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Abstract Epichloë festucae is an endophytic fungus that
infects systemically the aerial tissues of the host grass
Festuca rubra. This fungus is transmitted vertically from
the mother plant to seeds. Hypothetically, the presence of E.
festucae could affect the infection of a plant by other fungal
species. This could occur if E. festucae metabolites pro-
duced in planta interfere negatively with other fungal in-
fections; or alternatively, if the modulation of plant defenses
by the endophyte favour further fungal infections. We have
analyzed the presence of culturable non-systemic endo-
phytes in plants of F. rubra infected (E+) and not infected
(E−) by E. festucae in two subarctic habitats, meadows and
riverbanks in Northern Finland. The observed non-systemic
endophyte infection frequencies were similar among E+ and
E− plants from riverbanks, and E+ plants from meadows. In
contrast to these, the infection frequency was significantly
lower in E− plants from meadows. This result suggests that
the presence of E. festucae is not a main factor determining
the presence of non-systemic endophytes in plants. Instead,
plant genetic characteristics related to compatibility with E.
festucae and other endophytes in the more stable meadow
populations might play a role in these fungus–fungus–plant

interactions. As a result of the survey, 18 different taxa of
non-systemic endophytes were identified in plants of F.
rubra. All were ascomycetes except for one basidiomycete.
Three endophytic taxa could not be ascribed to a genus, but
sequence data indicated that they were conspecific with
other unidentified endophytes that have been isolated in
cold biomes at different locations.
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Introduction

The majority of grass-endophyte literature has focused on
Neotyphodium and Epichloë endophytes that form a life-
long, systemic infection throughout the aerial organs of the
host plant (Saikkonen et al. 1998, 2004, 2010a, b; Clay and
Schardl 2002; Kuldau and Bacon 2008). However, surveys
of fungal endophytes in grasses show that a relatively large
number of other endophytic species can be found in associ-
ation with particular grass species (Fisher and Petrini 1992;
Sánchez et al. 2007, 2008, 2010, 2012; Pan et al. 2008;
Ghimire et al. 2011; Mouhamadou et al. 2011; Purahong
and Hyde 2011). A majority of these endophytic fungi are
horizontally transmitted, form local infections, and are
known as non-systemic or Class 3 endophytes (Saikkonen
et al. 1998; Schulthess and Faeth 1998; Rodriguez et al.
2009; Sánchez et al. 2012). While the symbioses between
systemic fungi and grasses are relatively well known, the
function and effects of most non-systemic endophytes re-
main largely unknown. How the presence of systemic en-
dophytes might affect other fungi capable of infecting the
same host plants is a question that has been explored in
relation to some plant pathogens (e.g. Wäli et al. 2006), but
not to species of non-systemic endophytes.

Epichloë festucae Leuchtm., Schardl & M.R. Siegel is a
fungal endophyte colonizing the intercellular space of leaf
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sheaths, stems and seeds of the grass Festuca rubra L.
(red fescue). The sexual reproduction of this fungus is
rare, but its efficient vertical transmission from mother
plant to offspring through seeds provides an important
mechanism of asexual reproduction and dissemination
(Leuchtmann et al. 1994). In natural populations from
diverse habitats throughout Europe, F. rubra plants are
often infected by E. festucae (Sampson 1933; White et
al. 1993; Bazely et al. 1997; Zabalgogeazcoa et al. 1999,
2006; Saikkonen et al. 2000; Arroyo et al. 2002; Granath
et al. 2007; Wäli et al. 2007). The association between F.
rubra and E. festucae is under some circumstances mu-
tualistic, for instance, alkaloids of fungal origin improve
host plant resistance to herbivores (Bazely et al. 1997;
Wilkinson et al. 2000). Also, plants infected by E.
festucae have shown increased resistance to fungal dis-
eases caused by the pathogens Laetisaria fuciformis and
Sclerotinia homeocarpa (Bonos et al. 2005; Clarke et al.
2006). Because of this, E. festucae can be useful for the
improvement of commercial cultivars of F. rubra, and
endophyte-infected turfgrass cultivars are commercialized
in several countries (Brilman 2005; Zabalgogeazcoa and
Vazquez de Aldana 2007; Saikkonen et al. 2010a, b).

Although a direct involvement of several fungal alka-
loids has been shown to be a mechanism protecting F.
rubra against micro and macro herbivores (Wilkinson et
al. 2000; Kuldau and Bacon 2008; Vesterlund et al.
2011), the mechanisms involved in Epichloë-mediated
plant responses to other stress factors than herbivores is
not clearly known (e.g. Hamilton and Bauerle 2012;
Hamilton et al. 2012). In plant-endophyte associations,
several possible mechanisms against fungal pathogens
have been proposed: production of antifungal compounds
by endophytes, competition for space or resources with
pathogens, or activation of plant defense mechanisms by
endophytes (Arnold et al. 2003; Waller et al. 2005;
Zabalgogeazcoa 2008; Tejesvi et al. 2011; Hamilton and
Bauerle 2012; Hamilton et al. 2012). Compounds with
antifungal activity have been detected in extracts from E.
festucae cultures (Yue et al. 2000), and allelopathic sub-
stances are secreted by roots of F. rubra infected by E.
festucae (Vázquez de Aldana et al. 2013). Such sub-
stances could perhaps limit fungal infections by horizon-
tally transmitted endophytes and pathogenic fungi. In
addition, the existence of nets of epiphyllous hyphae of
E. festucae on leaf surfaces has been reported in some
plant-endophyte combinations, and these nets may also
limit the growth of other fungi (Tadych et al. 2007). In
this work we studied if the infection by the systemic
endophyte E. festucae affects the presence of non-
systemic endophytes in plants of F. rubra L.. In addition,
we identified non-systemic endophytes of F. rubra in a
subarctic environment.

Materials and methods

Plant material and endophyte isolation

Plants were collected in Lapland, near Kevo Subarctic
Research Institute, in the northern border of Finland. The
thermal growing season (days having temperature >5 °C) in
the area lasts 110–120 days from June to the beginning of
September. F. rubra plants were sampled in two distinct
habitats, meadows and riverbanks. The striking difference
between the meadow and riverbank habitats is that the
riverbank populations are disturbed nearly annually and
destroyed regularly by the violent debacle in the spring. In
contrast to these sandy riverbanks, meadows are more stable
and fertile environments, and their grass populations are
older and well established.

To estimate infection frequencies of plants infected by
systemic fungal endophytes, we sampled 50 F. rubra in-
dividuals in three meadow (MS1K: N 69°38′5.6″, E 27°5′
0.9″, 107 m.a.s.l.; MS2K: N 69°43′56.4″, E 27°1′11.6″,
91 m.a.s.l.; MS3K: N 69°45′32.4″, E 26°59′18.8″
85 m.a.s.l.) and three riverbank populations (RB1S: N
69°54′35,1″, E 27°2′ 0,15″, 73 m.a.s.l.; RB2S: N 69°56′
41,0″, E 26°43′21,9″ 85 m.a.s.l.; RB3S: N 69°56′10,5″, E
26°27′45,2″ 106 m.a.s.l.). The three populations of each
type of habitat were at least 3 km apart. At each location,
sampled plants were several meters apart, to avoid sampling
the same individual. The plants were potted, kept in a
greenhouse and later screened for their systemic endophyte
infection. Three leaves from each plant were surface steril-
ized (30 s in 75 % ethanol; 3 min in 4 % sodium hypochlo-
rite; 15 s in 75 % ethanol), cut into five segments and placed
on Petri dishes containing potato dextrose agar (PDA). The
presence of the systemic endophyte was detected when
mycelium with characteristics of an Epichloë endophyte
grew out of several leaf segments (Leuchtmann et al. 1994).

To determine if the presence of Epichlöe affects the
presence of culturable non-systemic endophytes in F. rubra
plants, we collected several plants from two meadow
(MS1K and MS2K) and two riverbank (RB1S, RB2S)
populations. The plants were dug up and transported to the
laboratory at Kevo Subarctic Research Institute, where E.
festucae infection was determined by microscopy of stem
pith scrapings stained with aniline blue (Bacon and White
1994). Five plants infected with E. festucae (E+) and five
Epichloë-free (E−) from two meadow and two riverbank
habitats were selected for the isolation of their non-
systemic endophytes. Several 5 cm long fragments of leaf
blades and sheaths from each plant were surface-disinfected
by means of a 10 min immersion in a solution of sodium
hypochlorite (1 % active chlorine), followed by a rinse in
sterile water. This method of surface disinfection has been
successfully used in numerous samples from several grass
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species (i.e. Sánchez et al. 2008, 2010), where its efficiency
was tested by leaf imprints in PDA (Schulz et al. 1998). The
leaf samples were placed in individual dry sterile plastic
tubes, and transported to a laboratory in Salamanca, Spain,
where they were processed within 72 h. Twenty 5 mm long
pieces of both leaf blade and leaf sheath tissue were placed
in Petri plates containing PDAwith 200 mg/L chloramphen-
icol and stored at room temperature (23–26 °C). When
mycelium emerged from a plated leaf fragment, a small
sample was transferred to a new PDA plate to obtain a
fungal culture. Then, the leaf fragment and its surrounding
agar were excised from the plate and discarded. When
morphologically similar cultures were obtained from the
same plant and tissue type, only one was maintained. The
number of fragments from which mycelium emerged was
counted during the first ten days after plating.

To estimate the infection load or amount of non-systemic
endophyte infection in E+ and E− plants, the number of leaf
fragments infected by endophytes on each plate was count-
ed. Analysis of variance was used to analyse the effect of
systemic E. festucae endophyte (E− or E+), type of tissue
(leaf blade or leaf sheath) and the habitat (meadow or
riverbank) on the number of tissue fragments infected with
non-systemic endophytes. Statistica release 5.0 software
(StatSoft, Inc. USA) was used to preform the statistical
analyses.

Identification of non-systemic endophytes

To identify non-systemic fungal endophytes, isolates were
first grouped into morphotypes according to macroscopic
morphological characteristics of the cultures. Then, one or
more cultures of each morphotype were identified using
microscopic morphology in sporulating cultures, and the
nucleotide sequence of the ITS1-5.8S-ITS2 region of
rDNA. To obtain these sequences, DNAwas extracted from
mycelium of cultures growing on PDA medium, amplicons
of the ITS region were obtained by means of a polymerase
chain reaction using primers ITS4 and ITS5, and later the
amplicons were sequenced (White et al. 1990; Sánchez et al.
2007). Nucleotide sequences representative of each
morphotype were used to interrogate nucleotide databases
using the BLAST algorithm, and the closest matches were
considered appropriate identifications for genus and species
if they had 99 % or greater similarity to several isolate
sequences, including those of collection strains (Sánchez et
al. 2007). Sequence similarities ranging from 97 % to less
than 99 % were considered acceptable for identification to
genus rank. When the similarity was less than 97 % the
fungi were considered unidentified. As an aid to identifica-
tion, a phylogenetic tree was build using sequences of the
morphotypes. In this tree we included database sequences of
the closest matches to our sequences, but choosing those

corresponding to identified strains that had been deposited
in fungal culture collections.

Results

Prevalence of systemic endophytes

The systemic endophytic fungus E. festucae was found in all
the surveyed populations. However, the frequency of colo-
nized plants was different between habitats. While an aver-
age (± standard error) of 24.0 %±7.7 % of the plants were
colonized in the three riverbank populations, 53.0 %±4.0 %
of the plants were colonized in meadow populations.

Non-systemic endophyte infections in plants

In the first week after plating plant fragments on culture
media, and before the emergence of E. festucae colonies,
non-systemic fungi emerged from 84.5 % of plant frag-
ments. The percentage of infected leaf fragments was great-
er in plants colonized by E. festucae than in those free of the
fungus (E+: 87.4 %±2.9 %; E−: 80.9 %±4.1 %), but the
difference was not statistically significant (Table 1). The
non-systemic endophyte infection rate was significantly
greater in riverbanks (88.7 %±3.0 %) than in meadows
(80.0 %±3.8 %) and interacted with habitat being lower in
E− plants in meadows (Table 1, Fig. 1). Regarding the type
of tissue, the amount of infections by non-systemic endo-
phytes was significantly greater in leaf blades (91.3 %±
2.8 %) than in leaf sheaths (77.6 %±3.7 %). Although the
difference was not significant, the amount of infected frag-
ments was greater in E+ plants in both leaf blades (E+=
95.9 %; E−=85.6 %) and leaf sheaths (E+=78.8 %; E−=
75.9 %). The above results suggest that the presence of
Epichloe endophytes do not have an inhibitory effect upon
the presence of other non-systemic endophytes in E+ plants.

Table 1 Analysis of variance of the effect of Epichloë festucae infec-
tion, type of plant tissue (leaf blades or sheaths) and habitat (meadow
or riverbank) on the number of plant fragments of Festuca rubra
infected by non-systemic endophytes

Effect df F p-level

Epichloë infection (E) 1 2.598 0.111

Habitat (H) 1 6.103 0.016*

Type of tissue (T) 1 8.279 0.005**

E*H 1 6.616 0.012*

E*T 1 1.417 0.238

T*H 1 0.153 0.697

E*T*H 1 0.637 0.428

Error 67

*Significant with p<0.05; **p<0.01
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Identification of non-systemic endophytic fungi

When several morphologically similar isolates were obtained
from the same plant, only one was further analysed. As a result,
85 isolates were obtained from the 40 F. rubra plants, and all
those were classified into 64 different morphotypes. Each
morphotype was identified by sequencing the ITS1-5.8S
rRNA-ITS2 region of one or more of its isolates. Using the
molecular data, the 64 morphotypes could be grouped into 18
different taxa (Table 2). Six of these taxa could not be identified
because their nucleotide sequences were less than 96 % similar
to the closest match from the nucleotide database. Nevertheless,
a phylogenetic analysis allowed to ascribe five of the unknown
fungi to Ascomycota, and one to Basidiomycota (Fig. 2). The
most common taxon was Phaeosphaeria, found in 16 plants,
followed by Davidiella, Aureobasidium and Glomerella.
Eleven fungal taxa were identified in E+ plants and 12 in E−
plants. This result suggests that regarding non-systemic species
richness, E+ plants can support a non-systemic endophytic
assemblage as diverse as that of E− plants. With respect to
habitat of origin, 14 taxa were identified in plants from
meadows and 12 taxa in plants from riverbanks. Except for
Fusarium, which was isolated only from plants at riverbanks,
all other taxa represented by more than one isolate were found
at both habitats.

The nucleotide sequence of Unidentified ascomycete 1
was similar to those of other unidentified fungi isolated from
snow covered soils in Austria (Genbank accession number
EU516923), from house dust in Finland (AM901892), and
from a plant in Tibet (JX401949). The closest match (99 %)
to the nucleotide sequence of Unidentified ascomycete 2
was a fungus isolated from oilseed rape roots in Sweden
(EU754982). The sequence of Unidentified ascomycete 3

was identical to that of a fungus (FJ378725) isolated from
plant roots in Himalayan alpine meadow. The fact that the
sequences of unidentified fungi from this study resembled
those of other unidentified strains obtained in cold regions
might indicate that these species are common in cold biomes.

Discussion

Previous works have shown that E. festucae can affect the
outcome of fungal diseases in F. rubra (Bonos et al. 2005;
Clarke et al. 2006; Wäli et al. 2006). Thus, we investigated
whether the symbiosis with E. festucae would inhibit the
infection of plants by horizontally transmitted endophytes.
In contrast to studies on grass pathogens, our results do not
support the hypothesis of Epichloë inhibiting horizontally
transmitted, non-systemic fungi. The non-systemic endo-
phyte infection rate, however, was lower in meadows where
prevailing selection pressures favour systemic E. festucae
endophyte colonisations (Saikkonen et al. 2000; Wäli et al.
2007). Furthermore, non-systemic endophyte infection rate
was significantly lower in E− plants in meadows. The num-
ber of non-systemic endophyte infections in E+ and E− leaf
blade and leaf sheath tissues was not significantly different,
and the number of fungal taxa was comparable in E+ and E−
plants. These results suggest that non-systemic endophyte
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Fig. 1 Non-systemic endophyte infections in leaf blades and leaf
sheaths of 40 Festuca rubra plants sampled at meadows and river-
banks. Bars indicate mean percentage±standard error. Differences
between means with different letters are statistically significant (least
significant difference, p<0.01)

Table 2 Number of plants of Festuca rubra infected (E+) or not (E−)
by Epichloë festucae where non-systemic endophytes were isolated in
meadow and riverbank habitats in a subarctic environment in Lapland,
Northern Finland

Non-systemic fungal taxa Meadow Riverbank Total

E− E+ E− E+

Phaeosphaeria spp. 4 5 4 3 16

Davidiella sp. 1 0 6 0 7

Aureobasidium pullulans 0 2 1 3 6

Glomerella graminicola 3 1 0 2 6

Microdochium nivale 1 1 0 1 3

Fusarium sp. 0 0 1 1 2

Oculimacula sp. 1 0 1 0 2

Unidentified ascomycete1 0 1 0 1 2

Phoma spp. 1 0 1 0 2

Podospora sp. 0 1 0 0 1

Drechslera sp. 0 0 1 0 1

Coniothyrium sp. 0 1 0 0 1

Lecythophora sp. 0 1 0 0 1

Unidentified basidiomycete 1 1 0 0 0 1

Unidentified ascomycete 2 1 0 0 0 1

Unidentified ascomycete 3 0 0 0 1 1

Unidentified ascomycete 4 0 0 0 1 1

Unidentified ascomycete 5 1 0 0 0 1
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 N10 (HF674733)

 Podospora tetraspora GQ922573
Podospora sp.

 N34(HF674734)

 Lecythophora sp. AY219880
Lecythophora sp.

 Glomerella graminicola AB233343

 N2 (HF674735)

 N30 (HF674736)

Glomerella graminicola

 Fusarium tricinctum AB587028

 R1(HF674737)

 R2 (HF674738)

Fusarium sp.

 N40 (HF674739)

 Davidiella tassiana AY152552
Davidiella sp.

Unidentified ascomycete 2 N21(HF674740)

Unidentified ascomycete 3 B5 (HF674741)

Unidentified ascomycete 4 N32 (HF674742)

Unidentified ascomycete 5 N31(HF674743)

 N12 (HF674744)

 Oculimacula yallundae JF412009
Oculimacula sp.

 B13 (HF674745)

 B3(HF674746)

 Microdochium nivale AB586986

Microdochium nivale

 N22(HF674747)

 Drechslera erythrospila
Drechslera sp.

 B16 (HF674748)

 Phoma valerianellae GU128539

 Phoma exigua AF268182 

 R4(HF674749)

Phoma spp.

Unidentified ascomycete 1 N1 (HF674750)

 B1 (HF674751)

 Phaeosphaeria nodorum GU319990
Phaeosphaeria sp.

 N23 (HF674752)

 Coniothyrium cereale AJ293812
Coniothyrium sp.

 N41(HF674753)

 N29 (HF674754)

 Phaeosphaeria pontiformis AJ496632

 O1(HF674755)

 Phaeosphaeria caricis AF439476

 N48 (HF674756)

 N35 (HF674757)

 N37 (HF674758)

 N39 (HF674759)

Phaeosphaeria spp.

 N5 (HF674760)

 Aureobasidium pullulans AJ244231

 B4 (HF674761)

 B14 (HF674762)

Aureobasidium pullulans

Ascomycota

Unidentified basidiomycete B2 (HF674763)

 Ceratobasidium sp.AB290019
Basidiomycota
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Fig. 2 Neighbor joining phylogenetic tree made with ITS1-
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infections are driven by environmental and/or other factors
than direct fungus–fungus interactions between systemic
and non-systemic fungi.

In this work we used a culture-dependent technique to
isolate F. rubra endophytes. It should be noted that in
endophyte surveys the techniques used for isolation can
have an important impact in the results obtained (Hyde
and Soytong 2008). For instance, if a culture independent
technique (i.e. DNA based; Martin and Rygiewicz 2005;
O’Brien et al. 2005; Martinson et al. 2012) would have been
used, non culturable species and other culturable taxa dif-
ferent from the ones we observed might have been detected.

Plants have a variety of structural and pathogen-induced
defense mechanisms to prevent or control fungal infections
(Agrios 2005), but in spite of this, the presence of fungal
endophytes is ubiquitous in the plant kingdom (Rodriguez et
al. 2009). This might indicate that many fungal species can
modulate plant defense responses to a point where after pen-
etration, these fungi can remain alive inside plant tissues as
endophytes. Endophytic infection has been postulated as the
result of a balanced antagonism between the plant defensive
mechanisms and the endophyte capability to penetrate and
grow in plant tissues (Schulz and Boyle 2005). In this sense, in
plants of Lolium perenne the endophyte Neotyphodium lolii
overproduces a superoxide dismutase that may protect it from
reactive oxygen species produced by the plant as a defense
mechanism (Zhang et al. 2011). Such interplays between re-
active oxygen species and antioxidants produced by both
plants and endophytes could be involved in the modulation
of plant defense, allowing endophytic infection, as well as in
the limitation of damage that endophytes could cause (White
and Torres 2010; Hamilton and Bauerle 2012; Hamilton et al.
2012; Gundel et al. 2012). In this context, an endophyte like E.
festucae, capable of colonizing systemically the intercellular
space of leaf blades, sheaths, reproductive stems and seeds, is
suggested to perturb plant defense responses and thereby could
open a window for other fungi. Our results, however, do not
support this other hypothesis. The rates of non-systemic endo-
phyte infections were comparable in E+ plants in meadows to
those in both E+ and E− plants in riverbanks. Instead, the
infection rate of non-systemic endophytes was markedly lower
in E− plants in meadows.

We propose that genetically determined resistance proper-
ties of the host grass drive non-systemic endophyte infections
in grasses similarly to horizontally transmitted fungi in woody
plants (Ahlholm et al. 2002a; b; Saikkonen 2007; Saikkonen
et al. 2010a). The higher proportion of E+ plants detected in
meadows suggests that Epichloë endophytes provide a selec-
tive advantage to the host in meadows (see also Wäli et al.
2007; Saikkonen et al. 2010b) which are more stable and
fertile environments. In meadows grass populations are older
and plant competition is higher compared to riverbanks, which
suffer almost annual disturbance due to spring flooding (see

also Wäli et al. 2007; Saikkonen et al. 2010b). However,
Epichloë endophyte infections appear to be fragile, genetic
mismatches constrain compatible combinations between the
Epichloë endophyte and the out-crossing host, thereby leading
to loss of less fit fungus–plant genotype combinations in
established grass populations (Saikkonen et al. 2010b).
Genetic divergence of E− plants in our study could be
explained if genetic mismatch between the Epichloë endo-
phytes genetically correlates with higher resistance to fungi in
plants in general.

Dominant non-systemic endophytic species identified in F.
rubra plants, e.g. Phaeosphaeria, Aureobasidium and
Glomerella, have also been described as dominant taxa in
surveys of endophytes in other grass species (Stone et al.
2004; Sánchez et al. 2012). It is interesting that Cladosporium
and Alternaria, the two most prominent taxa of non-systemic
grass endophytes found in many grass species throughout
temperate areas (Sánchez et al. 2012), were absent in F. rubra
plants collected from meadow and riverbank habitats in
Northern Finland. This might be an indication of a geographical
distribution of Alternaria and Cladosporium, which might not
be common grass endophytes in arctic latitudes. These two taxa
have been isolated as endophytes from plants of F. rubra in
Spain (Martín et al. 2008), and could be considered latent
saprobes that sporulate on the surfaces of their plant hosts after
tissue senescence or death (Sánchez et al. 2012).

Several fungal taxa isolated in this survey (Table 2) seem
to be common to cold biomes, for example the pathogen
Microdochium nivale, a snow mold, was isolated from sev-
eral plants in this study. In addition, three different taxa of
ascomycetes that were not identified (unidentified ascomy-
cetes 1, 2, and 3) had nucleotide sequences identical or very
similar to unidentified fungi isolated from cold environ-
ments: alpine Himalayan meadows, Swedish crop fields,
and house dust samples from Finland (Kauserud et al.
2005; Pitkäranta et al. 2008; Gao and Yang 2010). In con-
trast, the taxa of other non-systemic endophytes that were
identified (Table 2), are similar to those reported in surveys
of endophytes from grasses occurring in Southern Europe
(Sánchez et al. 2012).
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