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Abstract
Purpose Descriptors extracted from magnetic resonance
imaging (MRI) of the brain can be employed to locate
and characterize a wide range of pathologies. Scalar mea-
sures are typically derived within a single-voxel unit, but
neighborhood-based texture measures can also be applied.
In this work, we propose a new set of descriptors to compute
local texture characteristics from scalarmeasures of diffusion
tensor imaging (DTI), such asmean and radial diffusivity, and
fractional anisotropy.
Methods We employ weighted rotational invariant local
operators, namely standard deviation, inter-quartile range,
coefficient of variation, quartile coefficient of variation and
skewness. Sensitivity and specificity of those texture descrip-
tors were analyzed with tract-based spatial statistics of the
white matter on a diffusion MRI group study of elderly
healthy controls, patients with mild cognitive impairment
(MCI), and mild or moderate Alzheimer’s disease (AD). In
addition, robustness against noise has been assessed with a
realistic diffusion-weighted imaging phantom and the con-
tamination of the local neighborhood with gray matter has
been measured.
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Results The new texture operators showed an increased
ability for finding formerly undetected differences between
groups compared to conventional DTImethods. In particular,
the coefficient of variation, quartile coefficient of varia-
tion, standard deviation and inter-quartile range of the mean
and radial diffusivity detected significant differences even
between previously not significantly discernible groups, such
as MCI versus moderate AD and mild versus moderate AD.
The analysis provided evidence of low contamination of the
local neighborhood with gray matter and high robustness
against noise.
Conclusions The local operators applied here enhance the
identification and localization of areas of the brain where
cognitive impairment takes place and thus indicate them as
promising extensions in diffusion MRI group studies.

Keywords Local texture · Diffusion tensor imaging ·
Alzheimer’s disease · White matter

Introduction

Diffusion MRI is predominantly interpreted as a modality
to estimate the spatial distribution of the diffusion of water
molecules [2]. One common diffusion MRI model is dif-
fusion tensor imaging (DTI), which describes the tensor of
the diffusion directions. DTI found numerous applications in
the study of neurosurgery [19], psychiatric [18] and neuro-
logical disorders [32] and is most commonly applied on the
whitematter (WM) of the brain [12] wherewater tends to dif-
fuse preferentially parallel to fiber tracts because the myelin
sheath and cell membranes restrict the diffusion perpendic-
ular to the direction of the axons. Given that the diffusion
tensor is a mathematical entity whose comparison and inter-
pretation are not straightforward, most DTI group studies
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rely on scalar measures which encode different rotationally
invariant properties of the original diffusion tensor.

The most commonly employed measures are fractional
anisotropy (FA) and mean diffusivity (MD) [29]. Also useful
for describing the diffusion are radial and axial diffusivity
[6], linear measure, tensor mode [20], and others [3,8,22].
The choice of suitable scalar measures is a critical step for
DTI analyses, as their robustness to noise, or sensitivity and
specificity to the pathological condition (i.e., ability to dis-
criminate healthy from diseased patients, or between patients
with different disease states) have a key role in the perfor-
mance of the studies.

Most of the literature related to the derivation of new DTI
scalar measures has focused on the behavior of different
anisotropy measures with respect to noise. It is worth not-
ing that most of the recently proposed anisotropy indices
have similar contrast-to-noise ratio than FA [7,15]. Only
few DTI methods, which incorporate a local neighborhood,
have been described. The lattice index [26] measures the
similarity of the predominant diffusion directions on a local
weighted neighborhood in 2D.The inter-voxel local diffusion
homogeneity [10] uses an unweighted 3Dneighborhood. The
local diffusion homogeneitymight be sensitive to age-related
changes inWMbut less robust thanMDor FA againstmotion
artifacts in theMRI acquisition process [17]. Neither of these
methods is rotational invariant.

The aim of this work is to present new DTI descriptors
to improve the identification of subtle differences of the
integrity of the white matter architecture between healthy
and diseased brains (dementia, multiple sclerosis, stroke,
aging, etc.). Our hypothesis is that well-defined texture oper-
ators, attached to existing scalar measures, can improve
the identification of differences of the white matter archi-
tecture between patients with different levels of cognitive
impairment. We propose a new set of image filtering meth-
ods directly on traditional scalar measures using rotationally
invariant weighted local descriptors (average, standard devi-
ation, coefficient of variation, skewness, etc.) to improve the
discriminative power and robustness against noise. These sta-
tistical descriptors are inter-voxel in nature and may extract
additional texture information that was not revealed by the
original scalar measures, allowing to localize formerly unde-
tected areas and opening a door to new viewpoints for the
analysis of neuronal pathologies.

For the evaluation of the texture operators, we directly
analyze the performance with a real-world DTI group study,
instead of indirectly assessing the sensitivity and specificity
to disease by means of the ability to distinguish between
different types of brain tissue. We choose an Alzheimer’s
disease (AD) study with four distinct cohorts and restrict the
final analysis to three input scalar measuresMD, RD and FA,
which were shown to differentiate well on AD [29]. Tract-
based spatial statistics (TBSS) are employed as they have

Fig. 1 DTI scalar measures (MD, RD or FA) are filteredwith weighted
local texture operators (∗). Then, they are registered to atlas space and
projected to theWMskeleton, allowing to derive statistical comparisons
between patients

become widely accepted for such analyses [30]. In addition,
we analyze the overlap of the neighborhood with gray mat-
ter and examine the performance of the local operators with
respect to Rician noise.

Materials and methods

For the separate evaluation of each anatomical entity with
TBSS, the following image processing steps are performed
(Fig. 1). DTI is estimated from DWI volumes, and there-
after, the traditional single-voxel scalar measures (MD, RD
or FA) are derived.Now, the texture descriptors are computed
from the scalar measures using a local weighting mask. The
final steps are the registration of the texture and non-texture
measures to a standard atlas space and the projection to the
registered WM skeleton, which is derived from FA. The fol-
lowing subsections review the traditional scalar measures
in “Scalar measures” section, the proposed texture oper-
ators “Local texture operators” section and the conducted
experiments (see “Analysis of diagnostic performance” and
“Analysis of robustness” sections).

Scalar measures

The definitions of the scalar measures that were employed in
this work are briefly reviewed. Given a diffusion tensor and
its three eigenvalues λ1 ≥ λ2 ≥ λ3, the mean diffusivity is a
measure of the total amount of diffusivity
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MD = λ = λ1 + λ2 + λ3

3
. (1)

The radial diffusivity, on the other hand, measures how
much diffusivity remains perpendicular to the main diffusion
direction

RD = λ2 + λ3

2
, (2)

and the fractional anisotropy measures how much the diffu-
sion deviates from isotropy

FA =
√
3

2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

λ21 + λ22 + λ23

. (3)

The following additional scalar measures were computed,
but finally discarded as they did not add much information
with respect to the ones described in this work: linear, planar
and spherical measure [37], anisotropy and elongation index
[5] and an operator describing the DTI ellipsoid in terms of
being oblate or prolate [36].

Local texture operators

Linear and nonlinear local texture operators are computed.
Both incorporate aGaussianweightingmaskNR and abinary
volume of interest VOI. The weighting mask NR is rota-
tionally invariant and monotonic decreasing from the center
voxel and thus minimizes remote influences of potential gray
matter voxels within the neighborhood. It reads:

NR(r) =
{
exp

( ‖r‖2(�−1(0.99))2

−2R2

)
, if ‖r‖ ≤ R

0, otherwise,
(4)

where �−1(0.99) is the evaluation of the probit function at
p = 0.99, r the 3D offset relative to voxel x, ‖·‖ the Euclid-
ean norm and R the isotropic radius. To compute meaningful
3D information, the mask must contain at least three non-
trivial voxels in each direction, but must be small enough not
to contaminate the texture information with gray matter vox-
els. Formulas for the linear operators are based on weighted
cumulants [27]. First, the following parameters are defined:

Vi (x) = (VOI ∗ N i
R)(x), and (5)

Xi (x) = ((Si · VOI) ∗ NR)(x), (6)

whereVOI contains ones inside and zeros outside the brain, S
is the input scalar measure, · is the point-wise multiplication,
∗ is the convolution operator and i ≥ 1 is an integer number.
Now, the weighted cumulants read

K1(x) = (X1/V1)(x), (7)

K2(x) =
(
X2V1 − X1

V 2
1 − V2

)
(x), and (8)

K3(x) =
(
X3V 2

1 − 3X1X2V1 − 2X3
1

V 3
1 − 3V1V2 + 2V3

)
(x). (9)

The nonlinear operators are computed from weighted
quantiles. For each voxel x, let r1, . . . , rM be the labeling
of all 3D offsets of NR which induces the ascending sort-
ing of the values of S: ∀i ∈ {1, . . . , M − 1} : S(x + ri ) ≤
S(x + ri+1). The weighted quantile at a given percentile
Pr ∈ [0, 1] reads now:

QPr (x) = S(x + r j ) :
j−1∑
i=1

N ∗
R(ri ) < Pr ≤

j∑
i=1

N ∗
R(ri )

(10)

withN ∗
R the normalized weighting mask (

M∑
i=1

N ∗
R(ri ) = 1).

From the definitions above, six scalar measures are defined;
the weighted average is only included for completeness,
though not new in DTI imaging:

– the weighted average

AVG(x) = K1(x), (11)

– the weighted standard deviation

SD(x) = √
K2(x), (12)

– the weighted coefficient of variation

CV(x) = (
√
K2/K1)(x), (13)

– the weighted standardized skewness

SKW(x) = (K3/K
(3/2)
2 )(x), (14)

– the weighted inter-quartile range

IQR(x) = (Q75% − Q25%)(x), (15)

– and the weighted quartile coefficient of variation

QCV(x) =
(
Q75% − Q25%

Q25% + Q75%

)
(x). (16)

Figure 2 shows axial views of all scalar (RAW) and
neighborhood-based operators for a certain sample case.
AVG contains the smoothed information of RAW. The para-
meters IQR and QCV represent nonlinear counterparts of
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RAW AVG SD IQR CV QCV SKW

FA
R

D
M

D

Fig. 2 DTI measures obtained from a healthy patient (voxel size
1.015×1.015×3mm3,matrix is cropped to 131×162 voxels) obtained
with N4mm (mask size 7 × 7 × 3). Rows MD, RD and FA. Columns

Single-voxel measure (RAW), average (AVG), texture operators stan-
dard deviation (SD), inter-quartile range (IQR), coefficient of variation
(CV), quartile coefficient of variation (QCV) and skewness (SKW)

SD and CV. SD and IQR emphasize areas with a high local
gradient similar to their scale invariant counterparts CV and
QCV. The third moment SKW reveals different information
than the other operators, which becomes visually apparent in
the case of its application to MD and RD. However, in the
case of FA, SKW equals to a certain extent CV and QCV.
The weighted standardized kurtosis was derived in a simi-
lar manner to the other linear operators, but later excluded
due to its weak sensitivity and specificity between the tested
cohorts.

Analysis of diagnostic performance

A DTI group study with four age-adjusted cohorts was ana-
lyzed (N = 58). The study contained healthy controls
(HC: N = 19, age = 74.05 years, SD = 0.88 years),
patients with mild cognitive impairment (MCI: N = 12,
age = 76.33 years, SD = 1.11 years), patients with mild
Alzheimer’s disease (Mild AD: N = 20, age = 76.30 years,
SD = 0.86 years) and patients with moderate Alzheimer’s
disease (Mod AD: N = 7, age = 76.57 years, SD =
1.45 years). Raw diffusion-weighted images (DWIs) were
acquired with a GE Signa 1.5 T MRI unit at QDiagnóstica
radiological facilities in Valladolid, Spain. The parameters
of the acquisition protocol were the following: 25 gradient
directions, b = 1000 s/mm2, one baseline volume, 128×128

acquisition matrix zero-padded to 256× 256 prior to recon-
struction, reconstructed voxel size 1.015 × 1.015 × 3mm3,
TR = 13, 000ms, TE = 85.5ms, NEX = 2 and 39 slices
covering the entire brain.

The DWIs were linearly registered to the baseline volume
to account for possible minor motion artifacts. Then, they
were processedwith an algorithmbasedon theOtsu threshold
[24] to remove the image background as well as non-brain
structures such as the skull. Diffusion tensors were estimated
using a weighted least squares method [28], and the image
qualitywas individually checked on the tensor volumes using
color by orientationmaps. From the tensor volume, the scalar
measures and local operators were computed (N4mm, mask
size 7× 7× 3) and TBSS analysis [30] was performed using
FSL 4.1 (FMRIB software library, http://www.fmrib.ox.ac.
uk/fsl [13]). By using this methodology, FA volumes were
non-linearly registered to theMNI 152 standard space (voxel
size 1× 1× 1mm3 [11]). Then, a WM skeleton was created
from the thresholded mean FA map (FA ≥ 0.2). Finally,
all original scalar measures and the ones derived from local
operators were projected onto theWM skeleton for statistical
comparisons.

Statistical analyses for TBSS were carried out using
RANDOMISE, an FSL tool that performs permutations for
inference on statistical maps when the null distribution is
unknown [21]. This allows to measure the precision and
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specificity, similar to conventional tests of receiver operator
characteristics, but with increased sensitivity to differences
in a specific direction [40]. Corrections for family-wise
errors and multiple comparisons with threshold-free cluster
enhancement [31] were performed. Pair-wise comparisons
were made for each combination of different cohorts and for
all measures (original measures and the ones proposed in this
paper) in order to obtain the number of voxels for which sig-
nificant differences (p < 0.05; p < 0.1) were found among
groups. The significant levels of every voxel in atlas space
have been separately adjusted for multiple comparisons with
the Benjamini–Hochberg procedure [4]. This correction was
applied for M = 21 comparisons (MD, RD, FA in combina-
tion with the 7 operators RAW, AVG, STD, etc.), while the
6 combinations of cohorts (HC versus MCI, HC versus Mild
AD etc.) were analyzed separately and thus not included in
the Benjamini–Hochberg correction.

Analysis of robustness

In order to evaluate the performance of the proposed new
scalar measures with respect to noise, noise-controlled DTI
volumes were employed based on a realistic phantom. Fol-
lowing the approach described in [33], a real dataset was
denoised [34] to create a ground truth with 16 gradient direc-
tions, b = 1200 s/mm2, one baseline volume, reconstructed
voxel size 0.9375×0.9375×1.7mm3, 128×128 acquisition
matrix zero-padded to 256× 256 prior to reconstruction and
81 slices covering the entire brain. Then, the noiseless DWI
(D∞) was interfered with Rician noise of eleven different
signal-to-noise ratios ranging in amplitude scale from SNR
= 3.16 to SNR = 56.23. The SNR’s have been chosen to be
uni-distant in (logarithmic) decibel scale with a spacing of
2.5 dB and covering the interval [10 dB, 35 dB]. The noisy
DWI signal DSNR read:

DSNR =
√

(D∞ + η(E/SNR))2 + η′(E/SNR)2, (17)

where E and SNR were both expressed in amplitude scale
and the expected value E was the mean value of the noiseless
DWIs. The functions η(σ ) and η′(σ )were two Gaussian ran-
dom variables with zero mean and standard deviation σ . The
traditional andnovel scalarmeasures (N4mm, 9×9×5 voxels)
were obtained from the resulting DTI volumes, and TBSS
was applied, thus obtaining a thresholded FA skeleton (noise-
less FA ≥ 0.2), over which the evolution in noisy scenarios
was analyzed. Quantitative comparisons between operators
and SNRs were derived from the normalized root mean
square error

NRMSE(XSNR, X∞) = RMSE(XSNR, X∞)

SD(X∞)
, (18)

with RMSE(XSNR, X∞) the root mean square error between
the noisy XSNR and the noiseless signal X∞, and SD(X∞)

the standard deviation of the noiseless signal. The normal-
ization with the standard deviation allows for the optimum
comparison between the different tested operators: it does
not require ratio variables (in contrast to a normalizationwith
the mean) and is robust against outliers (in contrast to a nor-
malization with the range). In particular, the variables RAW
and AVG of FA on the white matter and SKW require this
kind of normalization. Since the measures SNR and RMSE
express amplitude ratios, the transformation to dB scale was
performed with the formula for root power quantities.

The analysis of the contamination with gray matter was
obtained from all 58 patients of the AD study. A histogram
was computed of the minimum amount of white matter in the
neighborhoods of the TBSS. The proposed maskN4mm was
compared with three different unweighted 3 × 3 × 3 masks
used for the computation of the inter-voxel local diffusion
homogeneity [10]: the neighborhood N27 contained all 27
voxels, while the other contained only voxels sharing an edge
(N19) or side (N7) with the center voxel.

Results

Analysis of diagnostic performance

No significant differences (p < 0.1)were found betweenHC
versus MCI or between MCI versus Mild AD. Except for FA
RAW and AVG, parameters between other cohorts increased
with progressing dementia: HC < Mild AD < Mod AD and
MCI < Mod AD. None of the parameters contained signif-
icantly increased and decreased areas at the same moment.
The traditional measures (RAW or AVG) found significant
differences only between healthy patients and thosewithAD,
while the texture operators additionally located change at
MCI < Mod AD and between the two AD cohorts (Mild
AD < Mod AD), as shown in Fig. 3. Note that although
MD and RD consistently increased with disease severity and
FA decreased, less voxels with significant differences were
found on the RAW and AVG operators in the comparison
between HC versus Mod AD compared to HC versus Mild
AD. This might have been caused by the limited statistical
power of this comparison due to the small number of patients
in Mod AD (N = 7).

The application of the operators to MD and RD followed
a widely similar pattern, both, in regard to the number and in
regard to their spatial distribution. With regard to MD, SD,
IQR, CV and QCV discriminated on four pairs, while the
other operators only at two (SKW and AVG) or one pair of
groups (RAW). MD SD and CV detected similar locations;
however, MD CV revealed stronger indications of impair-
ments between Mild AD and Mod AD on the sensory cortex
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Fig. 3 Number of significant different TBSS voxels (N =
91, 050, p < 0.1 and p < 0.05, corrected for multiple comparisons)
between HC versus Mild AD (top left), HC versus Mod AD (bottom

left),MCIversusModAD(top right) andMildADversusModAD(bot-
tom right). The subset of voxels which were significant with p < 0.05
are shaded in gray

Fig. 4 Spatial distribution of significant differences of MD SD and
MD CV, p Values have been adjusted for multiple comparison correc-
tion with threshold-free cluster enhancement and family-wise errors.

Groups are HC < Mod AD, MCI < Mod AD and Mild AD < Mod AD
where MD RAW was not discriminative (p < 0.05)

andparietal lobe, as shown inFig. 4. The applicationof higher
order moments (SD, CV, SKW) on FA did not improve the
diagnostic performance of FA AVG.

Analysis of robustness

Themost of the local operators had higher robustness against
noise than the single-voxel RAWoperator, as shown in Fig. 5.

The noise characteristics obtained on MD and RD were very
similar. Applied to MD or RD, AVG increased the robust-
ness against noise constantly by a factor of 1.8, while FA
AVG increased the robustness depending on the SNR by up
to factor of 4, compared to RAW. Also the local texture oper-
ators of MD and RD were more robust than RAW, with the
exception of SD for high SNRs and SKW for low SNRs. The
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Fig. 5 Noise analysis with NRMSE versus eleven SNRs ∈ [10 dB, 35 dB]. 1. Row NRMSE(dB) of MD, RD and FA. 2. Row � NRMSE as the
difference of NRMSE(dB) of the texture operators to the NRMSE(dB) of the non-texture operator RAW

Fig. 6 Percentage of WM voxels inside the evaluated neighborhoods,
color-coded from 50 to 100%. Left cumulative histogram of N4mm,
mask size (9× 9× 5) in comparison with N27, N19 and N7 (mask size

3 × 3 × 3). Right Spatial distribution of N4mm on the posterior of the
center axial slice

robustness against noise of MD/RD CV, QCV and for high
SNRs of SKW increased by a factor 1.8 to 2.2, exceeding
also the robustness of MD/RD AVG. If applied to FA, SD
and CV were only robust for high SNRs (2.2 and, respec-
tively, 1.6 times of RAW), while IQR, QCV and SKW were
rather sensitive to noise.

The comparison ofN4mm with unweighted 3×3×3 neigh-
borhoods N27, N19 and N7 is shown in Fig. 6. Although
the spatial dimension of N4mm exceeded the one of the
unweighted neighborhoods, its contaminationwith graymat-
ter was still low: approximately 92% of all neighborhoods
were at least to 90% in WM. Furthermore, N4mm contained
more neighborhoods with a minimum white matter share of
93% (N27), 80% (N19) and 65% (N7), respectively.

Discussion

The experimental work performed here focused on the
analysis of two important aspects: the ability to discrimi-

nate between pathological conditions in a group study and
the evolution with varying SNR. With regard to the first
one, results showed that some of the proposed local tex-
ture operators highly increased the ability to differentiate
between groups. Concerning the second one, most parame-
ters obtained high robustness against noise, some texture
operators even exceeded the robustness of AVG.

A DTI data set with multiple stages of Alzheimer’s dis-
ease was selected as an experimental benchmark because it
allowed to quantify the potential gain of the new operators.
Indeed, new differences between groups arose when employ-
ing the proposed approach, which is a strong advantage over
traditional measures. In particular, the texture parameters
SD, CV, IQR and QCV, if applied on MD or RD, exceeded
the performance of RAW and even AVG. For instance, CV
and QCV obtained generally higher robustness to noise and
higher discriminative potential than AVG. When consider-
ing noise and discriminative analysis together, local texture
parameters of MD and RD were more adequate for the con-
ducted AD group studies than those based on FA. AVG was
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the only neighborhood-based standard DTI operator among
the proposed ones, since weighted averaging is commonly
employed in voxel-based morphometry [1] and TBSS [30];
it obtained high robustness to noise, but was, unlike other tex-
ture parameters, unable to reveal differences between MCI
versus Mod AD or Mild AD versus Mod AD.

In general, also alternative statistical analyses could be
performed, such as the general voxel-based (VBA) or atlas-
based analysis (ABA), which do not require skeletonization
of the WM [23]. However, TBSS analysis was used in this
work because of two reasons. First, as TBSS is a widely
employed DTI analysis tool [38], it facilitates the interpreta-
tion and comparison of the results among other approaches.
Second, since TBSS centers the neighborhoods on the WM
skeleton, it minimizes any contamination with gray matter.

Still, the mask size must be selected carefully accord-
ing to the spatial resolution. If the mask exceeds noticeably
the distance from the WM skeleton to gray matter vox-
els, local features become mainly dependent on changes
in local morphometry, which decreases the discriminative
power particularly at the boundaries of the WM. In terms
of contamination with gray matter, N4mm contained similar
characteristics than the unweighted reference masks, while
being advantageous in terms of sample size and isotropy: in
contrast to N4mm, the reference masks N27, N19 and N7 are
anisotropic (3×3×9mm3) and thus favor longitudinal fiber
tracts over transversal or sagittal ones.

The interpretation of the results may be difficult compared
to traditional measures, which is a common issue of texture
operators [10]. Differences in traditional scalar measures,
such as FA, have been often related to physiological changes
in the WM tissue (demyelination, lower packing density or
different membrane permeability, among others) [16]. How-
ever, changes in FA, MD or RD can be caused by very
different mechanisms within the tissue, which makes bold
interpretations of changes in the WM “integrity,” although
very common, possibly flawed [14]. The use of the pro-
posed local operators, on the other hand, can open a door to
new viewpoints for the analysis of pathologies. For instance,
MD CV discovered a progressing impairment from mild to
moderate AD of brain areas, which are commonly related to
sensations (sensory cortex), perception, spelling and arith-
metic (parietal lobe). These impairments remained hidden
on standard parameters (RAW and AVG).

Head motion during diffusionMRI acquisition is a known
source of image artifacts. As indicated in “Analysis of
diagnostic performance” section, the DWIs were linearly
registered to the baseline volume before tensor estimation,
and image quality was individually checked on the tensor
volumes using color by orientation maps. However, unde-
sired attenuation in single DWI slices due to motion during
the diffusion-encoding gradient pulse cannot be completely
excluded. In principle, these motion effects could lead to

artifacts in the scalar measures obtained from the diffusion
tensor, such as an underestimation of anisotropy indices.
Even though previous studies in the literature have reported
possible false positive findings in group studies due to this
effect and have even described how these artifacts can be
more prominent in some neural pathways [39], there is no
indication that the proposedmeasures could bemore affected
bymotion artifacts than the original RAWmeasures. As these
motion artifacts can be expected to behave in a somehow
smooth manner across the brain, it is even possible that the
measures based on local variability aremore robust tomotion
artifacts than the original measures, but a detailed analysis
of this effect would be needed to elucidate this.

The application of the proposed texture operators is
not limited to DTI, but could be applied to any scalar
measure. In particular, the application on Q-Ball scalar
measures from high angular resolution diffusion imag-
ing might be investigated, for instance the generalized
anisotropy [25], generalized fractional anisotropy [35] or
fractional multi-fiber index [9]. Studies with higher spa-
tial resolution than the one employed here could achieve
improvements regarding the robustness and localization of
the changed areas. The MATLAB code with a sample script
that computes the local operators is available at mem-
bers.imaglabs.org/felix.thomsen/LocalOperatorsMRI/
Matlab.zip.

Conclusion

In this work, we presented new image processing methods
for the identification and characterization of changes in the
white matter of the brain based on DTI. Instead of deriving
newscalarmeasures directly fromDWI,we further processed
existing DTI scalar measures such as FA, MD and RD with
rotational invariant texture operators. Each combination of
existing scalar measures and texture operators provided a
novel measure with new and distinct properties, which was
in many cases more suitable than the original single-voxel
measure for particular discrimination problems of DTI stud-
ies. Compound sensitivity and specificity of the operators
were compared with the one of the traditional measures on
a group study of Alzheimer’s disease. Additionally, noise
characteristics were measured with a synthetic DWI phan-
tom and the overlap of the local operators with gray matter
was analyzed.

Texture parameters based on MD and RD yielded the
highest discriminative power and robustness against noise
and were able to identify formerly undetected changes even
between previously insignificant pairs of groups Mild AD
versus Mod AD. Thus, the results indicate that the methods
are a promising extension in DTI studies. Future work might
investigate the application of the proposed methods on group
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studies of different alterations of the brain (multiple sclerosis,
schizophrenia, etc.) to improve the detection and localization
of the changes between groups.
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