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Birdsong, a rich and complex behavior, is a stellar model to understand a variety of biological

problems, from motor control to learning. It also enables us to study how behavior emerges when a

nervous system, a biomechanical device and the environment interact. In this review, I will show

that many questions in the field can benefit from the approach of nonlinear dynamics, and how

birdsong can inspire new directions for research in dynamics. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4986932]

Biologically inspired problems pose deep challenges to a

dynamicist. A biological problem needs to be framed

within the theory of evolution, with the profound complex-

ity it entails. Therefore, it is difficult to travel the road of

dimensionality reduction, or identify the basic mechanisms
behind the phenomenon under consideration, both of

which are core strategies followed by dynamicists to study

a problem. In this review, I will describe a dynamical

approach to one specific biological problem: birdsong

production.

I. INTRODUCTION

Birdsong is an interesting model in neuroethology, i.e.,

the neurobiology of behavior.1 Among the several reasons

that contribute to its appeal are its complexity, its stereotypy

and why not, its beauty. For neuroscience, a particular inter-

est emerges from the observation that some degree of learn-

ing is involved in song production in approximately forty

percent of the known bird species.2 Since learned vocal pro-

duction occurs rarely in the animal kingdom, songbirds

(which account for the majority of forty percent of birds that

learn their vocalizations) constitute a favorite animal model

to study the neurobiology of vocal learning.

The approach from neuroethology stresses how this

complex behavior emerges from the interaction between the

nervous system, the body and the environment.3 And, it is

precisely at the interaction between the nervous system and

the biomechanics that extremely interesting and pertinent

questions for dynamicists naturally emerge. For example,

how much of the acoustical complexity is due to the com-

plexity of the instructions that the nervous system sends to

the periphery, and how much is due to the nonlinear nature

of the vocal organ? Can the avian vocal organ respond in

complex ways to relatively simple physiological instruc-

tions? How many of the acoustic features are independently

controlled at the level of the nervous system? Do some fea-

tures arise together due to the nonlinear nature of the oscilla-

tions responsible for the sound production mechanism?

Unveiling these issues can provide neuroscientists with a

map of what is worth studying at the level of the nervous

system, and which features are conditioned by the dynamics

of the periphery.

It is also interesting to address the complexity of the

physiological instructions driving the avian vocal organ. Its

operation requires the delicate interplay between the physio-

logical instructions that control its configuration,4 and the

airflow necessary for song production, controlled by the

respiratory system.5 Remarkably, those physiological

instructions can themselves be understood as the solution of

reasonably low-dimensional dynamical systems. Could these

provide a link between the known anatomy of the parts of

the nervous system involved in birdsong production and their

macroscopic functionality? This observation can be framed

in an interesting debate: do cortical neural patterns represent

movement parameters, or do they constitute a dynamical sys-

tem that generates and controls motion?6

In this review, I will address both issues: how much of

the complexity found in birdsong is conditioned by the non-

linear nature of the vocal organ, and what we can learn about

the parts of the nervous system involved in song production

from the way the vocal organ is controlled. Dynamics will

provide a common language for our study.

II. THE ANATOMY OF THE AVIAN VOCAL ORGAN

The avian vocal organ is the syrinx. In songbirds, it is a

bipartite structure at the junction between the bronchi and

the trachea.7,8 At each junction, there is a pair of labia which

can be set into oscillatory motion when strong enough air-

flow is established between them. In this respect, each of the

two sides of this bipartite structure behave somewhat simi-

larly to the human vocal folds, which can be set in oscillatory

motion when voiced sounds are uttered. Labial oscillations

modulate the airflow at each of the syringeal sides and, there-

fore, there is a periodic injection of air into the trachea

(assumed to be a tube of volume V0). The rate of mass injec-

tion for a unit of volume q can be written in terms of air

velocity v, density q and lumen’s area A as

q ¼ qAv=V0:

The density perturbations induced by this mass injection, at

the base of the trachea, are ruled by

@2q
@t2
� c0

2r2q ¼ @q

@t
;
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with c0 being the sound velocity.9 Therefore, labial dynamics

are responsible for the temporal evolution of the lumen’s

area A and act as a sound source in the linear approximation

of the acoustic problem. The lumen’s area will be the prod-

uct of a transverse, constant length and a variable, whose

(nonlinear) dynamics describe the labial motion. The nonlin-

ear nature of labial dynamics is responsible for the harmoni-

cally rich content of the acoustic sound, which gets filtered

by different passive cavities as the sound waves find their

way from the sound source to the beak. In Fig. 1(a), we dis-

play the basic elements of this description. The air passing

through the syrinx is injected into the trachea, which con-

nects to the oroesopharingeal cavity, which opens towards

the exterior through the beak.

The syringeal configuration can be modified by the

action of muscles attached to it.4,10 In Fig. 1(b), we show

two ventral muscles (syringealis ventralis, vS, and syringea-

lis tracheobronchialis, vTB) and two dorsal ones (tracheo-

bronchialis dorsalis, dTB, and syringealis dorsalis, dS). The

muscle vS attaches at the second cartilaginous bronchial

ring. Since the labia are housed in the inner part of the bron-

chi, between the second and third rings, the contraction of vS

stretches the labia, affecting the frequency at which they

oscillate under a given airflow. For this reason, the muscle

vS is involved in the modulation of the fundamental fre-

quency of a song. The muscle vTB controls the active sepa-

ration of the tissues that oscillate during phonation, while the

dorsal muscles dTB and dS control the active closing of the

lumen.

In light of this, there are two clearly distinct timescales

in the problem. The syllabic timescale involves the modula-

tions of the airflow below and above a phonating threshold,

as well as the modulations of the acoustic features achieved

by the activation of the muscles that alter the configuration

of the syrinx. These modulations are therefore actively con-

trolled and present periods from 50 ms to 400 ms, depend-

ing on the species and the syllable type. The labial

timescale is related to the self-induced oscillations taking

place when energy from the airflow is transferred to the

labia (typically, in the order of kHz). Due to the separation

between these two timescales, one can analyze the genera-

tion of birdsong by first studying the labial dynamics under

stationary parameters (i.e., the bifurcation diagram for the

dynamical system ruling the behavior of the labia) and then

explore how sound is affected as the parameters are slowly

modulated.11

III. THE FUNCTIONALITY. THE EQUATIONS OF A
SIMPLE MODEL

Let us start with a first attempt at modeling the labial

dynamics, whose oscillations are responsible for the airflow

modulations. For the moment, we will analyze the behavior

of one sound source, and we will assume that its two labia

(medial and lateral) are synchronized. We are postponing the

discussion about the circumstances under which this is a

realistic hypothesis for Sec. VII.

The variable in our first model will be x; describing the

departure of the labial midpoint position from rest. Its dynam-

ics will be ruled by Newton equations, where the forces are (i)

the elastic restitution, depending on the labial’s departure

from its rest position, (ii) the linear dissipation, which is pro-

portional to the labial velocity and includes both a negative

contribution accounting for the transfer of energy from the air-

flow to the mass as a mucosal wave propagates along the

labium and a positive contribution due to loss, (iii) the nonlin-

ear dissipation, which is responsible for bounding the oscilla-

tions, and represents either the labia collapsing against the

containing walls or against each other, and (iv) forces repre-

senting active adduction (pulling the labia together) and

abduction (labial separation). These last forces do not depend

on x; or its time derivative. This model, then reads12

dx

dt
¼ y

dy

dt
¼ �k tð Þc2 xþ �x3ð Þ � b tð Þ � b0

� �
cy� ccx2y

þ c2 fadd tð Þ � fabd tð Þð Þ;

where kðtÞ describes the restitution (proportional to the ten-

sion of the labia), b tð Þ � b0 is the negative dissipation (pro-

portional to the air sac pressure responsible for establishing

the airflow through the lumen), and c is the problem’s time-

scale. There are two sources of nonlinearities in this first

model: at the restitution and at the losses. As soon as the

labia depart from equilibrium, they would collide with each

other or against the containing walls, dramatically losing

their energy. This is modeled through a nonlinear dissipation

term (i.e., a term which is important when the variable is

away from its equilibrium position).

As soon as we introduce nonlinearities, the modulation

of the fundamental frequency will involve both b and k: Let

us show that this is the case by analyzing the bifurcation dia-

gram of this model (operating at fadd ¼ fabd ¼ 0).

Scaling the time through t � Cs; C ¼ 1

c
ffiffi
k
p ; defining

x

y

� �
¼ 1 1

i �i

� �
z

z�

� �
;

and keeping the resonant terms, we get

dz

ds
¼ bffiffiffi

k
p þ i

� �
zþ 3

2
�i� 1

2
ffiffiffi
k
p

� �
z zj2:
��FIG. 1. The syrinx, the trachea and the oroesopharingeal cavity (a). Muscles

controlling the oscine syrinx. See text for full description (b).
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Analyzing the radial part of this complex equation and its

phase, we get that, at the Hopf bifurcation, the frequency of

the oscillation being born is:

x ¼ c
ffiffiffi
k
p

1þ 3�bð Þ:

This means that the isofrequency curves (i.e., curves in

parameter space b; kð Þ; defined as k ¼ k bð Þ; for which solu-

tions with a given fundamental frequency exist) meet the

Hopf bifurcation curve with negative slopes. For higher val-

ues of the parameter b; it is possible to show that the isofre-

quency curves present positive slopes (since x � k=b). In

Fig. 2, we show a numerically obtained diagram of isofre-

quency curves for this simple model, for the region of the

ðb, kÞ parameter space with oscillations. With the help of

this diagram, it is easy to infer that for a given value of b, we

need to increase the parameter k in order to obtain oscilla-

tions of higher fundamental frequency : However, modulat-

ing the frequency can be trickier. In a region of parameter

space where the isofrequencies have negative slopes, it is

possible to keep the labial tension constant and increase the

fundamental frequency by increasing b. It could even be

possible to reduce the tension slightly, while the pressure is

being increased, and achieve an increase of the fundamental

frequency, as long as the slope of the curve in the parameter

space is smaller than the slope of the isofrequency. Modulo

these subtleties, one can use this static bifurcation diagram

to obtain good insight into how to translate physiological

gestures into acoustic features. The parameter b will have to

be moved from the region where no oscillations exist,

through the oscillating region in order to start the phonation.

In the course of this trajectory, the parameter k can be

moved, so that the fundamental frequency is properly mod-

ulated. The syllable will end as soon as the parameter b is

returned to the non-oscillating region of the parameter

space. In Fig. 2, we display a schematic path in parameter

space that would lead to an upsweep syllable, i.e., the fre-

quency would increase its value monotonically during the

phonation.

IV. EXPERIMENTAL EVIDENCE

Testing this paradigm required a long experimental pro-

gram. The identification of the oscillating labia, as the sound

source required nothing less than direct visualization of the

labia during phonation. Goller and Larsen carried out this

experiment, which ended a long debate on the origin of the

sound. It was more complicated to build confidence on the

role played by the physiological parameters involved in bird-

song production and control, namely, the air sac pressure

and the activity of muscles controlling the configuration of

the syrinx. Let us review this research program.

The sub-glottal pressurization is a necessary condition

for establishing an airflow strong enough to start the self-

sustained labial oscillations responsible for sound produc-

tion. Birds have rigid lungs, and the air is passed through

them as air sacs (connected to the lungs) are compressed in a

coordinated fashion. It is relatively non-disruptive, then, to

measure the level of sub-glottal pressurization by inserting a

flexible cannula into one of these air sacs, with the cannula’s

free end connected to a transducer. In Fig. 3, we show three

syllables of a canary song.13 In the first panel, we display the

sound, as recorded by a microphone. In the second panel, the

air sac pressure is measured using a cannula inserted through

the abdominal sac with its free end connected to a miniature

piezoresistive pressure transducer mounted on the bird’s

back. The third panel in Fig. 3 corresponds to the electro-

myographic EMG activity pattern as measured by a very thin

wire implanted on the syringealis ventralis muscle (vS).

Details on both procedures can be obtained from the work of

FIG. 2. Isofrequencies in the parameter space of a simple model for labial

dynamics. The slowly changing parameters during the production of a sylla-

ble are the coordinates of a trajectory in the parameter space. Pressure and

tension are (b; k) in the model.

FIG. 3. Experimental recordings during the production of a canary syllable.

The sound (first panel), the air sac pressure (second panel), the electromyog-

raphy of the right muscle syringealis ventralis (third panel) and the sono-

gram (fourth panel).
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Suthers and Goller, who developed these techniques

originally.4,10

The first test of the simple dynamical model discussed

before precisely consisted of integrating the dynamical equa-

tions, using as (slowly) time dependent parameters, the enve-

lopes of the EMGs recorded as a bird song.14 The rationale

behind the procedure was that the contraction of the muscle

would stretch the labia, and that stretched labia would pre-

sent a higher restitution (k). Remarkably, the synthetic sound

generated by the model driven in this way shared acoustical

features with the song produced while the driving EMG was

recorded. In particular, it closely followed the modulation of

its fundamental frequency.

V. A MODEL FROM FIRST PRINCIPLES AND ITS
DYNAMICS

In the previous model, the parameter b was used to turn

on the labial oscillations, by parameterizing the energy trans-

fer to the labia. A model based on first principles would

allow us to find the actual link between this parameter and

the air sac pressure.

Let us assume that for sufficiently high values of air-

flow, the labia start to oscillate with a wavelike upward

motion.15 In order to describe this wave, we introduce two

basic modes: a lateral displacement of the labia and a flap-

ping motion, as displayed in Fig. 4. This leads to an out-of-

phase oscillation of the top and bottom portions of the labia.

As before, a variable x will describe the medial position of a

labium and allows us to write a kinematic description of the

modal motion. This will be necessary to compute the actual

force between the labia. If a1; a2 stand for the half separation

between the lower and upper edges of the labia, we can write

them as:

a1 ¼ a10 þ xþ s
dx

dt
;

a2 ¼ a20 þ x� s
dx

dt
;

where a10; a20 are the half separations in the resting state

and s is the time the wave propagates along the labium takes

to traverse half the labial vertical size. In this geometry, the

average pressure between the labia for a given value of sub-

glottal pressure psub is:

paverage ¼ psub 1� a2

a1

� �
;

allowing us to write Newton’s equations for the labia as:

dx

dt
¼ y;

m
dy

dt
¼ �kx� by� cx2yþ alabpsub 1� a2

a1

� �
þ f0;

which, expressing the half separations as functions of the

labial position, leads to

dx

dt
¼ y;

dy

dt
¼ 1

m

�
�k xð Þx� b yð Þy� cx2yþ f0

þ alabpsub
a10 � a20 þ 2ys

a01 þ xþ sy

� ��
:

In these equations, alab stands for the lateral labial area and

f0 for the difference between the externally controlled

adducting and abducting forces. Now, the physical mecha-

nism needed in order to obtain self-sustained oscillations is

clearer. The described kinematics prescribes that the labia

are moving away from each other when they present a con-

vergent profile, and moving towards each other when they

present a divergent one. Furthermore, a convergent profile

means that the average pressure between the labia is similar

to the air sac pressure (and larger than the atmospheric pres-

sure), while a divergent one makes the pressure between the

labia closer in value to the atmospheric pressure. Therefore,

when the labia move away from each other, there is a net

force in the direction of the velocity that is larger than when

the labia move towards each other. This leads to energy

transfer from the air flow to the labia.

Figure 5 shows a bifurcation diagram for this dynamical

system.16 For small values of pressure, as expected, the labia

do not oscillate. High values of pressure lead to oscillations.

Interesting enough, the model presents a cusp bifurcation,

and the line in the parameter space where a Hopf bifurcation

takes place is tangent to one of the saddle nodes of the cusp,

at a Takens-Bogdanov co-dimension two bifurcation.

Interestingly enough, this organization of the parameter

space leads to the existence of a saddle node in limit cycle

(SNILC) bifurcation (involving part of the second branch of

the saddle node bifurcation line), where the oscillations are

born with zero frequency and a finite amplitude. In this way,

labial oscillations can be born at Hopf bifurcations for high

values of tension, or in the saddle node in limit cycles for

smaller values. The last two panels in Fig. 5 show the sono-

grams of a recorded song and its synthetic replica using this

model.

The spectral content of a sound signal is not only deter-

mined by the nature of oscillations of the labia modulating

the airflow. The sound source s tð Þ ¼ @q
@t plus the backpropa-

gating wave contribute to the pressure fluctuations pi tð Þ at

the input of the trachea of length LFIG. 4. The modes of labia during one cycle.
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pi tð Þ ¼ s tð Þ þ pback t� L

c

� �
;

pback tð Þ ¼ �cpi t� L

c

� �
;

and the transmitted pressure wave still has to excite the oroe-

sopharingeal cavity (modeled as a Helmholtz resonator)

before constituting a reasonable approximation to birdsong.

But, it is clear that the source of spectral content richness

lies at the sound producing mechanism, and the fact that a

saddle node in limit cycle oscillation exists in the problem

predicts interesting features. For the range of parameters

where this bifurcation can be expected, low frequency

sounds should be spectrally rich, and there should be a pre-

cise relationship between the spectral content of the signal

and its fundamental frequency.

One can proceed to measure the spectral richness of a

sound segment in this way. Given a sound segment, it is pos-

sible to compute its fast Fourier transform (FFT) and recon-

struct two parameters from it.17 The first one is faff , the

average fundamental frequency (AFF), and the second one,

the mean spectral frequency (MSF), is defined as:

fMSF ¼
X

i

xi�i=E;

where xi is each frequency component of the spectrum, �i is

its energy, and E stands for the total energy in the spectrum.

With these parameters, we compute the spectral content

index (SCI) as SCI � fMSF=faff . This definition allows us to

compare spectrally different syllables. In Fig. 6, we display

the computation of this index for 172 sound segments, sung

by 6 different birds. The computed values are plotted as

color points in a SCI vs the AFF space. The continuous line,

on the other hand, is obtained through the numerical integra-

tion of our physical model. To obtain different values of the

curve, the value of ps was changed, and the sounds filtered

with a 20 mm tube representing the trachea. The value of k
for the simulations was chosen so that the oscillations were

born in a saddle node in limit cycle (SNILC) bifurcation. In

this way, the growth of the curve for small values of fre-

quency reflects the “explosive” nature of oscillations born in

a SNILC.

In this model, modulating the fundamental frequency

strongly depends on the region of the space parameter where

the system operates. For high values of k; the isofrequency

curves in the ðps; kÞ space have small local slopes.18

Therefore, the modulation of frequencies will depend on the

modulation of k. On the contrary, for smaller values of the

restitution constant k; where the SNILC takes place, the iso-

frequency curves will be more or less parallel to the SNILC

bifurcation curve, which has strong negative local slopes in

the ðps; kÞ space. Therefore, one can increase the fundamen-

tal frequency by increasing ps for constant values of k. This

prediction was actually tested with birds implanted with a

valve capable of depressurizing the air sac at selected parts

of a given syllable.19 In these experiments, birds singing har-

monic stacks (characterized by long sounds with constant

fundamental frequency) had their air sac pressure manipu-

lated through the activation of the valve at the end of the syl-

lables. As expected, a pressure drop induced a decrease in

the syllable’s fundamental frequency.

VI. TESTING THE PERTINENCE OF THESE MODELS

How can we test the hypothesis that it is the dynamics

and not the details of the forces involved what brings together

the acoustic features that better characterize a birdsong?

Biologists and physicists can have heated discussions

over this point. A reductionist model will always make a

biologist uneasy: once you set up your mind to study every

FIG. 5. Parameter space for the model described in the text. The red curves

correspond to saddle node bifurcations and the blue curve to a Hopf (a). The

sonogram of a recorded song (top panel) and the sonogram of a synthetic

sound produced by the model (bottom panel) (b).

FIG. 6. The relationship between the spectral content and the frequency for

syllables, recorded from different birds. The continuous curve is obtained

with our model: an oscillation born in a SNILC (saddle node in limit cycle),

filtered with a tube.
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biological problem in the framework of evolution (as biolo-

gists must do), the simplifications involved in any dynamical

model always seem suspicious.

We will start to address this issue by first writing an

even simpler set of equations that display the same dynamics

in its parameter space than our physical model. Since in the

region of interest, there is a Takens Bogdanov bifurcation

(where a Hopf line is tangent to one of the two saddle node

curves of the cusp bifurcation),16 we chose its normal form

as a simplified dynamical model.18 Given that three fixed

points participate in the dynamics of our physical model, we

included cubic terms in the normal form. We chose the signs

of the two quadratic terms, and the signs of the two cubic

ones, so that the same bifurcations were present in the origi-

nal problem and in the normal form. Scaling the time

through a constant c; the system reads

dx

dt
¼ y;

dy

dt
¼ ac2 þ bc2x� c2x3 � cx2yþ c2x2 � cxy;

where a and b stand for the unfolding parameters. We

adjusted the time constant c by taking close to thirty song

segments from four birds, and computing the SCI and funda-

mental frequency of each segment. Then, for a given value

of c; we searched for the best synthetic approximation to the

original sounds, minimizing the SCI indices and frequencies

of synthetic and original sounds. For each c; the smallest dis-

tance (smallest v2) was plotted, and we chose its value so

that v2 presented a minimum.

But, how can we test the pertinence of this model? This

model is built to generate sounds in which fundamental fre-

quencies and spectral content are related such as in the songs

of zebra finches. But does a bird care for those features? We

performed a series of experiments in birds, taking advantage

of the amazing selectivity that some cortical neurons present

to the bird’s own song (BOS). This phenomenon, reported

by Konishi and Margoliash in the early eighties20 consists in

comparing the activity of neurons in a region of a sleeping

bird’s brain, while it listens to a recording of its own song,

with the activity present while other songs are played.

Classical controls include the reverse song, or the song of a

conspecific animal. Remarkably, the neurons will spike

much more when the BOS is played. It is interesting that in

the case of the reverse song i.e., a song played backwards,

the same frequencies are present, and yet no response is eli-

cited. Therefore, a natural test for our model would be to

compare the response of the bird to its BOS with its response

to a synthetic song generated with our normal form.

In order to create a synthetic version of a zebra finch

song, we proceeded as follows. We decomposed the song to

be copied in 20 ms successive segments, and for each one, its

fundamental frequency and SCI were computed.18 Then, a

search in the parameter space (a; b) of the normal form was

performed over a grid, so that the synthetic sounds produced

would match the fundamental frequencies and the SCI of the

segment to be fitted. Then, over that set, a search was carried

out so that the SCI of the synthetic sound matched the SCI of

the sound segment. That procedure leads, for a segment start-

ing at ti, to a pair ða ðtiÞ; b ðtiÞÞ. Figure 7 shows an example.

Spectrally, the agreement is so good that it came as a bitter

surprise that this synthetic song could elicit no neural

response whatsoever when the bird was exposed to it. It was

not until the filter was better approximated that the selective

neurons in the cortex started to respond to the synthetic

songs.21 The last two pieces of the puzzle that were neces-

sary to include were 1. the oroesopharingeal cavity, which

lies between the trachea and the beak (see Fig. 1), modeled

as a Helmholtz oscillator of approximately 6� 6� 6 mm3

following physiological dimensions, and is acoustically

responsible for enhancing frequencies close to the 4 kHz for

zebra finches and 2. some amount of noise added to the phys-

iological parameter representing the labial tension. It is inter-

esting to observe that, in physics, when the fundamental

equations of the problem are known, it is mathematically

algorithmic to improve an approximated model. In biology,

it is not necessarily easy to know how to enrich a simplified

model that did not work. Do we know a priori that a hierar-

chy of importance exists that allows us to establish an order

in the simplifications? This question is at the core of the dif-

ficulties in modeling biological systems, and there are no

recipes beyond close interdisciplinary work.

With a model that was capable of eliciting responses of

highly selective neurons to the birds’ own songs, we

explored the sensitivity of the neural responses to modifica-

tions in the model’s parameters. We exposed sleeping birds

to synthetic songs produced by the model in which different

parameters were changed.21 In Fig. 8, we illustrate the pro-

cedure. The first three panels show the sonograms (top) and

the accumulated number of spikes that were elicited in 20

trials, each one consisting of exposing the bird to three cop-

ies of one song. In the panel on the left, the stimulus was

the bird’s own song. In the other two panels, we used syn-

thetic sounds. The different stimuli in the experiment were

generated by varying the amount of noise added to the

parameters and the dissipation of the Helmholtz resonator.

The result is shown at the bottom of Fig. 8, where the

response to each stimulus is plotted as a fraction of the

response to the BOS. Each point on the grid corresponds to

a different set of parameters (noise and dissipation). On the

FIG. 7. A recorded song (top panel) and a synthetic sound (bottom panel)

generated by the model described in the text.
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one hand, the best response is 60% of that obtained using

BOS as a stimulus. On the other hand, we could verify that

the system is exquisitely sensitive to changes in the param-

eters, and rapidly ceases to elicit any response as soon as

we depart from the optimal values.21

VII. OTHER SIGNATURES OF NONLINEARITY

In the previous models, we assumed that both labia of a

sound source were locked and therefore we described the

dynamics of the lumen in terms of the mean position of one

of the two labia. It is a hypothesis that deserves to be

inspected with care, since the two labia will in general be

different, and it has been shown to enrich the dynamics.22,23

In the case of oscine birds, the syrinx is a bipartite structure,

and each of the two sound sources is itself asymmetric: the

lateral and medial labia are slightly different. Even in birds

with a tracheal syrinx (only one sound source, consisting of

two opposed labia at the trachea), the labia are not identical.

Could it be possible that, in this case, the dynamics are richer

than what we discussed so far?

If there were an asymmetry between the labia, the

dynamics of their midpoint positions would be ruled by the

following dynamical system23

M l;rð Þ
d2n l;rð Þ

dt2
þ B l;rð Þ 1þ g l;rð Þn

2
l;rð Þ

� 	 dn l;rð Þ
dt
þ K l;rð Þn l;rð Þ ¼ Pg

with Mðl;rÞ; B l;rð Þ and Kðl;rÞ being the mass of the tissue, the

dissipative constant and the coefficient that accounts for the

restitution force of a displaced membrane, respectively

(notice that l and r stand for left and right). The constant

g l;rð Þ is a nonlinear coefficient that accounts for energy dissi-

pation at large labial displacements. As before, the average

pressure can be written in terms of the lower and upper

cross-sectional areas a1; a2 as

Pg ¼ Ps
a1 � a2

a1

� �
;

where the areas can be written as functions of displacements

as

a 1;2ð Þ tð Þ ¼ L n0 þ nr t6srð Þ½ � þ L n0 þ nl t6slð Þ½ �;

with L being the membranes’ length, n0 half of the lumen’s

width at rest, and sr;l the times that the right and left wave-

like motions of the respective membrane take to travel half

its vertical size. These kinematics of the labia (that assume,

as in our previous models, that a lateral mode and a wave-

like mode are active), allow us to write (for small values of

sl; sr) the pressure at the lumen in terms of midpoint

displacements:

Pg �
Ps

n0

sr
dnr

dt
þ sl

dnl

dt

� �
� b

dnr

dt
þ dnl

dt

� �
:

FIG. 8. Testing the response of highly selective neurons to synthetic sounds generated by the model, with slightly different parameters.
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Now, we can write the final dynamical system for the left

and right labia as

dn l;rð Þ
dt
¼ � l;rð Þ;

d� l;rð Þ
dt
¼ c

2b� Bð Þ
M

� l;rð Þ � c
bg
M

n2
l;rð Þ� l;rð Þ � c2

K l;rð Þ
M

n l;rð Þ

þ c
b
M

� r;lð Þ � � l;rð Þð Þ :

In order to explore the solutions of this four-dimensional

dynamical system as a function of the system’s symmetry,

we introduced a detuning parameter Q at the level of the lin-

ear part of the restitution, i.e., K l;rð Þ ¼ K0 l;rð Þ þ K1 l;rð Þn
2
l;rð Þ,

with K0 rð Þ ¼ QK0 lð Þ: The effect of this asymmetry is summa-

rized in Fig. 9, where we display the different locking

regimes as a function of air sac pressure and detuning param-

eter Q: Region I in the figure corresponds to 1:1 locked solu-

tions, i.e., the two labia oscillate with the same period, while

parameters in region II lead to solutions that do not lock. If

we describe the equations in terms of a radial and a phase

component, the equations of the radial parts will contain a

term that depends on the phase difference between the left

and right oscillations. Therefore, for the region of the param-

eter space where the phase difference is time dependent, the

solutions will present sidebands in their spectrogram.24 The

reason is that the time dependent phase difference induces

the radial parts of the variables to oscillate, giving rise to

amplitude modulations.

There are two sister species of pigeons that allowed us to

test these ideas.24 One is the spot-winged pigeon Patagioenas
maculosa and the other is the picazuro pigeon P. picazuro,

hereafter called maculosa and picazuro. The temporal patterns

and the modulation of the fundamental frequency in their

songs are extremely similar, and yet the timbre of their sounds

is very different. In Fig. 9, we show their sonograms, where

we can see the appearance of sidebands in the song of macu-

losa. We were able to reproduce these bands by assuming an

asymmetry, and, more importantly, we managed to test the

hypothesis by examining the syrinx of these two species com-

paratively. As predicted, the syrinx of maculosa is significantly

asymmetric, while picazuro’s syrinx is not. In maculosa, all

individuals examined had larger left oscillating tissues.

VIII. BEYOND LOW DIMENSIONAL DYNAMICS:
VORTEX SOUND

All the acoustic effects described so far were the result of

modulating the airflow by means of a valve. The mechanism

is similar to the one used by humans when vocalizing voiced

sounds, like vowels. And just as humans also use unvoiced

sounds (such as “s,” or “f”), some bird species alternate sylla-

bles of regular oscillations with extremely noisy sounds.

Howe developed the field of aero-acoustics.9 He consid-

ered the source terms that are neglected in the linear approxi-

mation of acoustics as follows:

D2p

Dt2
� c0

2r2p ¼ q0r: w � vð Þ;

FIG. 9. Asymmetric labia can generate sounds with distinctive timbre (notice the side bands in the sonograms). In the top panel is the bifurcation diagram. The

recorded sonogram of the picazuro pigeon song and the synthetic sound generated with symmetric labia (left), compared with the song of maculosa pigeon and

sound generated with asymmetric labia (right).
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with D being the material derivative, q0 the ambient undis-

turbed density, w the vorticity and v the local velocity.

Notice that the vector product involves quadratic contribu-

tions of velocity to the source of sound. In this way, this

expression is a higher order correction to the homogeneous

wave equation studied in linear acoustics, so the effects that

emerge from this description should be added to those even-

tually generated by the fluctuating mass injection that results

from the modulation of airflow by a valve.

When the flow crosses the lumen before being injected

into the trachea, it separates from the walls forming a jet.

This is a focused region surrounded by stagnant air, and, in

the border of each of these regions, the air particles undergo

a rotation. This is quantified using the vorticity of the veloc-

ity field. In this way, the shear layers between the jet and the

walls coalesce into irregular structures that travel along the

trachea. When these vortices arrive at the glottal contraction,

sound is generated. The solution of the wave equation can be

written in integral form as9

p x; tð Þ ¼ �q0

sgn x� yð Þ
2A 1þMð Þ

ð
A

ð
y

x � vð Þ:U�

 �

dAdy

�
sgn x� yð Þ

A
S y; t� jx� yj

c0 1þMð Þ

� �
;

where A is the cross-section at the observation point, M is

the Mach number and U
�

stands for the ideal flow velocity

that would be present if the duct was filled with a uniform

and steady flow. The brackets indicate that the integral is

computed at a retarded time tret ¼ t� jx� yj=ðc0ð1þMÞÞ.
The actual computation is particularly difficult, since it

requires the computation of flows and vorticity in a compli-

cated configuration. Yet, a qualitative approximation can be

obtained.25 The vector x � v points radially when a vortex

travels axially. The unperturbed flow U
�
, on the other hand,

presents a negative radial component right before the con-

striction and a positive one right after it. Therefore, the

source function S consists of a pulse whose duration is given

by Dt � H=Uc, where H is a characteristic size of the con-

striction and Uc is the flow speed at the constriction. We can

estimate an order of magnitude for this speed considering

that the volume of an air sac is expelled in the duration of a

typical syllable, and that the constriction is a fraction of the

tracheal radius.26 To account for the effect of a train of vorti-

ces, we compute the convolution of this source term with an

arrival function that consists of a series of delta functions at

arrival times Tarrivalf g:

pvortex tð Þ ¼
ð

S sð Þ
X

Cnd t� Tn
arrival � s

� �
ds

The amplitude of the nth contribution Cn depends on its

circulation, which is assumed to be proportional to the differ-

ence between the nth and ðn� 1Þth arrival times. The rationale

behind this hypothesis is that a large time between two consec-

utive vortices means that the second one was generated far

away from the constriction, having gained circulation during

its travel towards it. Figure 10 illustrates the spectrum of a

recorded song, and the spectra of two synthesized versions.26

For the case displayed in the bottom panel, we followed the

procedure described in Sec. VI. For the case displayed in the

middle panel we added to that synthesis vortex sound gener-

ated as we described above. For frequencies above 10 kHz, the

spectrum of the synthesis with the vortex sound is a better

approximate to the spectrum of the recorded sound. Since the

spectrum of a convolution is the product of the spectra, and the

arrival times are taken from a uniform distribution, features

like the minima marked with arrows in Fig. 10 originate in the

pulse shape. Remarkably, sensible time and geometric estima-

tions lead to spectra with minima in the right spectral values.

These contributions carry a very small fraction of the energy,

but it will be interesting to test whether a synthesis that takes

this effect into account improves the response of selective neu-

rons to surrogate synthetic sounds.

IX. THE DYNAMICAL ORIGIN OF PHYSIOLOGICAL
INSTRUCTIONS

We have discussed how birdsong emerges when a

highly specialized biomechanical device, the syrinx, is con-

trolled by a set of exquisitely coordinated physiological

instructions (in particular, those controlling syringeal config-

uration and respiration). During the song, the normal respira-

tory activity patterns are changed for those that establish the

proper airflow necessary for phonation. These physiological

instructions are generated in songbirds by a set of intercon-

nected neural nuclei known as the song system.27,28

The song system includes the dorsomedial nucleus (DM),

which projects to the respiratory pacemaker. This “pacemaker”

includes nucleus retroambigualis (RAm), related to expiration,

and nucleus parambigualis (PAm), which is active mostly dur-

ing inspiration. These nuclei are present in other orders of birds

FIG. 10. The spectrum of a song (first panel), synthetic sound with an added

vortex sound (middle panel) and the synthetic sound without a vortex sound

(bottom panel). There is a significant difference for frequencies higher than

10 kHz.
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as well. But, in songbirds, the DM projects to the nucleus

uvaeformis (UVA) in the thalamus, which connects to the tel-

encephalic nucleus HVC (used as a proper name). This

nucleus, in turn, projects to the robust arcopallial nucleus

(RA), which closes the loop by projecting back to the respira-

tory nuclei. The nucleus that projects to the syringeal muscles

is called nXII, which receives inputs from the telencephalon

(RA), as well as from the respiratory nuclei and the DM. This

architecture is found symmetrically in the left and right hemi-

spheres of the bird’s brain. A schematic diagram summarizing

this description is displayed in Fig. 11. To add complexity to

the problem, most of these nuclei are built from inhibitory

interneurons and excitatory neurons (which can interconnect

within the nucleus or sometimes project from one nucleus to

another, forming a pathway). Each nucleus can have tens of

thousands to several hundreds of thousands of neurons.

Considering that unveiling how the system works requires

understanding clearly how both interneurons and projection

neurons work, it is necessary to study the neural activity of the

system with electrodes of high enough impedance so that indi-

vidual neurons can be isolated and identified. This is an

extremely difficult problem, and therefore it is not surprising

that even in the case of the nucleus HVC, whose proximity to

the scalp makes recording its activity somewhat easier, its

code is a matter of heated debate.

What is surprising is that in the song system’s output, at

least in terms of respiratory gestures, one can identify signa-

tures of low-dimensional nonlinear dynamics.29,30 Figure 12

displays the pressure patterns measured in the air sac of a

canary during song. Four different patterns can be identified:

a small oscillation mounted on a DC level, a regular

harmonic-like oscillation, an oscillation whose spectrum will

display two clear peaks, and a wider pattern with a slow

decay. These four basic patterns have been found in different

birds, and used to generate a variety of different syllables.31

There is a range of syllabic rates that can be associated to

these different patterns.

In the panel below, we display four solutions of a low

dimensional nonlinear dynamical system. Each solution was

obtained by driving (differently) a two-dimensional dynami-

cal system, in which one of its variables (let us call it x) was

made to behave as the recorded air sac pressure.32 This

dynamical system was built in such a way that in a two-

dimensional parameter space, we could find a Hopf

FIG. 11. A schematic diagram of the

nuclei in the oscine song system.

FIG. 12. Recorded air sac pressure in a

singing canary (a). A neural oscillator,

i.e., a population of excitatory neurons

coupled to a population of inhibitory

ones (top). The bifurcation diagram

showing the different regions of the

parameter space presenting qualita-

tively different flows (bottom). The

parameters are the inputs to the neural

oscillator (b). The synthetic time series

emulating air sac pressure (c). The syl-

lables are generated changing the

parameters along the trajectories dis-

played in (b).
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bifurcation and a cusp, with the Hopf bifurcation line tangent

to one of the saddle node curves of the cusp.30 With this

dynamical architecture, it is possible to reproduce the

observed air sac pressure patterns driving the dynamical sys-

tem with simpler time dependent parameters.32,33 For exam-

ple, the low rate solutions are obtained by driving the model

with the red path in Fig. 12(b). This path consists of a fast

change of qx and qy that takes the system from a region of

the parameter space where there is a fixed point of low x
value to a region with a fixed point of high x value. Then, the

parameters qx; qy are slowly decreased, and the solution

decreases first slowly, because the value of the fixed point

decreases. Then, when the saddle fixed point kills the attrac-

tor at the leftmost saddle node branch, the solution rapidly

decreases as the system collapses towards the only attractor

of the system at the left of the cusp: the original fixed point

of low x value. The tiny peaks at the beginning of the pulse

can be generated as transients, since the path that we

described reaches a region of the parameter space where the

eigenvalues of the fixed point of high x value are complex

due to the vicinity of the Hopf bifurcation line. The rest of

the patterns can be generated within this architecture as well.

The small and large amplitude oscillations with one maxi-

mum are found by placing the dynamical system in two dif-

ferent points within the region of the parameter space with

oscillations born at the Hopf bifurcation. Both solutions can

be obtained with stationary parameters qx; qy, or with

qxðtÞ; qyðtÞ fluctuating periodically, as long as the frequency

of those fluctuations is similar to the natural frequency of the

oscillations born in the Hopf bifurcation. Remarkably, if

there is indeed a forcing frequency, and we increase it, the

system can undergo a period doubling, responding with one

pressure pulse to two peaks of the forcing. This is the pattern

marked with an asterisk in Fig. 12(c).

It is suggestive that this dynamical skeleton can be

found in the simplest model of an excitatory neural popula-

tion coupled to an inhibitory one. Using the mathematical

description proposed by Wilson and Cowan, let us call x and

y the average activities of the excitatory and inhibitory pop-

ulations, respectively. We can describe their dynamics

through:

dx

dt
¼ �xþ S qx þ a1xþ a2yð Þ;

dy

dt
¼ �yþ S qy þ a3xþ a4yð Þ

with

S xð Þ ¼ 1

1þ e�x
:

The bifurcation diagram for this system is precisely the diagram

displayed in Fig. 12(b) for (a1; a2; a3; a4Þ ¼ ð10;�10; 10; 2Þ.
A natural question is whether the forcing parameters

qxðtÞ; qyðtÞ can themselves be the solutions of low dimensional

systems with variables associated to the activities of other parts

of the song system. These time dependent parameters now

summarize the inputs from both RA (the telencephalic nucleus

that projects to the respiratory nuclei) and the inputs from other

parts of the brainstem, such as the inspiratory related nucleus

PAm (which does have a subpopulation of neurons that fire

during expiration), or nucleus DM.

Figure 13 shows how to generate the four basic respira-

tory patterns used in a canary song with solutions of a

dynamical model embedding our minimal toy description of

the neural oscillator.32,33 Since one of the variables of that

minimal two-dimensional dynamical system was made to

represent the air sac pressure, our neural oscillator is a toy

model for the expiratory related area RAm. Yet, the global

dynamical system in which our model of RAm is embedded

(the circular architecture displayed in Fig. 13) makes specific

predictions on the kind of activity patterns that can be

expected in other areas of the song system. For example, the

model predicts that in this species, when the long expiratory

FIG. 13. One-way of generating synthetic pressure gestures similar to the recorded ones. The dynamical system is written in terms of the activities of intercon-

nected nuclei.
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patterns are generated, the activity of the HVC projection

neurons will be heterogeneous, with a continuous component

superimposed on peaks of activity close to the beginning of

the syllables. Notice that the respiratory patterns emerge as

the dynamics of the brainstem is affected by signals from the

telencephalon. But, it is not until they interact nonlinearly

that the richness of the solutions emerges. Anatomy supports

the idea of a circular functional architecture, as do experi-

ments in which thermal manipulation affects times scales at

different parts of the song system.34–36 However, this picture

is under construction, and it is most likely to evolve as

experiments test its predictions. For example, the degree of

heterogeneity in zebra finches’ HVC activity has been quan-

tified by the measurement of hundreds of individual neu-

rons.37 It is likely that similar studies will be performed on

other species such as canaries in the near future, and that

other nuclei will be measured in singing birds as well.

Whatever the picture that emerges in the end, it is remark-

able that non-trivial yet low dimensional dynamics are

behind the physiological gestures necessary for birdsong pro-

duction. This offers an extremely interesting example on

how to build low dimensional dynamical systems from first

principles, for nontrivial neural architectures.

X. TOWARDS MODELS FOR AVERAGE ACTIVITIES

The results described in Sec. IX point to an interesting

issue for nonlinear dynamics and statistical physics. How to

establish the connections between the different description

timescales of out-of-equilibrium systems is an active field of

research. This is particularly relevant in neuroscience, where

the central nervous system is in charge of the physiological

instructions that control peripheral systems and, therefore, of

the interaction of the organism with the macroscopic world.

As there is no comprehensive theory to deal with out-of-

equilibrium statistical mechanics, macroscopic models of

nervous systems are usually built phenomenologically and

not statistically. Having said that, there have been very

important advances recently. In part, this is due to the capac-

ity to perform biologically informed numerical simula-

tions.38 But, there have been important advances in the

theory of collective dynamics of out of equilibrium units. In

2008, Ott and Antonsen39 reported a method to compute the

dynamics of a macroscopic observable describing the degree

of synchronization of a set of interconnected phase oscilla-

tors.40,41 Their result is framed into a very active line of

research: the study of globally coupled phase oscillators.

They showed that it is possible, for a class of systems, to

write a low dimensional dynamical system to describe the

asymptotic behavior of the system’s order parameter. Let us

briefly review the main ideas of this development, in the

framework of the coupling between an excitatory and an

inhibitory neural population (the basic elements of a neural

oscillator architecture we used in Sec. IX).42

Let us assume that each excitable unit is described in

terms of its phase, and that its dynamics is modeled through

Adler’s equation. Let us also assume that the units can be

classified as excitatory and inhibitory, and that the popula-

tions are coupled:

dhi

dt
¼ xi � cos hið Þ þ I hj

� 
; ~hj

n o� 	
;

d ~hi

dt
¼ xi � cos ~hi

� �
þ ~I hj

� 
; ~hj

n o� 	

with

I hj

� 
; ~hj

n o� 	
¼ kE

N

XN

j¼1

1� cos hj

� �� �

� kI

~N

X~N

j¼1

1� cos ~hj

� 	� 	
;

~I hj

� 
; ~hj

n o� 	
¼

~kE

N

XN

j¼1

1� cos hj

� �� �

�
~kI

~N

X~N

j¼1

1� cos ~hj

� 	� 	
:

In these equations, the parameters k; ~k describe the cou-

pling, which consists of an impulse when hj � p; and

approaches zero as hj � 0: The first approximation to the

macroscopic description of the system is through its order

parameters:

z ¼ 1

N

XN

j¼1

eihj ; ~z ¼ 1

~N

X~N

j¼1

ei ~hj :

One can describe the system though the distributions of its

phases. It is in the calculation of those distributions that Ott

and Antonsen made a major contribution. These have to

obey a continuity equation (a partial differential equation),

and therefore a mode decomposition of the distributions

would lead to an infinite number of ordinary differential

equations for the mode amplitudes. Yet, for a large class of

systems, all those equations can be satisfied provided that the

first mode of each distribution is ruled by a simple dynamical

system. This allows us to simplify our problem, which can

be completely described by solving the following dynamical

system:

dz

dt
¼ �Dþ i x0 þ I z; ~zð Þð Þ½ �z� i

2
1þ z2ð Þ;

d~z

dt
¼ �~D þ i ~x0 þ ~I z; ~zð Þ

� �h i
~z � i

2
1þ ~z2ð Þ;

where the parameters (x0;D; ~x0 ; ~D) describe the centroids

and dispersions of distributions of the parameters ðxi, ~xi ) .

The order parameters do not correspond to average

activities; they are not the variables of the phenomenological

models used in Sec. IX. The order parameters measure the

degree of synchronization of the populations. Yet, we can

compute the average activities ð/ tð Þ; ~/ðtÞÞ of the populations

in terms of them.42 By definition, the average activity of the

populations can be computed as:

/ tð Þ ¼
ð1
�1

f h;x; tð Þðx� cos hð Þ þ I zf g; f~zg
� �

Þjh¼pdx;
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~/ tð Þ ¼
ð1
�1

~f h;x; tð Þðx� cos hð Þ þ ~I zf g; f~zg
� �

Þjh¼pdx;

where f h;x; tð Þ and ~f h;x; tð Þ stand for the distribution den-

sity of phases for the two populations. Expressing these dis-

tributions as functions of the order parameters, we get:

/ tð Þ ¼ 1

p
1þ Re z

j1þ zj2
� 1

2

 !
x0 þ 1þ I z; ~zð Þð Þ þ D

p
Im z

j1þ zj2

" #
;

~/ tð Þ ¼ 1

p
1þ Re ~z

j1þ ~zj2
� 1

2

 !
~x0 þ 1þ ~I z; ~zð Þ
� �

þ
~D
p

Im ~z

j1þ ~zj2

" #
;

which are quantities that can be directly compared with the

variables (x; y) of the phenomenological model studied in the

previous section.

The dynamical elements needed in the phenomenological

model to reproduce the respiratory patterns are also present in

the model derived from first principles (see Fig. 14).42 It is

remarkable that a very simple phenomenological model such

as the Wilson-Cowan oscillator can capture the subtle features

that a population of coupled excitable units displays macro-

scopically. Needless to say,, our calculation assumes serious

simplifications. One of them is that we have considered an all-

to-all coupling between the units. It is likely that as soon as

more complex and informed topologies are used, larger phase

spaces will have to be explored. This might lead to more com-

plex solutions, which will lead to predictions that need to be

compared with behavioral observations.

Since different biological mechanisms can be described

in terms of the same dynamical elements, modeling will

always require a continuous dialogue between dynamics and

experiments. But, having described the physiological observ-

ables in a dynamical language, we can start to explore the—

long—road from first principles to behavior.

XI. CONCLUSIONS

This review was organized around a few questions. Is it

possible that part of the complexity of the sounds used in a

birdsong is due to the nonlinear nature of the avian vocal

organ? Could it be that reasonably simple instructions driv-

ing this highly nonlinear device create this amazing richness

of sounds? How complex are those instructions? How can

we determine that a low dimensional model is biologically

pertinent? We got some answers to these questions by study-

ing specific problems. We found, for example, that the rela-

tionship between the fundamental frequency and the spectral

content of the sounds in the zebra finch song is the signature

of the bifurcation that gives rise to the oscillations responsi-

ble for airflow modulation. We described the dynamical

origin of subtle spectral features such as sidebands in the

sonogram of a song: it is the result of the loss of locking

between the parts of the syringeal valve for a very asymmet-

ric syrinx. But, behind all those specific stories, there is one

important question, near and dear to the heart of any dynam-

icist: how relevant is this simplifying approach to a biologi-

cal problem? Are these approximations pertinent?

When a dynamicist starts interacting with biologists, it

is always complicated. A first thought is that what lies at the

root of the difficulty is the biologist’s lack of mathematical

background, or the dynamicist’s lack of knowledge on biol-

ogy. In fact, it is even more complicated: the very same idea

of what it means to be rigorous is different in the two com-

munities. A dynamicist searches for depth and elegance in

minimal mechanisms. A biologist, on the other hand, will

not find either of those virtues without framing the problem

under study within its evolutionary context. Therefore, a

biologist will be, a priori, suspicious of reductions and

simplifications, just as a dynamicist will lose interest in a

problem as “details” start to add up. It is for these reasons

that our experiments on testing the models using selective

neurons were so important in our research program. Granted,

there were a minimal number of elements that had to be

included for the selective neurons to start reacting to our syn-

thetic sounds as they did to the bird’s own song. But, there

was a hierarchy of importance in the different elements in

the model: changes in different parameters would lead to

response losses at different rates. This opens a wide opportu-

nity for evolutionary interpretations.

It is remarkable that the diversity of pressure gestures

used in birdsong, emerging from a real brain, can be so

beautifully reproduced by integrating a periodically forced

two-dimensional dynamical system. We know that the topo-

logical organization of different orbits is a distinctive signa-

ture of the mechanisms underlying the dynamics. Therefore,

even if the particular model proposed for generating the pres-

sure gestures evolves as experiments inform us on the song

system, the identified dynamical skeleton will have to be pre-

sent in eventual upgrades to the model. A thorough and

direct testing of these neural models will take time. The con-

nections between the nuclei involve only part of the neurons

(the projecting ones), that require to measure with high imped-

ance electrodes, so that individual neurons can be identified.

Only through direct collision experiments, can the nature of

each neuron under study be verified. And, of course, enough

neurons have to be measured so that the actual physiological

instructions can be reconstructed. In the meantime, we can

improve or refute our models through indirect measurements

FIG. 14. Parameter space regions of the average model.
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that we can carry out, thanks to the existence of dynamical

models, such as the degree of heterogeneity in the average

activity of a given nucleus, or by testing the precise and quan-

titative predictions on the effect of cooling. In other words,

dynamical models are not only summaries of observations,

but ways to carry out nontrivial and precise quantitative pre-

dictions. Interestingly enough, we are now closer to obtaining

these low dimensional models from mean field computations

of coupled excitable systems. Recent developments in the

field of synchronization have provided us with tools to

advance forward from a pure phenomenological ansatz.

In this review, I have focused my attention on birdsong

production, but studying the deep connection between the bio-

mechanical periphery and the nervous system is a strategy

that will allow us advancing in our understanding of many dif-

ferent problems in neuroscience, particularly those requiring

sensory motor integration. For example, the developmental

dynamics of marmoset monkey vocal production was investi-

gated by studying in parallel the maturation of the vocal appa-

ratus and the effect of parental feedback.43 It is likely that

recent descriptions of the functional organization of the

human sensory-motor cortex for speech articulation will allow

us linking the average activity of specific neural populations

with the parameters needed to synthesize human speech.44

But, behavior emerges not only from the subtle interac-

tion between the nervous system and the biomechanics of

the periphery. The environment interacts with the biome-

chanics as well, and in non-trivial ways. Some animal bodies

present stable motions that require relatively little activation

or control, and it is only when the whole system (central ner-

vous system-biomechanics-environment) is analyzed that the

behavior can be understood. Lamprey dynamics during

swimming constitutes a stellar example of this phenome-

non.45 Moreover, proprioception as a mechanism of feed-

back from the body to the neural circuits involved in the

behavior is the key to understand stability and robustness. It

is clear that the more integrated a model gets, the stronger

the need for a dynamical description.

Quantitative models will enrich our study and understand-

ing of biological problems. Yet, their construction requires

subtle work. The difference in approach to a problem in phys-

ics, dynamics and biology is deeply rooted in the essence of

each discipline, and the path of working across disciplines is

hard. Nevertheless, the stories are worth the effort, and they

will probably be written in the language of dynamics.
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