t ⊗ t to describe the density matrix of a composite system (that
is, a non entangled system composed of two subsystems).

3. Two constructions for the classical control: a pair (bm, ρn), where bm is the
output of a measurement in the computational basis and ρn is the resulting
density matrix, and the conditional letcase construction reading the output
of the measurement.

The rewrite system, given in Table 2, is described by the relation −→p, which
is a probabilistic relation where p is the probability of occurrence. If Um is applied
to ρn, with m ≤ n, we write Um for Um ⊗ In−m. Similarly, we write πm when
we apply this measurement operator to ρn for {π0 ⊗ In−m, . . . , π2m−1 ⊗ In−m}.
If the unitary Um needs to be applied, for example, to the last m qubits of ρn

instead of the first m, we will need to use the unitary transformation In−m ⊗Um

instead. And if it is applied to the qubits k to k+m, then, we can use Ik−1 ⊗ Um.
1 A generalisation to any arbitrary measurement can be considered in a future, how-
ever, for the sake of simplicity in the classical control, we consider only measure-
ments in the computational basis, which is a common practice in quantum lambda
calculi [11,17,19,21,22,31].
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Table 1. Grammar of terms of λρ.

t := x | λx.t | tt (Standard lambda calculus)

| ρn | Unt | πnt | t ⊗ t (Quantum postulates)

| (bm, ρn) | letcase x = r in {t, . . . , t} (Classical control)

where:

– n, m ∈ N, m ≤ n.
– ρn is a density matrix of n-qubits, that is, a positive 2n × 2n-matrix with trace 1.
– bm ∈ N, 0 ≤ bm < 2m.
– {t, . . . , t} contains 2m terms.
– Un is a unitary operator of dimension 2n × 2n, that is, a 2n × 2n-matrix such that

(Un)† = (Un)−1.
– πn = {π0, . . . , π2n−1}, describes a quantum measurement in the computational

basis, where each πi is a projector operator of dimension 2n projecting to one
vector of the canonical base.

This rewrite system assumes that after a measurement, the result is known.
However, since we are working with density matrices we could also provide an
alternative rewrite system where after a measurement, the system turns into a
mixed state. We left this possibility for Sect. 3.

The type system, including the grammar of types and the derivation rules,
is given in Table 3. The type system is affine, so variables can be used at most
once, forbiding from cloning a density matrix.

Example 2.1. The teleportation algorithm, while it is better described by pure
states, can be expressed in the following way:

Let β00 = 1
2 (|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|). Then, the following

term expresses the teleportation algorithm.

λx.letcase y = π2(H1(Cnot2(x ⊗ β00))) in {y,Z3y,X3y,Z3X3y}

where Z3 = I ⊗ I ⊗ Z1 and X3 = I ⊗ I ⊗ X1.

The type derivation is as follows.

y : 3 � y : 3
ax

y : 3 � y : 3
ax

y : 3 � Z3y : 3
u

y : 3 � y : 3
ax

y : 3 � X3y : 3
u

y : 3 � y : 3
ax

y : 3 � X3y : 3
u

y : 3 � Z3X3y : 3
u

x : 1 � x : 1
ax � β00 : 2

axρ

x : 1 � x ⊗ β00 : 3
⊗

x : 1 � Cnot2(x ⊗ β00) : 3
u

x : 1 � H1(Cnot2(x ⊗ β00)) : 3
u

x : 1 � π2(H1(Cnot2(x ⊗ β00))) : (2, 3)
m

x : 1 � letcase y = π2(H1(Cnot2(x ⊗ β00))) in {y,Z3y,Xy,Z3X3y} : 3
lc

� λx.letcase y = π2(H1(Cnot2(x ⊗ β00))) in {y,Z3y,X3y,Z3X3y} : 1 � 3
�i
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Table 2. Rewrite system for λρ.

(λx.t)r −→1 t[r/x]

Umρn −→1 ρ′n with ρ′n = UmρnUm†

πmρn −→pi (i, ρ
n
i ) with

{
pi = tr(πi

†πiρ
n)

ρn
i = πiρnπi

†
pi

ρ ⊗ ρ′ −→1 ρ′′ with ρ′′ = ρ ⊗ ρ′

letcase x = (bm, ρn) in {t0, . . . , t2m−1} −→1 tbm [ρn/x]

t −→p r

λx.t −→p λx.r

t −→p r

ts −→p rs

t −→p r

st −→p sr

t −→p r

Unt −→p Unr

t −→p r

πnt −→p πnr

t −→p r

t ⊗ s −→p r ⊗ s

t −→p r

s ⊗ t −→p s ⊗ r

t −→p r

letcase x = t in {s0, . . . , sn} −→p letcase x = r in {s0, . . . , sn}

Table 3. Type system for λρ.

A := n | (m, n) | A � A

where m ≤ n ∈ N.

Γ, x : A � x : A
ax

Γ, x : A � t : B

Γ � λx.t : A � B
�i

Γ � t : A � B Δ � r : A
Γ, Δ � tr : B

�e

Γ � ρn : n
axρ

Γ � t : n
Γ � Umt : n

u Γ � t : n
Γ � πmt : (m, n)

m Γ � t : n Δ � r : m
Γ, Δ � t ⊗ r : n + m

⊗

Γ � (bm, ρn) : (m, n)
axam

x : n � t0 : A . . . x : n � t2m−1 : A Γ � r : (m, n)

Γ � letcase x = r in {t0, . . . , t2m−1} : A
lc

2.2 Interpretation

We give two interpretations for terms. One, noted by �·�, is the interpretation of
terms into density matrices and functions upon them, and the other, noted by
�·�, is a more fine-grained interpretation, interpreting terms into a generalisa-

tion of mixed states. In particular, we want �πnρn�={(tr(π†
i πiρ

n), πiρ
nπ†

i

tr(π†
i πiρn)

)}i,

while �πnρ� =
∑

i πiρ
nπ†

i . However, since the letcase construction needs also to
distinguish each possible result of a measurement, we will carry those results in
the interpretation �·�, making it a set of triplets instead of a set of tuples.
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Let N
ε = N0 ∪ {ε}, so terms are interpreted into sets of triplets (p, b, e)

with p ∈ R
≤1
+ , representing the probability, b ∈ N

ε, representing the output
of a measurement if it occurred, and e ∈ �A� for some type A and an inter-
pretation �·� on types yet to define. In addition, we consider that the sets
{. . . , (p, b, e), (q, b, e), . . . } and {. . . , (p+q, b, e), . . . } are equal. Finally, we define
the weight function as w({(pi, bi, ei)}i) =

∑
i pi. We are interested in sets S such

that w(S) = 1.
The interpretation of types is given in Table 4. Dn is the set of density matri-

ces of n-qubits, that is Dn = {ρ | ρ ∈ M+
2n×2n such that tr(ρ) = 1}, where

M+
2n×2n is the set of positive matrices of size 2n × 2n. P (b, A) is the following

property: [A = �B � (m,n) =⇒ b �= ε], where �A � B is any of B, A � B,
A1 � A2 � B, . . . , A1 � · · · � An � B. We also establish the convention that
P ({(pi, bi, ei)}i, A) =

∧
i P (bi, A). Finally, we write trd(S) = {e | (p, b, e) ∈ S}.

Table 4. Interpretation of types

Let E =
⋃

A∈Types�A�. We denote by θ to a valuation Vars → N
ε×E. Then, we

define the interpretation of terms with respect to a given valuation θ in Table 5.

Definition 2.2. θ � Γ if and only if, for all x : A ∈ Γ , θ(x) = (b, e) with
e ∈ �A�, and P (b, A).

Lemma 2.3 states that a term with type (m,n) (or an arrow type ending in
(m,n)), will be the result of a measurement, and hence, its interpretation will
carry the results bi �= ε.

Lemma 2.3. Let Γ � t : �A � (m,n), θ � Γ , and �t�θ be well-defined. Then,
�t�θ = {(pi, bi, ei)}i with bi �= ε and ei ∈ � �A � (m,n)�θ.

Proof. By induction on the type derivation. �
Lemma 2.4 states that the interpretation of a typed term is well-defined.

Lemma 2.4. If Γ � t : A and θ � Γ , then w(�t�θ) = 1, and trd(�t�θ) ⊆ �A�.

Proof. By induction on t. �
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Table 5. Interpretation of terms

Since the interpretation �·� of a term is morally a mixed state, the interpreta-
tion �·�, which should be the density matrix of such a state, is naturally defined
using the interpretation �·�.
Definition 2.5. Let e ∈ �A� for some A, θ a valuation, and t be a term such
that �t�θ = {(pi, bi, ei)}i. We state the convention that (b, e) �→ ∑

i piei =∑
i pi((b, e) �→ ei). We define [e] and �t�θ by mutual recursion as follows:

[ρ] = ρ
[
(b, e) �→ �t�θ,x=(b,e)

]
= (b, e) �→ �t�θ,x=(b,e)

�t�θ =
∑

i

pi [ei]

Lemma 2.6. (Substitution). Let �r�θ = {(pi, bi, ei)}i, then

�t[r/x]�θ =
∑

i

pi�t�θ,x=(bi,ei)

Proof. By induction on t. However, we enforce the hypothesis by also showing
that if �t�θ,x=(bi,ei)={(qij , b

′
ij , ρij)}j , then �t[r/x]�θ ={(piqij , b

′
ij , ρij)}ij . We use

five auxiliary results (cf. appendix in [10] for more details). �
Theorem 2.7 shows how the interpretation �·� of a term relates to all its

reducts.
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Theorem 2.7. If Γ � t : A, θ � Γ and t −→pi
ri, with

∑
i pi = 1, then

�t�θ =
∑

i pi�ri�θ.

Proof. By induction on the relation −→p. �

3 Probabilistic-Control Calculus with No-Probabilistic
Rewriting

3.1 Definitions

In the previous sections we have presented an extension to lambda calculus to
handle density matrices. The calculus could have been done using just vectors,
because the output of a measurement is not given by the density matrix of the
produced mixed state, instead each possible output is given with its probability.
In this section, we give an alternative presentation, named λ◦

ρ, where we can
make the most of the density matrices setting.

In Table 6 we give a modified grammar of terms for λ◦
ρ in order to allow for

linear combination of terms. We follow the grammar of the algebraic lambda-
calculi [6,7,24].

Table 6. Grammar of terms of λ◦
ρ.

t := x | λx.t | tt (Standard lambda calculus)

| ρn | Unt | πnt | t ⊗ t (Quantum postulates)

|
n∑

i=1

piti | letcase◦ x = r in {t, . . . , t} (Probabilistic control)

where pi ∈ (0, 1],
∑n

i=1 pi = 1, and
∑

is considered modulo associativity and commu-
tativity (cf. for example [6]).

The new rewrite system is given by the non-probabilistic relation �,
described in Table 7. The measurement does not reduce, unless it is the parame-
ter of a letcase◦. Therefore, if only a measurement is needed, we can encode it
as:

letcase◦ x = πmρn in {x, . . . , x} �
∑

i

piρ
n
i � ρ′

where ρ′ =
∑

i πiρ
nπi

†. The rationale is that in this version of the calculus, we
can never look at the result of a measurement. It will always produce the density
matrix of a mixed-state. As a consequence, the letcase◦ constructor rewrites to
a sum of terms.

The type system for λ◦
ρ, including the grammar of types and the deriva-

tion rules, is given in Table 8. The only difference with the type system of λρ
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Table 7. Rewrite system of λ◦
ρ.

(λx.t)r � t[r/x]

letcase◦ x = πmρn in {t0, . . . , t2m − 1} �
∑

i

piti[ρ
n
i /x] with

{
ρn

i = πiρnπi
†

pi

pi = tr(πi
†πiρ

n)

Umρn � ρ′n with UmρnUm†
= ρ′n

ρ ⊗ ρ′ � ρ′′ with ρ′′ = ρ ⊗ ρ′∑
i

piρi � ρ′ with ρ′ =
∑

i

piρi

∑
i

pit � t

(
∑

i

piti)r �
∑

i

pi(tir)

t � r
λx.t � λx.r

t � r
ts � rs

t � r
st � sr

t � r
Unt � Unr

t � r
πnt � πnr

t � r
t ⊗ s � r ⊗ s

t � r
s ⊗ t � s ⊗ r

tj � rj∑n
i=1 piti �

∑n
i=1 piri

(∀i�=j,ti=rj)

t � r
letcase◦ x = t in {s0, . . . , s2m−1} � letcase◦ x = r in {s0, . . . , s2m−1}

(cf. Table 3), is that rule axam is no longer needed, since (bm, ρn) is not in the
grammar of λ◦

ρ, and there is a new rule (+) typing the generalised mixed states.
We use the symbol � for λ◦

ρ to distinguish it from � used in λρ.

Example 3.1. The teleportation algorithm expressed in λρ in Example 2.1, is
analogous for λ◦

ρ, only changing the term letcase by letcase◦. Also, the type
derivation is analogous. The difference is in the reduction. Let ρ be the density
matrix of a given quantum state (mixed or pure). Let

ρ30 = ρ ⊗ β00, ρ31 = (Cnot ⊗ I)ρ30, and ρ32 = (H ⊗ I ⊗ I)ρ31

The trace of the teleportation of ρ in λρ is the following:

(λx.letcase y = π2(H1(Cnot2(x ⊗ β00))) in {y,Z3y,X3y,Z3X3y})ρ

−→1 letcase y = π2(H1(Cnot2(ρ ⊗ β00))) in {y,Z3y,X3y,Z3X3y}
−→1 letcase y = π2(H1(Cnot2ρ30)) in {y,Z3y,X3y,Z3X3y}
−→1 letcase y = π2(H1ρ31) in {y,Z3y,X3y,Z3X3y}
−→1 letcase y = π2ρ32 in {y,Z3y,X3y,Z3X3y} (1)
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Table 8. Type system for λ◦
ρ.

A := n | (m, n) | A � A

where m ≤ n ∈ N.

Γ, x : A � x : A
ax

Γ, x : A � t : B

Γ � λx.t : A � B
�i

Γ � t : A � B Δ � r : A
Γ, Δ � tr : B

�e

Γ � ρn : n
axρ

Γ � t : n
Γ � Umt : n

u Γ � t : n
Γ � πmt : (m, n)

m Γ � t : n Δ � r : m
Γ, Δ � t ⊗ r : n + m

⊗

x : n � t0 : A . . . x : n � t2m−1 : A Γ � r : (m, n)

Γ � letcase◦ x = r in {t0, . . . , t2m−1} : A
lc

Γ � t1 : A . . . Γ � tn : A
∑n

i=1 pi = 1

Γ �
∑n

i=1 piti : A
+

From (1), there are four possible reductions. For i = 0, 1, 2, 3, let pi = tr(πi
†πiρ

3
2)

and ρ33i = πiρ
3
2πi

†

pi
. Then,

– (1)−→p0 letcase y = (0, ρ330) in {y,Z3y,X3y,Z3X3y} −→1 ρ330 = ρ.
– (1)−→p1 letcase y = (1, ρ331) in {y,Z3y,X3y,Z3X3y} −→1 Z3ρ

3
31 −→1 ρ.

– (1)−→p2 letcase y = (2, ρ332) in {y,Z3y,X3y,Z3X3y} −→1 X3ρ
3
32 −→1 ρ.

– (1)−→p3 letcase y = (3, ρ333) in {y,Z3y,X3y,Z3X3y} −→1 Z3X3ρ
3
33 −→1 ρ.

On the other hand, the trace of the same term, in λ◦
ρ, would be analogous

until (1), just using � instead of −→1. Then:

(1) � p0ρ + p1Z3ρ
3
31 + p2X3ρ

3
32 + p3Z3X3ρ

3
33 �∗

3∑

i=0

piρ
3
30 � (

3∑

i=0

pi)ρ � ρ

3.2 Interpretation

The interpretation of λρ given in Sect. 2.2 considers already all the traces. Hence,
the interpretation of λ◦

ρ can be obtained from a small modification of it. We only
need to drop the interpretation of the term that no longer exists, (bm, ρn), and
add an interpretation for the new term

∑
i piti as follows:

�
∑

i

piti�θ = {(piqij , bij , eij) | �ti�θ = {(qij , bij , eij)}j}

The interpretation of letcase◦ is the same as the interpretation of letcase.
Then, we can prove a theorem (Theorem 3.4) for λ◦

ρ analogous to Theorem 2.7.
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We need the following auxiliary Lemmas.

Lemma 3.2. If Γ � t : A and θ � Γ , then �
∑

i piti�θ =
∑

i pi�ti�θ

Proof. Let �ti�θ = {(qij , bij , eij)}j . Then, we have �
∑

i piti�θ =
∑

ij piqijeij =∑
i pi

∑
j qijeij =

∑
i pi�ti�θ. �

Lemma 3.3. Let �r�θ = {(pi, bi, ei)}i, then �t[r/x]�θ =
∑

i pi�t�θ,x=(bi,ei).

Proof. The proof of the analogous Lemma 2.6 in λρ follows by induction on
t. Since the definition of �·� is the same for λρ than for λ◦

ρ, we only need to
check the only term of λ◦

ρ which is not a term of λρ:
∑

j qjtj . Using Lemma 3.2,
and the induction hypothesis, we have �(

∑
j qjtj)[r/x]�θ = �

∑
j qj(tj [r/x])�θ =∑

j qj�tj [r/x]�θ =
∑

j qj

∑
i pi�tj�θ,x=(bi,ei) =

∑
i pi�

∑
j qjtj�θ,x=(bi,ei). �

Theorem 3.4. If Γ � t : A, θ � Γ and t � r, then �t�θ = �r�θ.

Proof. By induction on the relation �. Rules (λx.t)r � t[r/x], Umρn � ρ′ and
ρ ⊗ ρ′ � ρ′′ are also valid rules for relation −→1, and hence the proof of these
cases are the same than in Theorem 2.7. �

4 Subject Reduction and Progress

In this section we state and prove the subject reduction and progress properties
on both, λρ and λ◦

ρ (Theorems 4.4 and 4.7 respectively).

Lemma 4.1 (Weakening)

– If Γ � t : A and x /∈ FV (t), then Γ, x : B � t : A.
– If Γ � t : A and x /∈ FV (t), then Γ, x : B � t : A.

Proof. By a straightforward induction on the derivation of Γ � t : A and on
Γ � t : A. �
Lemma 4.2 (Strengthening)

– If Γ, x : A � t : B and x /∈ FV (t), then Γ � t : B.
– If Γ, x : A � t : B and x /∈ FV (t), then Γ � t : B.

Proof. By a straightforward induction on the derivation of Γ, x : A � t : B and
Γ, x : A � t : B. �
Lemma 4.3 (Substitution)

– If Γ, x : A � t : B and Δ � r : A then Γ,Δ � t[r/x] : B.
– If Γ, x : A � t : B and Δ � r : A then Γ,Δ � t[r/x] : B.

Proof. By induction on t. �
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Theorem 4.4 (Subject reduction)

– If Γ � t : A, and t −→p r, then Γ � r : A.
– If Γ � t : A, and t � r, then Γ � r : A.

Proof. By induction on the relations −→p and �. �
Definition 4.5 (Values)

– A value in λρ is a term v defined by the following grammar:

w := x | λx.v | w ⊗ w

v := w | ρn | (bm, ρn).

– A value in λ◦
ρ (or value◦) is a term v defined by the following grammar:

w := x | λx.v | w ⊗ w |
∑

i

piwi with wi �= wj if i �= j

v := w | ρn

Lemma 4.6

1. If v is a value, then there is no t such that v −→p t for any p.
2. If v is a value◦, then there is no t such that v � t.

Proof. By induction on v in both cases. �

Theorem 4.7 (Progress)

1. If � t : A, then either t is a value or there exist n, p1, . . . , pn, and r1, . . . , rn

such that t −→pi
ri.

2. If � t : A and A �= (m,n), then either t is a value◦ or there exists r such that
t � r.

Proof. We relax the hypotheses and prove the theorem for open terms as well.
That is:

1. If Γ � t : A, then either t is a value, there exist n, p1, . . . , pn, and r1, . . . , rn

such that t −→pi
ri, or t contains a free variable, and t does not rewrite.

2. If Γ � t : A, then either t is a value◦, there exists r such that t � r, or t
contains a free variable, and t does not rewrite.

In both cases, we proceed by induction on the type derivation. �
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5 Examples

Example 5.1. Consider the following experiment: Measure some ρ and then toss
a coin to decide whether to return the result of the measurement, or to give the
result of tossing a new coin.

The experiment in λρ. This experiment can be implemented in λρ as
follows:

(letcase y = π1|+〉〈+| in {λx.x, λx.letcase w = π1|+〉〈+| in {w,w}})

(letcase z = π1ρ in {z, z})

Trace: We give one possible probabilistic trace. Notice that, by using different
strategies, we would get different derivation trees. We will not prove confluence
in this setting (cf. [12] for a full discussion on the notion of confluence of prob-
abilistic rewrite systems), but we conjecture that such a property is meet.

We use the following notations:

s = π1|+〉〈+|
t0 = λx.x

t1 = λx.letcase w = s in {w,w}

ρ =
3
4
|0〉〈0| +

√
3

4
|0〉〈1| +

√
3

4
|1〉〈0| +

1
4
|1〉〈1|

r1 = letcase y = s in {t0, t1}
r2 = letcase z = π1ρ in {z, z}
lx = letcase y = (x, |x〉〈x|) in {y, y} with x = 0, 1
rx
1 = letcase y = (x, |x〉〈x|) in {t0, t1} with x = 0, 1

Using this notation, the probabilistic trace is given by the tree in Table 9.
Therefore, with probability 5

8 we get |0〉〈0|, and with probability 3
8 we get |1〉〈1|.

Thus, the density matrix of this mixed state is 5
8 |0〉〈0| + 3

8 |1〉〈1|.
Typing:

y : 1, x : 1, w : 1 � w : 1
ax

y : 1, x : 1, w : 1 � w : 1
ax

� |+〉〈+| : 1
axρ

� π1|+〉〈+| : (1, 1)
m

y : 1, x : 1 � letcase w = π1|+〉〈+| in {w,w} : 1
lc

y : 1 � λx.letcase w = π1|+〉〈+| in {w,w} : 1 � 1
�i

(2)

y : 1, x : 1 � x : 1
ax

y : 1 � λx.x : 1 � 1
�i

...
y : 1 � t1 : 1 � 1

(2)
� |+〉〈+| : 1

axρ

� π1|+〉〈+| : (1, 1)
m

� letcase y = π1|+〉〈+| in {t0, t1} : 1 � 1
lc

(3)
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Table 9. Trace of the λρ term implementing the experiment of Example 5.1.

r1r2

r1l0

r1|0〉〈0|

r01|0〉〈0| r11|0〉〈0|

t0|0〉〈0|

|0〉〈0|

t1|0〉〈0|

l0

|0〉〈0|

l1

|1〉〈1|

letcase y = s in {y, y}

r1l1

r1|1〉〈1|

r01|1〉〈1|

t0|1〉〈1|

|1〉〈1|

r11|1〉〈1|

letcase y = s in {y, y}

l0

|0〉〈0|

l1

|1〉〈1|

t1|1〉〈1|

3
4

1

1
2

1

1

1
2

1

1
2

1

1

1
2

1

1
4

1

1
2

1

1

1
2

1

1

1
2

1

1
2

1

...
� letcase y = π1|+〉〈+| in {t0, t1} : 1 � 1

(3)
z : 1 � z : 1

ax
� ρ : 1

axρ

� π1ρ : (1, 1)
m

� letcase z = π1ρ in {z, z} : 1
lc

� (letcase y = π1|+〉〈+| in {t0, t1})(letcase z = π1ρ in {z, z}) : 1
�e

Interpretation:

�s�∅ = {(
1
2
, 0, |0〉〈0|), (1

2
, 1, |1〉〈1|)}

�t0�y=(ε,|0〉〈0|) = {(1, ε, (b, e) �→ {(1, b, e)})}
�t1�y=(ε,|1〉〈1|) = {(1, ε, (b, e) �→ {(

1
2
, ε, |0〉〈0|), (1

2
, ε, |1〉〈1|)})}

�r1�∅ = {(
1
2
, ε, (b, e) �→ {(

1
2
, ε, |0〉〈0|), (1

2
, ε, |1〉〈1|)}), (

1
2
, ε, (b, e) �→ {(1, b, e)})}

�π1ρ�∅ = {(
3
4
, 0, |0〉〈0|), (1

4
, 1, |1〉〈1|)}

�r2�∅ = {(
3
4
, ε, |0〉〈0|), (1

4
, ε, |1〉〈1|)}
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Then,

�r1r2�∅ = {(
3
16

, ε, |0〉〈0|), ( 1
16

, ε, |0〉〈0|), ( 3
16

, ε, |1〉〈1|),

(
1
16

, ε, |1〉〈1|), (3
8
, ε, |0〉〈0|), (1

8
, ε, |1〉〈1|)}

Hence,

�r1r2�∅ =
3
16

|0〉〈0| +
1
16

|0〉〈0| +
3
16

|1〉〈1| +
1
16

|1〉〈1| +
3
8
|0〉〈0| +

1
8
|1〉〈1|

=
5
8
|0〉〈0| +

3
8
|1〉〈1|

The experiment in λ◦
ρ. In λ◦

ρ, the example becomes:

t := (letcase◦ y = π1|+〉〈+| in {λx.x, λx.letcase◦ w =π1|+〉〈+| in {w,w}})

(letcase◦ z = π1ρ in {z, z})

Trace: In this case the trace is not a tree, because the relation � is not proba-
bilistic. We use the same ρ as before: 3

4 |0〉〈0| +
√
3
4 |1〉〈0| +

√
3
4 |0〉〈1| + 1

4 |1〉〈1|.

t � (letcase◦ y = π1|+〉〈+| in {λx.x, λx.letcase◦ w = π1|+〉〈+| in {w,w}})

(
3
4
|0〉〈0| +

1
4
|1〉〈1|)

� (
1
2
λx.x +

1
2
λx.letcase◦ w = π1|+〉〈+| in {w,w})(

3
4
|0〉〈0| +

1
4
|1〉〈1|)

� (
1
2
λx.x +

1
2
(λx.

1
2
|0〉〈0| +

1
2
|1〉〈1|))(3

4
|0〉〈0| +

1
4
|1〉〈1|)

� 1
2
((λx.x)(

3
4
|0〉〈0| +

1
4
|1〉〈1|))

+
1
2
((λx.

1
2
|0〉〈0| +

1
2
|1〉〈1|)(3

4
|0〉〈0| +

1
4
|1〉〈1|))

� 1
2
((λx.x)(

3
4
|0〉〈0| +

1
4
|1〉〈1|)) +

1
2
(
1
2
|0〉〈0| +

1
2
|1〉〈1|)

� 1
2
(
3
4
|0〉〈0| +

1
4
|1〉〈1|) +

1
2
(
1
2
|0〉〈0| +

1
2
|1〉〈1|)

� 5
8
|0〉〈0| +

3
8
|1〉〈1|

Typing and Interpretation: Since t does not contain sums, its typing is analogous
to the term in λρ, as well as the interpretation.

Example 5.2. In [18, p. 371] there is an example of the freedom in the operator-
sum representation by showing two quantum operators, which are actually the
same. One is the process of tossing a coin and, according to its results, apply-
ing I or Z to a given qubit The second is the process performing a projective



A Lambda Calculus for Density Matrices 463

measurement with unknown outcome to the same qubit. These operations can
be encoded in λρ by:

O1 = λy.letcase x = π1|+〉〈+| in {y,Zy}
O2 = λy.letcase x = π1y in {x, x}

with π1 = {|0〉〈0|, |1〉〈1|}.
Let us apply those operators to the qubit ρ = 3

4 |0〉〈0|+
√
3
4 |0〉〈1|+

√
3
4 |1〉〈0|+

1
4 |1〉〈1|. We can check that the terms O1ρ and O2ρ have different interpretations
�·�. Let ρ− = ZρZ†, then

�(λy.letcase x = π1|+〉〈+| in {y,Zy})ρ�∅ = {(
1
2
, ε, ρ), (

1
2
, ε, ρ−)}

�(λy.letcase x = π1y in {x, x})ρ�∅ = {(
3
4
, ε, |0〉〈0|), (1

4
, ε, |1〉〈1|)}

However, they have the same interpretation �·�.

�(λy.letcase x = π1|+〉〈+| in {y,Zy})ρ�∅

=
1
2
ρ +

1
2
ρ−

=
3
4
|0〉〈0| +

1
4
|1〉〈1|

= �(λy.letcase x = π1y in {x, x})ρ�∅

Table 10. Trace of the terms O1ρ from Example 5.2 in λρ.

O1ρ

letcase x = π1|+〉〈+| in {ρ,Zρ}

letcase x = (0, |0〉〈0|) in {ρ,Zρ} letcase x = (1, |1〉〈1|) in {ρ,Zρ}

ρ Zρ

ρ−

1

1
2

1
2

1 1

1
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Table 11. Trace of the term O2ρ from Example 5.2 in λρ.

The trace of O1ρ is given in Table 10, and the trace of O2ρ in Table 11.
The first term produces ρ, with probability 1

2 , and ρ−, with probability 1
2 ,

while the second term produces either |0〉〈0| with probability 3
4 or |1〉〈1|, with

probability 1
4 .

However, if we encode the same terms in λ◦
ρ, we can get both programs to

produce the same density matrix:

O◦
1 = λy.letcase◦ x = π1|+〉〈+| in {y,Zy}

O◦
2 = λy.letcase◦ x = π1y in {x, x}

The traces of O◦
1ρ and O◦

2ρ are as follow:

O◦
1ρ O◦

2ρ
= (λy.letcase◦ x = π1|+〉〈+| in {y,Zy})ρ = (λy.letcase◦ x = π1y in {x, x})ρ
� letcase◦ x = π1|+〉〈+| in {ρ,Zρ} � letcase◦ x = π1ρ in {x, x})
� (12ρ) + (12Zρ) � ( 34 |0〉〈0|) + (14 |1〉〈1|)
� ( 12ρ) + (12ρ−) � 3

4 |0〉〈0| + 1
4 |1〉〈1|

� 3
4 |0〉〈0| + 1

4 |1〉〈1|

6 Conclusions

In this paper we have presented the calculus λρ, which is a quantum
data/classical control extension to the lambda calculus where the data is manip-
ulated by density matrices. The main importance of this calculus is its inter-
pretation into density matrices, which can equate programs producing the same
density matrices. Then, we have given a second calculus, λ◦

ρ, where the density
matrices are generalised to accommodate arbitrary terms, and so, programs pro-
ducing the same density matrices, rewrite to such a matrix, thus, coming closer
to its interpretation. The control of λ◦

ρ is not classical nor quantum, however it
can be seen as a weaker version of the quantum control approach. It is indeed
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not classical control because a generalised density matrix of terms is allowed
(
∑

i piti). It is not quantum control because superposition of programs are not
allowed (indeed, the previous sum is not a quantum superposition since all the
pi are positive and so no interference can occur). However, it is quantum in the
sense that programs in a kind of generalised mixed-states are considered. We
preferred to call it probabilistic control.

As depicted in Example 5.2, the calculus λ◦
ρ allows to represent the same

operator in different ways. Understanding when two operators are equivalent is
important from a physical point of view: it gives insights on when two different
physical processes produce the same dynamics. To the best of our knowledge, it
is the first lambda calculus for density matrices.

Future work and open questions. As pointed out by Bǎdescu and Panan-
gaden [8], one of the biggest issues with quantum control is that it does not
accommodate well with traditional features from functional programming lan-
guages like recursion. Ying [26] went around this problem by introducing a recur-
sion based on second quantisation. Density matrices are DCPOs with respect to
the Löwner order. Is the form of weakened quantum control suggested in this
paper monotone? Can it be extended with recursion? Could this lead to a con-
crete quantum programming language, like Quipper [16]?

All these open questions are promising new lines of research that we are
willing to follow. In particular, we have four ongoing works trying to answer
some of these questions:

– The most well studied quantum lambda calculus is, without doubt, Selinger-
Valiron’s λq [22]. Hence, we are working on the mutual simulations between
λρ and λq, and between λ◦

ρ and a generalisation of λq into mixed states.
– We are also working on a first prototype of an implementation of λ◦

ρ.
– We are studying extensions to both λρ and λ◦

ρ with recursion and with poly-
morphism.

– Finally, we are studying a more sophisticated denotational semantics for both
calculi than the one given in this paper. We hope such a semantics to be
adequate and fully abstract.

Acknowledgements. We want to thank the anonymous reviewer for some important
references and suggestions on future lines of work.
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