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This paper presents an analysis of the parameters of highly-excited electron subsystem of aluminum,
appearing e.g. after swift heavy ion impact or laser pulse irradiation. For elevated electron temperatures,
the electron heat capacity and the screening parameter are evaluated. The electron-phonon approxima-
tion of electron-lattice coupling is compared with its precise formulation based on the dynamic structure
factor (DSF) formalism. The DSF formalism takes into account collective response of a lattice to excitation
including all possible limit cases of this response. In particular, it automatically provides realization of
electron-phonon coupling as the low-temperature limit, while switching to the plasma-limit for high
electron temperatures. Aluminum is chosen as a good model system for illustration of the presented

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

High energy deposition into a solid by swift heavy ions
decelerated in the electronic stopping regime (SHI, M >20m,,
E>1MeV/amu, m, is a proton mass) allows to achieve extreme
levels of excitation of its electron subsystem. The temperature of
the electron ensemble can rise up to several Fermi energies in
the nanometric vicinity of the ion trajectory (SHI track) at the
femto- to pico-second timescale after an ion passage [1,2]. Similar
levels of electronic excitations are reached on the micrometer scale
during irradiations of solids with femtosecond free-electron lasers
(FEL) [3-6]. Subsequent relaxations of the excited electron subsys-
tem results in energy and momentum transfer into the lattice that
may lead to unusual nanometric structural and phase transforma-
tions in an irradiated material [1-6].

Taking into account fast and large increase of the temperature
of delocalized electrons appearing after high energy deposition,
the Two Temperature (Thermal Spike) Model (TTM, TSM) is often
used to describe possible lattice heating by the ensemble of hot
electrons [1,2]. The relative “simplicity” of TTM provides its popu-
larity in the society [1,2].

However, macroscopic models or fitting procedures are
often applied to determine the key parameters of TTM, e.g. the
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dependence of the electron-lattice coupling factor on the temper-
ature of the ensemble of delocalized electrons. Taking into account
the ultrashort temporal and spatial scales of TTM in SHI tracks,
such choosing of the parameters may stimulate reasonable doubts
in results of application of the model to simulations of lattice exci-
tation (see, e.g. [7,8] or [9,10]).

This paper is aimed to supply researchers using TTM with these
parameters calculated rigorously. Aluminum was chosen as a
model system for demonstration of these dependencies. The main
efforts are focused on the dependence of the electron-lattice cou-
pling factor on the temperature of the ensemble of delocalized
electrons generated in a SHI track. The electron-phonon mecha-
nism is often used to describe electron lattice coupling in SHI
tracks/laser spots. However, the time of cooling of the electronic
subsystem of a solid in a nanometric SHI track is shorter than, or
on the order of, the characteristic time of atomic oscillations in a
lattice [7-10]. This makes an application of the electron-phonon
mechanism questionable for the description of interaction of hot
electrons with a lattice in a SHI track. We compare results of appli-
cations of the electron-phonon approximation with the general
formulation of electron-lattice coupling based on the dynamic
structure factor (DSF) formalism [11]. DSF takes into account in a
quantitative way effects of all the spectrum of spatial and temporal
correlations in the atomic dynamics on lattice excitation. In partic-
ular, it automatically provides realization of electron-phonon
mechanism as the low-temperature limit, while switching to the
plasma-limit for high electron temperatures.
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The molecular dynamics (MD) procedure is developed to calcu-
late the DSF and to simulate the kinetics of lattice excitations at the
sub-picosecond timescales as well as to obtain the dependence of
the electron-lattice energy transfer rate on the electron tempera-
ture. Additionally, the other necessary parameters for the TTM,
namely the electron heat capacity and the screening parameter
as functions of electron temperature are obtained taking into
account the realistic density of states of solid aluminum.

2. Electron-lattice energy transfer rate, electron heat capacity
and screening in aluminum

Due to the screening effect and high Fermi energy, the kinetic
energies of conduction-band electrons in aluminum are larger than
the energies of their interaction, and the one-electron approxima-
tion can be used to describe the state of this electron ensemble. The
rate of electron-lattice energy exchange, Q. ;, is given by the
moment of the one-electron kinetic equation [9]:

n ki 90
Qe :ng /fkl(l _fk/)hwE mdkidkﬂ (1)

Here o is the cross section of an electron scattering on the ion sub-
system; f, is the distribution functions of electrons (f} = fi is the
Fermi function in case of local equilibrium); Q is the solid angle
of electron scattering; k; and k; are the initial and final wave vectors
of an electron; hw = h;;i - % is the change of the energy in the
free-electron approximation, which works very well for aluminum;
m, is the free-electron mass.

The first Born approximation is applicable when describing cou-
pling of a lattice with the excited ensemble of delocalized electrons
in a SHI track [ 10]. Within this approximation, the differential cross
section is factored into the cross section of electron scattering on
an isolated atom and the “charge-charge” dynamic structure factor
(DSF) of a target. DSF describes effects of spatial and temporal cor-
relations in positions and dynamics of lattice atoms on electron
scattering [11]:

>’ . m2 ke
sootheo) M g 1

(K, w). (2)

Here V(K) is the spatial Fourier transform of the interaction poten-
tial between an electron and a single atom of a target; k = k; — K is
the change of the wave vector of a scattered electron.

The Fourier transform of the atomic spatial and temporal pair
correlation function G(r,t) determines the DSF [11]:

Sk, w) = % / dtdr expli(ke — wt)|G(r, t). 3)

were N is the number of scattering atoms.
In the classical approximation of the lattice dynamics, G(r, t) is
reduced to the simple form [12]:

N
Gir.1) =§,<Za<r+ki<0> Rj<t>>>. @

ij=1

where R;(0) is a coordinate of an i-th atom at the initial time, R;(t) is
a coordinate of a j-th atom at the time instance ¢, {...) is a statistical
averaging over the atomic ensemble. The following correction
should be introduced into the classical DSF S, (k, w) in order to sat-
isfy the necessary quantum-mechanical asymmetry [13-16]:

(ha/T)

St ) = T = haoy Tyl

Sa(k, w). (5)

where Tl is the lattice temperature

Combining Egs. (1)-(5), the following formula for the energy
transfer rate can be obtained:

— 4 ) 2[feq eq
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where E, = (h’K?)/2m, is the energy of an electron. The Fermi func-
tion f3(T,) is used to describe the electron ensemble at different
temperatures.

Eq. (6) demonstrates that the calculation of the energy transfer
rate needs the electron temperature dependencies of the interac-
tion potential (screening length Lg(T,)) and the chemical potential
of the electron ensemble. Realization of TTM model also requires
knowledge about such dependencies of the electron heat capacity,
C¢(Te), and the electron heat conductivity. The last one is beyond
the scope of the present paper.

The density of states (DOS, D(E)) of the ensemble of delocalized
electrons in a material determines the forms of these dependen-
cies. We took the realistic DOS of aluminum from [17], where it
is normalized to 3 electrons per aluminum atom.

Below we present the dependencies of the electron heat capac-
ity and the screening lengths on the temperature of the electron
ensemble in the conduction band of aluminum. The temperature
dependence of the chemical potential p(T,) we calculated coincides
exactly with that given in [17].

The electron heat capacity is determined by:

Ce(Te) = /0 N %ﬁ‘“mn(afsdb‘ . 7)

Numerical solution of Eq. (7) gives the temperature dependence
of C¢(T.) presented in Fig. 1. This dependence is close to that
obtained from DOS of a free electrons gas. Deviations between
these dependencies occur at low temperatures, where effects from
peculiarities of DOS structure are more pronounced. The electron
heat capacity in [17] underestimates the temperature dependency
of Co(T,).

The screened Coulomb potential (Yukawa potential [18]) was
chosen to describe the interaction of an electron with a lattice
atom:

e
V(r):Z7e s, (8)

Here e is the electron charge, Z-e is the charge of a lattice ion, Ls is
the screening length determined according to [19-21] as:
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Fig. 1. Calculated electron heat capacity in aluminum vs those calculated in [17]
and free electron gas approximation.
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Fig. 2. Temperature dependence of the calculated screening parameter in the
ensemble of conduction band electrons in aluminum vs Debye screening (black
dashed curve) and Fermi screening (blue dash-dotted curve). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Here ks is the inverse screening length, and &g is the vacuum per-
mittivity in the SI units. Eq. (9) automatically produces the limit
cases of the screening at low and high electron temperatures:

- { (e2/&9) x D(Ef), Fermi-screening (T, < Ey)

= 10
5 e’n,/&Te., Debye-screening (T, > E;) (10)

In case of the free-electron gas, the low-temperature limit can
be rewritten in a more familiar form of the Fermi-screening as

K = (ezmelq)/(so#hz), taking into account the value of DOS

at E = E. The temperature dependence of the screening as well as
its high- and low-temperature limits for conduction band electrons
of aluminum are presented in Fig. 2.

It should be noted that the results from [19] are higher than
ours by a factor of /2. It should be also mentioned that as
described in [22], coupled electron-lattice modes can contribute
as an additional screening. Thus, we will analyse below an effect
of such increased screening on electron-lattice coupling.

3. Limit cases of dynamical response of a lattice to excitation

Two main limit cases of dynamical reaction of coupled ensem-
ble of atoms to excitation can occur depending on the interaction
time of an incident electron with a dynamically coupled lattice
volume [11].

3.1. Instantaneous approximation

When the interaction time of an electron with a dynamically
coupled lattice volume is shorter than the characteristic time of
correlation in the atomic dynamics (atomic oscillation (phonon)
time), the DSF can be written in the instantaneous approximation
assuming the lattice as dynamically independent atoms frozen in
their current positions [11]:

Sinst (K, @) = S(K)o() — Sia(K)o(@) + Sia(K, ) . (11)
Here S(k) = [ S(k, w)dw is a geometrical structure factor of a lattice,

and S;y the ideal-gas DSF which can be obtained by the asymmetri-
zation (see Eq.(5)) of its classical approximation [23]:

M Mao?
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3.2. Harmonic (phonons) approximation

When the time of interaction with a dynamically coupled lattice
volume is longer than the atomic oscillation (phonon) time, DSF
can be calculated assuming small harmonic oscillations of lattice
atoms near their equilibrium positions [24]:
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where Ry, is the position of n; -th unit cell; r;; is the equilibrium
position of & -th atom in the n; -th unit cell; the indices n; and n;
are varying from 1 to the number of unit cells Ny; the indices ¢;
and ¢; are running from 1 to p, the number of atoms in the unit cell;
ng is the number of occupied phonon states characterized by the
wave vector q; M is a mass of a lattice atom. The quantity A is
defined as

_ %Zucem\z, (14)

which gives A = 4 for aluminum within the assumed independence
of the phonon polarization vector e” from the index p. Wpy is the
Debye-Waller factor:

Ahk? 1 1
= 2MN & @{"(q”i}' (15)

As it will be demonstrated below, the MD model and numerical
technique applied in this paper take automatically into account
realizations of these two limit cases, as well as other cases of the
dynamical response of the lattice interacting with a relaxing
ensemble of electrons characterized by different temperatures.

WDW

4. Electron-phonon energy transfer rate

In order to compare our results with those of other groups we
repeated calculations made in [19] for a wide range of electron
temperatures. The rate of the energy transfer determined there
in the framework of the electron-phonon coupling model (see
details in [19]):

Qei= / | @D(E)EdE = / I,_pwD(E)EdE, (16)
0 t 0
where
i E +E
leoph =7 Z "h FiM2 onOc_pndEph. (17)
0 +
e E
M., = oh (18)

280 @2 + K2

where M,_,;, is the matrix element of the electron-phonon scatter-
ing within the jelly-model [20,25], and

Ousy = {1,for[q2+k2 — K}E£Ey)|/(2kq) € [-1;1] e
0, otherwise
F* = f(E+ Ep)[1 — f(E)][g(Epn) + 1/2 £1/2]
—f(E)[1 - f(E £ Epn)l[g(Epn) +1/2F1/2], (19.2)



S.A. Gorbunov et al./Nuclear Instruments and Methods in Physics Research B 354 (2015) 220-225 223

where g(Ep) is the phonon Bose-function; Ep, and g are the phonon
energy and momentum; k is the electron momentum, and k(E + E,)
is the electron momentum corresponding to the electron energy

E + Eypy; Dop(Epn) = (Ef,h) / (2n2h3 zzg) is the DOS of the longitudinal

acoustic phonons within the Debye approximation [19]; v =

6420 m/s is the sound velocity in aluminum; Ep = h?/s(annm)l/3

is the Debye energy; ng, is the atomic density. Electron momentum
was calculated within an effective one-band dispersion approxima-

1/3
tion, obtained from DOS of electrons as k(E) = (anng(.s)ds) !
[19].

5. MD calculation of the DSF

Molecular-dynamic (MD) simulations are applied to obtain the
lattice pair correlation function G(r, t) for aluminum in the classical
approximation (4). The original MD code uses the velocity Verlet
scheme of the second order [26] with the time-step 1 fs to trace
trajectories of atoms. Periodic boundary conditions are applied in
the MD algorithm for calculations of forces acting on atoms as well
as of the pair correlation function G(r, t). Standard averaging tech-
nique [26] based on the ergodic hypothesis was employed to
restore G(r,t) from the results of MD simulations:

1 nr. N

Gr,t) =—> "> o[r+Ri(t,) —Ry(t, +1)] , (20)
Ny 1=1ij=1

where #; is the number of time steps of averaging (1, ~ 10°). We
varied the distance r from 0 to 30 A that coincides with the size of
the dynamically coupled lattice volume in aluminum (see below),
and time t in the range from —10 ps to 10 psin Eq. (20). The damping
function method [27] was used to suppress spurious ripples result-
ing from truncation of numerical integration in Eq. (3) when calcu-
lating the DSF from Eq. (20). Then, the asymmetry modification (5)
is introduced for the calculated DSF. This MD algorithm of the DSF
calculation was already verified against experimental data in [10].

6. Electron-lattice coupling factor

The charge of aluminum ions in the lattice was considered to be
Z = 3. Three electrons from each lattice atom gave the concentra-
tion n.=1.8 x 102> cm~3 of the conduction-band electrons in a
crystalline aluminum.

Let us mention that the DSF is 4-dimensional function defined
for all possible values of k and w. Formally, it means that any
energy ha and momentum hk can be transferred from a scattering
electron to the lattice. But restrictions appear from the applied
kinematics and the dispersion laws of particles/quasiparticles par-
ticipating in scattering events. In the phonon approximation of the
lattice dynamics, the maximum energy fico and momentum hk
transferred to the lattice in one act of scattering are limited by
the maximum phonon wave vector k;,'}fx and maximum phonon
energy hwf*. To account in the integration of Eq. (6) (the elec-
tron-lattice energy exchange rate Q._;), we split the electron ener-
gies into two intervals. For electrons with energies lower than a
threshold energy Eg, (Ex < Ewr), Which means the interaction times
with the dynamically coupled volume are larger than the atomic
vibration time, the maximum wave vector k and energy hw trans-
ferred to the lattice are restricted by the maximum wave vector
and the energy of a phonon in the lattice. In the “instantaneous”
approximation of the lattice dynamics for scattering of electrons
with the larger electron energies (Ex > Egr), we do not assume lim-
itations additional to those of the kinematics of a binary collision.

To estimate the size of the dynamically correlated volume for
aluminum, we calculated mean scalar product of displacements

of atoms from their equilibrium positions depending on the
distance between these atoms. The product is not equal to zero
(correlated atomic dynamics) when this distance does not exceed
leorr =~ 30 A (7-cells). The maximum (threshold) value of the inter-
action time necessary for realization of the instantaneous approx-
imation was chosen much shorter than the atomic vibration time
tinse =~ 1fs < (a)osc)’l. For this time t;,;; and the correlation length
leorr =~ 30 A, the threshold electron energy E; ~ 15 eV separates
the phonon and instantaneous approximations of the dynamic
response of the lattice of aluminum. Taking this into account, we
apply the “phonon restrictions” in the integration limits in Eq (6)
with MD-calculated DSF of aluminum when Eyx <15eV and the
“binary-encounter” limits for E, > 15 eV.

The electron-lattice coupling factor is commonly used in TTM
to characterize the electron-ion energy transfer rate [17]:

_ Ok 1, 1
Bei = 90 T, —T, =

Fig. 3 presents comparison of the MD calculated electron-lattice
coupling factor with those calculated under harmonic and instan-
taneous approximations. This figure demonstrates that the behav-
ior of the coupling factor based on MD-DSF is very similar to its
harmonic approximation at T, < 10* K. At T, > 3 - 10° K, the g-factor
based on MD-DSF is similar to that calculated in the framework of
the instantaneous approximation (plasma limit). The temperature
dependence of the electron-lattice coupling factor based on
MD-DSF in the transitional region 10* K < T, < 3 - 10° K differs from
the both limit cases.

Fig. 4 compares the electron-lattice coupling factors calculated
in the phonon-approximation of [17,19] for Al at the lattice tem-
perature T; =300 K with the results of MD-DSF calculations. The
experimental data [28-30] are also shown in Fig. 4.

One can also see in Fig. 4 that the results of application of the
electron-phonon approximation, curve (3), are similar to the
MD-DSF calculations, curve (1), only in the intermediate region
(10% K-10% K). Indeed, for the higher electron temperatures, the
DSF-obtained transition to the plasma limit is not recovered within
the phononic approximation. On the other hand, on lower
temperatures, the MD-DSF calculations take into account all the
anharmonisities, as mentioned above. As a result, the phononic
approximation decreases much faster with decrease of the electron
temperature.

The results demonstrate that our MD-DSF curve (1) exceeds the
experimental points and curves calculated by other groups by a
factor of two or three at low electron temperatures (T, < 10* K).
This difference can be related to the following:

(21)

— = Instanteneous approxamation of the DSF
MD calculated DSF

= « —Harmonic approximation of the DSF

(=
(=}
L

wn
(=}
!

-

'S
S
L
'

Al X

g, (10" Iy m” sec’ K)
w
(=]

0.1 1 10 I(I)O
Electron temperature T 10'K)

Fig. 3. Electron-lattice coupling factor in aluminum as a function of the electron
temperature obtained within different approximations.
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Fig. 4. The electron-lattice coupling factor in aluminum measured in experiments
vs those calculated in the framework of different models.

(a) The experimental points from [29,30] (g, ; factor at
T. = T; = 300 K) differ by more than a factor of two from that
obtained in the experiment [28] and from all the calcula-
tions. It can be, perhaps, associated with different tech-
niques used in [28-30] and with various parameters of the
laser sources applied in these experiments in order to
extract g, ; — factor. It should also be noted that the model
assumptions (based on the two-temperature model) were
used in order to extract the value of the g, ; - factor from
the experimental raw data in [28-30]. Therefore, indepen-
dent verifications and/or analyses of the experimental
results are very desirable.

(b) The authors of [17] used the experimental point from [28] to
adjust their calculated g, ; - factor at T, = T; = 300 K, shown
in Fig. 4 as curve (5).

(c) MD-DSF procedure takes into account all the possible collec-
tive modes of the lattice: phonons, anharmonic contribu-
tions to the lattice dynamics, etc., that increase, in
comparison to [17] and [19], electron-lattice coupling at
low electron temperatures (T, < 104 K).

(d) It was demonstrated in [22] that effects of coupled modes
(an interaction of collective electronic modes with collective
atomic modes) provide an additional screening of electron-
atom interaction. Our calculations match the experimental
points when taking into account this effect by multiplying
the square of the inverse electronic screening length (Eq.
(9)) by a factor of 2, as it was done in [19]; compare the
curve (2) to the original curve (1) in Fig. 4. The same is done
also for calculation in our phononic approximation for com-
parison, which also significantly improves its coincidence
with experimental points, see curve (4) vs curve (3).

At last, we should mention that the present model assumes con-
stant electron density in the conduction band of aluminum. For the
electron temperatures above ~5 x 10° K ionization of L-shell of alu-
minum starts (ionization potential is 72.6 eV [31]). Therefore,
although our model demonstrates correct transition to the instan-
taneous approximation (plasma) limit, in practical applications of
the model possible variations in the electron density at high elec-
tron temperatures must be included (by means of, e.g. Saha
equation).

7. Conclusions

The parameters of highly excited ensemble of electrons in the
conduction band of aluminum (the electron heat capacity, the

screening length and the chemical potential) are calculated from
the realistic density of states. Dependence of the electron-lattice
coupling factor on the temperature of the electron ensemble is
demonstrated. The different branches of this dependence occur
due to different dynamical responses of a lattice to excitations by
scattering electrons of different energies. The dynamic structure
factor (DSF) formalism is applied to describe this effect. The DSF
formalism takes automatically into account different collective
response of the lattice in electron-lattice coupling.

It is shown that the simplest electron-phonon approximation
fails dramatically on high electron temperatures tending to the
“plasma-limit”, while also being incomplete for low electron
temperatures.

Comparison with available experimental data demonstrates
that the effect of additional screening of the electron-lattice poten-
tial due to interaction of electron and lattice coupled modes plays
an important role, reducing the electron-ion energy exchange rate.

The presented calculated parameters can be used in two-tem-
perature modeling. The DSF-based procedure can be introduced
as an independent module into models and codes describing lattice
excitation and structure transformations in materials irradiated
with swift-heavy ions or intense laser pulses.
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