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Social media platforms, taken in conjunction, can be seen as complex 

networks; in this context, understanding how agents react to sentiments 

expressed by their connections is of great interest. Here, the authors show 

how Network Knowledge Bases help represent the integration of multiple 

social networks, and explore how information flow can be handled via belief 

revision operators for local (agent-specific) knowledge bases. They report 

on preliminary experiments on Twitter data showing that different agent 

types react differently to the same information — this is a first step toward 

developing tools to predict how agents behave as information flows in their 

social environment.

Reasoning about Sentiment 
and Knowledge Diffusion in 
Social Networks

Fabio R. Gallo, Gerardo I.  
Simari, Maria Vanina 
Martinez, and Marcelo A. 
Falappa
Departamento de Ciencias e 
Ingeniería de la Computación, 
Universidad Nacional del Sur 
(UNS) & ICIC (UNS–CONICET), 
Bahía Blanca, Argentina

Natalia Abad Santos
Departamento de Matemática, 
Universidad Nacional del Sur 
(UNS), Bahía Blanca, Argentina

S ocial media has without a doubt 
changed the way people and insti-
tutions communicate with each 

other; in particular, the flow of infor-
mation has been immensely affected by 
this revolution. Whereas just 15 years 
ago marketing or political campaigns 
solely relied on TV, radio, billboards, or 
flyers, today we can easily see a trans-
formed landscape, where political dis-
cussions and attention-hungry ads are 
staples of daily activity on Facebook, 
Twitter, YouTube, Instagram, Google1, 
LinkedIn, Pinterest, Tumblr, and others. 
A recent example of this is the 2016 
elections held in the United States, 
where Facebook and Twitter played 
an important role both in candidates’ 
efforts to communicate with their 

constituency1,2 and in the spread of 
so-called fake news stories.3,4 To under-
stand the extent to which social media 
played a role in the elections, it’s helpful 
to consider the fact that Donald Trump’s 
team was testing thousands of variants 
of their ads — 40,000 to 50,000 on usual 
days, and reaching 175,000 on the day the 
candidates engaged in their third debate.5

One useful way of looking at this 
landscape is through the lens of mul-
tiagent systems (MAS),6 which can be 
described as a software engineering 
metaphor for a set of autonomous enti-
ties called agents with a shared envi-
ronment. This metaphor is quite useful 
both for developing the basic machin-
ery underlying the problems that arise 
(logic-based reasoning, synchronization, 
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communication, uncertainty, learning, and so 
forth) as well as for implementation purposes.

In this article, we’re interested in adopt-
ing the MAS viewpoint to tackle the problem 
of reasoning about the diffusion of knowledge 
and sentiment in social media. The variety of 
options available make it necessary to model the 
underlying communication structure as a com-
plex network, in which nodes are agents and we 
have the capability to model multiple relations 
between them, as well as multiple attributes that 
label both the nodes themselves and the rela-
tions in which they participate. For instance, 
nodes could be labeled with gender (male or 
female, or richer non-binary categorizations), 

date of birth, phone number, and political views 
(again, either a simple binary flag or a richer 
structure), whereas examples of their relation-
ships are friends, coworkers, couples, family, 
pets, or between people and organizations ( jobs, 
support, and services such as gym member-
ship). Clearly, the potential to integrate many 
different data sources is enormous.

Social Knowledge Bases
In recent work,7 we proposed a model called 
Social Knowledge Bases (SKBs, for short) that 
was conceived from a series of desirable proper-
ties for systems that work with the kind of data 
that are produced by agents in social media 

Related Work

Networks have been used to model different kinds of dif-
fusion processes in real-world domains, such as epidem-

ics spreading through a population, cascading electrical power 
failures, marketing, and the spread of mutant genes. Many dif-
ferent disciplines therefore have studied variants of this model, 
such as biology,1 economics,2 physics,3 sociology,4 and of 
course computer science.5 As we mentioned in the introduc-
tion, more ad hoc models also quite recently have become cen-
tral to world events, as both the US presidential election and 
the Brexit vote were influenced by the use of social media.6,7

What distinguishes these models from complex networks is 
their expressive power — they lack the capability to represent 
multiple attributes of nodes and edges, model competing diffu-
sion processes, and others such as representing time. Our cur-
rent line of research continues the work of Paulo Shakarian and 
colleagues,8 where the authors propose a general formalism to 
model complex networks. Whereas their work focuses on cas-
cading processes, they don’t contemplate individual knowledge 
bases for each agent, and thus our work can be seen as a general-
ization. Our end goal is to build on these first steps — modeling  
how local revisions can be performed by agents — to eventu-
ally model the combination of these processes throughout the 
network as they give rise to cascades. The dynamics of how 
data and more general knowledge is communicated, processed, 
and adopted or rejected makes this problem quite difficult, as it 
generalizes the early models both in terms of expressive power 
and, consequently, the kinds of problems that must be solved. 
In prior work,9 we also analyzed how traditional belief dynamics 
operators could be applied toward a solution — the conclusion 
was that any straightforward application of such operators has 
serious flaws, because basic desirable properties are violated, 
so new machinery is needed to tackle the general problem of 
performing social revisions.

Finally, another related line of work is presented by  
Luciano Tamargo and colleagues,10 where belief revision is 
also studied in the multiagent systems setting considering the 
credibility or trust associated with each informant (agent) rep-
resented as a strict partial order among them. They define dif-
ferent kinds of change operators (expansion, contraction, and 
both prioritized and nonprioritized revision), and each opera-
tor is also able to modify the informant credibility according 
to new perceptions.
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environments. The unique combination of chal-
lenges in this setting involves, among others

• multiple attributes with different domain 
data types,

• multiple relations between agents,
• uncertainty stemming either from data inte-

gration (inconsistency/overspecification or 
incompleteness/underspecification) or from 
inherently uncertain information,

• reasoning with agents’ preferences,
• dealing with groups of agents as agents in 

their own right,
• computational tractability constraints,
• revising beliefs arising from interactions 

among the agents, and
• cascading processes (an action in the net-

work can have a “domino effect” and reach 
many other agents).

The main focus of this article is on the last 
two points, which refer to issues arising from 
the way in which information flows in the net-
work, as well as how agents dynamically react.

Data and Belief Dynamics
The problem of modeling how knowledge bases 
(KBs, for short) change in response to differ-
ent kinds of events is commonly known as 
belief dynamics; in particular, deciding how to 
integrate an epistemic input into a KB is called 
belief revision. The latter has been studied from 
the point of view of KBs comprised of formulas 
closed under consequence (called belief sets)8,9 as 
well as not closed (called belief bases)10,11 — for 
a survey on different aspects of belief revision, 
see Pavlos Peppas’s work.12 When the epistemic 
input is a set instead of a single sentence (use-
ful, for instance, to combine different sources of 
information), we use the term belief merging13-16 
or multiple change16 instead.

As we mentioned in the introduction, one 
of the key aspects of interactions that arise 
among agents in a social media environment 
is the dynamic aspect of information — in par-
ticular, we’re interested in agents’ beliefs, which 
can be analyzed by observing the content they 
share, as well as the sentiments they express 
while doing so. In prior work,17 we describe a 
formalization of a special kind of SKB that we 
call Network KBs (NKBs, for short) dealing spe-
cifically with this problem. Informally, NKBs 
are directed graphs G 5 (V, E), where vertices 

represent agents and edges represent their rela-
tionships, augmented with the following:

• Labeling functions lvert and ledge for vertices 
and edges, respectively. Vertices are labeled 
with attributes and their values, and edges 
are labeled both with attributes and val-
ues, as well as a number in the [0,1] interval 
expressing the relationship’s weight.

• A local knowledge base for each agent, rep-
resenting its current set of beliefs. The lan-
guage used to represent such knowledge 
can vary in expressivity; in this work, we’ll 
assume they’re expressed in propositional 
logic.

• A set of constraints characterizing situations 
that shouldn’t be possible; they’re comprised 
of formulas that can make reference both to 
the network structure and the agents’ KBs. 
These can be simple data constraints such 
as vertices having more than one spouse (if 
this is a valid constraint in the domain being 
modeled), or they can be more complex, 
such as the fact that two very close friends 
shouldn’t disagree on certain aspects.

Figure 1 shows a sketch of how an NKB 
models the integration of social network data. 
The details of this creation process are outside 
the scope of this article, because it’s mainly a 
knowledge engineering task — for instance, 
determining the degree to which one user fol-
lows another, or populating the local KBs. Here, 
we’re primarily interested in the challenges that 
arise when NKBs are already available to use as 
reasoning tools.

Content posted by agents to their social 
media sites are modeled by what we call news 
items, which are simply triples of the form 
agent, content, action, where content repre-
sents pictures, videos, status updates, links, 
comments, and likes, and action is either add 
or remove. When an agent checks its feed, it’s 
subject to a set of zero or more such news items, 
and must perform a local revision to see if any 
changes must be made to its individual KB.

Example 1. Consider a typical scenario in 
which presidential elections will be held soon, 
and there are two prominent candidates, A and 
B. Alice thinks that candidate A is the better 
option for her country than B — we can repre-
sent this fact with a; so we have a in Alice’s KB. 
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George tweets that candidate A plans to reduce 
the budget for education if they win (and so he is 
against A, denoted with ¬a); on the other hand, 
BBC posts both on Facebook and Twitter that 
candidate A is concerned about low academic 
achievement and they plan to increase the bud-
get by 10 percent (a support for A). These news 
items can be represented with George, ¬a, add 
and BBC, a, add.

The Revision Process
Any belief revision process is characterized by 
what are called revision operators; in our set-
ting, we identify two such processes, one that’s 
performed at the local level, where agents receive 
news items from their social media feeds (which 
causes them to revise their local KBs), and one 
that’s performed at the global level (which can 
potentially have effects throughout the entire 
NKB, including the network structure). Figure 2 
shows an overview of the overall process: the 
system evolves in a loop — in the current state, 

agents receive news items from their social 
media feeds, and revise their local KBs. Once 
this process has finished, a global operator is 
applied to the entire NKB to address any vio-
lations of constraints. Note that we’re assuming 
synchronicity among independent local opera-
tors — this isn’t an essential assumption, and we 
could apply the global operator either at regu-
lar intervals or whenever certain conditions 
are met. In this setting, there will inevitably be 
intermediate steps in which the NKB is incon-
sistent (that is, some of the constraints in the 
NKB might be violated).

In the remainder of this article, we’ll focus 
solely on the local revision process. Therefore, 
here, social revision operators take as input an 
NKB, denoted D; a local KB belonging to a node v 
in D, denoted K(v); and a set of news items that 
we call the epistemic input, denoted P. The out-
put of such operators is a new (modified) NKB: 
we’ll denote the output with D9 and therefore the 
modified local KB corresponding to v with K9(v).

Figure 1. The Network Knowledge Base (NKB) model provides a way to represent the result of integrating information 
from multiple sources. Here, we have three social networks that share users; dashed, dotted, and full arrows denote 
relations in Instagram, Twitter, and Facebook, respectively. On the right, we show the resulting NKB, comprised of a 
complex network augmented with local KBs for each node. Edge and node labels store additional information, such 
as the fact that George follows the BBC to a larger degree on Twitter than Facebook, or that Paul is a 35-year-old man 
who lives in London. We only show examples of node labels for a small subset to aid readability.
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Desirable Properties for Social  
Revision Operators
Following the way in which traditional belief 
revision operators are constrained by estab-
lishing desirable properties (called postulates), 
we propose a set of new ones especially suited 
for our setting. Some of them are based on the 
same ideas that can be found in classical pos-
tulates; however, given the richer format of the 
epistemic input, their formalization requires 
extensive adaptations. On the other hand, the 
last four postulates are completely novel and 
specific to NKBs. It should be noted that these 
properties need not all be satisfied by every 
operator; as we’ll see, different operators arise 
depending on the subset of properties they 
enjoy. Let K(v) be the KB of agent v, P be the 
epistemic input, and K9(v) be the revised KB of 
agent v:

• Inclusion. K9(v) is a subset of the union of 
K(v) together with all literals in P. Thus, no 

unwarranted information should be added as 
part of a revision.

• Success. If this property holds, the epistemic 
input is guaranteed to be accepted; so, the 
changes contained in P are materialized in K9(v).

• Weak Success. Similar to Success, except 
that it only applies when the information in 
P is consistent with K(v).

• Consistency. K9(v) must be consistent.
• Vacuity 1. If e isn’t inferred from K(v), and 

all the news items in P that refer to e are of 
the form u, e, remove, then e shouldn’t be 
inferred from K9(v).

• Vacuity 2. As a kind of dual of Vacuity 1, 
this property states that if an element e is 
inferred from K(v), and all the news items in 
P that refer to e or ¬e are of the form u, 
¬e, remove or u, e, add, then e should be 
inferred from K9(v).

• Weak Vacuity 1. If e isn’t inferred from K(v), 
and none of the news items in P refer to e, 
then e shouldn’t be inferred from K9(v).

Figure 2. Overview of the local and global revision processes. Updates and news items can come from 
external sources or as the result of a global revision; for instance, in this case George and Alice are 
no longer friends on Twitter (perhaps because of a disagreement over the elections). This update can 
show up in their friends’ feeds and thus be part of the next set of local revisions.
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• Weak Vacuity 2. As a kind of dual of Weak 
Vacuity 1, this property states that if e is 
inferred from K(v), and none of the news 
items in P refer to ¬e, then e should be 
inferred from K9(v).

• Strong Congruence. If two sets of news items 
P and P9 are equivalent, the revision of K(v) 
by P and by P9 should be identical; that is, 
the result doesn’t depend on the syntax used 
to express the epistemic input.

• Weak Congruence. As a weaker version of the 
previous property, if two sets of news items 
P and P9 are identical with respect to the 
content they add, and P removes a superset 
of what P9 removes, then the revision of K(v) 
by P is a subset of the revision of K(v) by P9.

• Uniformity. If two sets of news items P and 
P9 are equivalent, then the revision of K 
by P and the revision of K by P9 should be 
identical.

• Majority. This property refers to the num-
ber of news items that are for and against a 
certain content e. If the positive items out-
weigh the negative ones, then e shouldn’t 
be inferred from K9(v); otherwise, e can’t be 
inferred.

• Weighted Majority. A generalization of the 
previous property, which allows votes to 
be weighted according to the relationship 
between the agent performing the revision 
and the origin of each news item.

• Local Effect. Applying an operator must not 
have any effect on other nodes’ KBs; so, K9(u) 5  
K(u), for every node u different from v.

• Structural Preservation. No vertex, edge, 
or label is modified by a local revision 
operation.

Working with this list of properties, we focus 
next on proposing different classes of operators, 
depending on which ones they satisfy.

Classes of Operators
We begin with a bare minimum, consider-
ing that all operators should satisfy Structural 
Preservation, Local Effect, Consistency, Unifor-
mity, and Inclusion; such operators are called 
minimal.

• A minimal operator is called Restrained if it 
satisfies Strong Congruence, Vacuity 1, and 
Vacuity 2. This is the most constrained kind 
of operator — it only has a few opportunities 

to take any kind of liberty in how the revi-
sion is performed.

• A minimal operator is called Weakly 
Restrained if it satisfies Weak Congruence, 
Weak Vacuity 1, and Weak Vacuity 2. As 
a weaker form of the previous class, these 
operators can make different revision deci-
sions, such as removing an element from the 
local KB when all news items received actu-
ally delete its negation.

• A minimal operator is called Social if it sat-
isfies Weak Success and either Majority or 
Weighted Majority. This class focuses mostly 
on the opinions of others instead of con-
straining how revisions are made by logical 
properties.

Next, we’ll look at how agent types can be 
defined.

Agent Types
Having formulated a general set of properties 
for local NKB revision operators, we now focus 
on the next steps in the process of materializing 
them in actual applications. Figure 3 depicts 
this process, which is essentially an iterative 
refinement that moves from the formulation 
of postulates to algorithms designed to satisfy 

Figure 3. A schematic view of the relation among postulates, 
operator construction, and empirical evaluation/real-world 
applications.
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certain subsets of the postulates, and then to 
concrete instantiations of such algorithms; the 
circle closes when real-world feedback informs 
the formulation and choice of theoretical prop-
erties. This process is akin to the spiral-based 
models of software development in general.

After tackling the theoretical characteriza-
tion in the previous section, we now move to an 
initial study of how local NKB operators can be 
applied in a real-world domain. We perform this 
step out of order in this first iteration — the goal 
of this effort is to inform the initial construc-
tion of general algorithmic characterizations 
by selecting appropriate subsets of postulates 
according to types of users that we can recog-
nize in an actual dataset. Toward this end, and 
as an orthogonal classification of how revisions 
are performed, we propose different classes of 
agents:

1. Credulous agents adopt all new knowledge 
that they see, even if it’s against their cur-
rent beliefs.

2. Incredulous agents are reluctant to incorpo-
rate new knowledge appearing in their feeds, 
regardless of whether it has any relation 
with their previously held beliefs.

3. An agent with herd behavior accepts all new 
information, as long as there are enough 
agents adopting it.

4. A blind follower agent accepts all new 
knowledge, as long as it’s shared by others 
that are close enough to it.

5. Cautious agents don’t immediately adopt 
new knowledge, but rather wait until enough 
reasons to do so are presented.

6. Self-confident agents give more value to 
their previously held beliefs, making it diffi-
cult for them to incorporate new information 
that contradicts them.

These types of agents allow us to define a set 
of orthogonal personality traits that each agent 
can be characterized by, such as Credulous-
ness, Cautiousness, and Self-confidence. Each 
agent will then have a value for each trait, and 
together these values define their type.

Example 2. Consider again the scenario from 
Example 1. Because George and Alice are friends 
on Twitter and she follows BBC on Facebook, 
Alice receives news items with both a and ¬a, 
and revises her KB with these inputs. Suppose 

Alice decides to use the weights of her relations 
to assign importance to posts, and thus decides 
to favor BBC’s post instead of George’s tweet. As 
a result, a still belongs to K(Alice); if the revi-
sion were global, Alice could also decide to de-
friend George on Twitter (see Figure 2). Here, we 
could perceive Alice as a self-confident user, 
because she prefers to keep her prior beliefs 
unchanged. Her behavior is also in agreement 
with an operator that satisfies the Weighted 
Majority postulate.

Experimental Evaluation Using 
Twitter Data
We carried out a preliminary empirical evaluation 
to study (and discover) the presence of the afore-
mentioned types of agents in real-world data, 
with the future objective of grounding and refin-
ing the revision operators in order for them to be 
applicable as models of how agents immersed in 
social networks behave (see Figure 3).

Our dataset is comprised of 18,292,721 tweets 
posted between 15 July 2013 and 25 March 
2015; of these, 16,780,489 are in English —  
in this first analysis, we focus only on these. 
Hashtags are present in 5,107,986 tweets, and 
there are a total of 136,809 distinct hashtags. 
Finally, the dataset also includes information 
regarding who each user follows. This data was 
collected with the purpose of analyzing various 
election periods in India; note that the objective 
of our experiments is to analyze user behav-
ior with respect to incoming information — the 
actual content of the tweets, or the domain itself 
therefore isn’t relevant, and the same kind of 
analysis could be performed on other datasets.

The main objective of the present empirical 
study was to show that by analyzing how infor-
mation flows in a social network such as Twitter, 
we can build a map of users that indicate their 
type (as we introduced in the previous section). 
This is valuable information to have, because 
knowing an agent’s type is the first step toward 
understanding their behavior, and ultimately 
making predictions about it. Toward this end, 
we used hashtags as proxies for the knowledge 
of interest conveyed in the tweets — in future 
work, we’ll generalize this by analyzing content 
more deeply via, for instance, entity extraction 
and keywords. To understand the way in which 
each hashtag is referred to, we carried out sen-
timent analysis using PHPInsight (see https: 
//github.com/JWHennessey/phpInsight). The 
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sentiment analysis over a given tweet yields 
one out of three possible results: positive, nega-
tive, or neutral.

To begin, we identified the 50 most preva-
lent hashtags, which appear in 1,466,169 dis-
tinct tweets by 337,492 users. Out of these 
users, we selected the 10 that had the most 

activity to analyze their behavior with respect 
to the hashtags they see in their feeds; it’s easy 
to expand this number, but we kept it low for 
presentation purposes. For each of these users, 
we analyzed the sentiment of the tweet via 
which each hashtag reached their feed (positive, 
negative, or neutral), and then analyzed how 

Table 1. Summary of agent activity when receiving news items from their connections.*

Agent Sentiment distribution (received) Average behavior (tweeted)

a1 32% / 19% / 49% 21% (76% / 3%)
2% (95% / 3%)
70% (24% / 6%)

a2 33% / 17% / 50% 7% (93% / 0%)
14% (86% / 0%)
90% (10% / 0%)

a3 33% / 18% / 49% 6% (79% / 15%)
0% (82% / 18%)
78% (6% / 16%)

a4 31% / 23% / 46% 67% (7% / 26%)
0% (70% / 30%)
6% (65% / 29%)

a5 26% / 19% / 55% 0% (70% / 30%)
0% (54% / 46%)
59% (0% / 41%)

a6 44% / 2% / 44% 0% (75% / 25%)
0% (50% / 50%)
75% (0% / 25%)

a7 34% / 16% / 50% 0% (72% / 28%)
0% (60% / 40%)
73% (0% / 27%)

a8 11% / 2% / 87% 0% (90% / 10%)
0% (65% / 35%)
97% (0% / 3%)

a9 33% / 22% / 45% 2% (59% / 39%)
3% (68% / 29%)
56% (6% / 38%)

a10 33% / 18% / 49% 7% (91% / 2%)
17% (80% / 3%)
79% (19% / 2%)

* The second column contains the distribution of the sentiment in the tweets seen by each agent (positive, negative, and 
neutral, respectively). The third column describes how the agent reacted: the first line contains the percentage of times 
that it was also positive, while in parentheses we include first the percentage of times that it changed the sentiment and 
second the percentage of times it didn’t use the hashtag at all; the other two lines are analogous for negative and neutral.
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the user reacted — the possible reactions were 
to tweet using the hashtag (again, with positive, 
negative, or neutral sentiment) or to not use 
that hashtag in any of their subsequent tweets.

Table 1 shows the results; for each agent, the 
table summarizes how they behaved on average 
over all hashtags, and provides clues as to their 
types. For instance, agent a8 is likely to be of 
the type self-confident: it never reuses hashtags 
with the same sentiment when it receives them 
with positive or negative — instead, it uses a 
different sentiment 90 percent and 65 percent 
of the time, respectively. Other agents (a3, a5, 
a6, a7, and a9) exhibit similar behavior; this 
makes sense, because we chose the most active 
users, who are presumably highly opinionated 
individuals. Expanding the number of users in 
further experiments will likely expose other 
kinds of active users, such as those that exhibit 
herd behavior by reusing hashtags using the 
same sentiment with which they receive them.

Agent a4 is an interesting case: when receiv-
ing tweets with positive sentiment, it’s likely to 
pass it on (67 percent of the time), while only 
changing sentiment 7 percent of the time. On the 
other hand, when receiving negative sentiment, 
it’s likely to change it (70 percent of the time).

Both observations suggest that the self- 
confident type of agents could be further 
refined: the former group could be seen as 
adversarial, while a4 is conciliatory. Further 
experiments will shed light on this refinement 
(and possibly others). Another observation is 
that we can easily detect agents that are highly 
prone to respond to their connections’ comments 
(such as a1, a2, and a10) or — on the other end of 
the spectrum — “dead end” users who don’t reuse 
the hashtags that they see in their feeds.

T he main focus of this work was to lay the 
foundation for modeling the dynamics of 

data and knowledge flowing through social 
media; our work is based on the NKB model. 
Based on a multiagent systems approach, we 
abstract the combination of multiple social 
media platforms into a single NKB; this gives 
rise to complex networks in which agents have 
local KBs where their beliefs are stored. Each 
agent has multiple attributes describing their 
features, as well as different kinds of rela-
tions with other agents — these relations can 
also have attributes that characterize them. We 
showed how agents’ activities and other net-
work updates can be represented by basic ele-
ments called news items; these are the starting 
points of local revisions performed by each 
agent, and thereafter global revisions are also 
carried out (at the network KB administrator 
level) to ensure that integrity constraints aren’t 
violated. We specified a set of rationality pos-
tulates as desirable properties for social revi-
sion operators at the local level, and proposed 
several agent types that can occur in real-world 
domains. Finally, we also presented the results 
of a preliminary experimental evaluation per-
formed on Twitter data collected during several 
electoral periods in India, analyzing the behav-
ior and identifying clues pointing to the types 
of each agent from real-life interactions when 
receiving and sharing hashtags with an associ-
ated sentiment.

Future work involves formalizing the local 
and global revision operators based on observed 
(learned) types of agents — that is, working 
on the “Construction” piece of the puzzle in  
Figure 3 using as a basis both the postulates 
and what we learned so far from empirical 
inquiry. We’ll also continue the empirical eval-
uation by performing experiments that validate 
these operators’ effectiveness. For this, the next 
two important steps are to aggregate data from 
multiple social platforms, and to develop a sys-
tematic approach to generating synthetic data. 
This will allow us to adequately evaluate dif-
ferent aspects of the implemented systems by 
varying key parameters as needed. 
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