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ABSTRACT

In close binary systems composed of a normal, donor star and an accreting neutron
star, the amount of material received by the accreting component is, so far, a real
intrigue. In the literature there are available models that link the accretion disk
surrounding the neutron star with the amount of material it receives, but there is
no model linking the amount of matter lost by the donor star to that falling onto the
neutron star.

In this paper we explore the evolutionary response of these close binary systems
when we vary the amount of material accreted by the neutron star. We consider a
parameter β which represents the fraction of material lost by the normal star that can
be accreted by the neutron star. β is considered as constant throughout evolution. We
have computed the evolution of a set of models considering initial donor star masses
Mi/M⊙ between 0.5 and 3.50, initial orbital periods Pi/days between 0.175 and 12,
initial masses of neutron stars (MNS)i/M⊙ of 0.80, 1.00, 1.20 and 1.40 and several
values of β. We assumed solar abundances. These systems evolve to ultracompact or
to open binary systems, many of which form low mass helium white dwarfs. We present
a grid of calculations and analyze how these results are affected upon changes in the
value of β. We find a weak dependence of the final donor star mass with respect to β.
In most cases this is also true for the final orbital period. The most sensitive quantity
is the final mass of the accreting neutron star.

As we do not know the initial mass and rotation rate of the neutron star of any
system, we find that performing evolutionary studies is not helpful for determining β.
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1 INTRODUCTION

It is currently accepted that close binary systems (CBSs)
composed of a white dwarf (WD) and a millisecond pulsar
(MSP) are the result of the evolution of a normal, main
sequence donor star together with a rotating neutron star
(NS). These systems, also, are considered to give rise to the
occurrence of low mass X-ray binary (LMXB) sources (see,
e.g., Podsiadlowski, Rappaport & Pfahl 2002).

The standard model states that when a normal star fills
its Roche lobe, starts to transfer mass to its NS companion.
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The material forms an accretion disk around the compact
star and a part of the transferred mass is deposited onto the
NS surface. The NS rotation is accelerated due to angular
momentum deposition on its surface, becoming a MSP (for
a review see Bhattacharya & van den Heuvel 1991). In
order to compute the evolution of CBSs we have to make
some hypotheses on the characteristics of the mass transfer.
Usually, this problem has been handled considering a two
parameter description. These are the fraction of mass lost
by the donor star that can be accreted by its companion
(β) and the amount of specific angular momentum carried
out from the system (α). Both quantities are assumed as
constants during the entire stellar evolution. The value of β
has been usually set to β = 0.5 (Podsiadlowski, Joss & Hsu
1992; Tauris & Savonije 1999; Podsiadlowski et al. 2002;
Nelson & Rappaport 2003). In some cases it has been set
to β = 1 (β = 0) which represents a fully conservative (non
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conservative) situation (Ergma, Sarna & Antipova 1998).
Other values of β have been considered to fit a particular
binary system (Benvenuto, Rohrmann & De Vito 2006).
Meanwhile, it has been usual to set α = 1.

The knowledge of β is, in principle, important for the
binary evolution models. Its value directly determines the
rate of change of the NS mass, which affects the mass ratio,
and then the radius of the Roche lobe RL (Eggleton 1983).
β enters in the differential equation that determines the
evolution of the orbital semiaxis which, in turn, determines
the size of the Roche lobe. Thus, β affects the occurrence
of Roche lobe episodes. However, unfortunately, neither
observational evidence nor theoretical models allow us to
infer how much of the matter lost by the donor star is
accreted by the NS. Besides, there is an upper limit for
the accretion rate given by the Eddington accretion rate
ṀEdd = 2 × 10−8 M⊙/yr. To date β has been considered
as a free parameter. Now, we may ask a question. Can β be
estimated studying the overall evolution of these CBSs, as
well as its temporal evolution? To look for the answer is the
main aim of this paper.

It is know that the appearance and variability of
accreting millisecond X-ray pulsars strongly depend on the
accretion rate onto the NS, ṀNS, the effective viscosity and
diffusivity of the disk magnetosphere boundary. For a typical
NS with a period of rotation of 2.5 msec, Romanova et
al. (2008) present the following classification of accreting
NSs as a function of ṀNS. At the boundary layer regime,
if the accretion rate is sufficiently large (ṀNS > 7.3 ×
10−8 M⊙/yr), the star’s magnetic field is completely buried
(screened) by the accreting matter that falls onto the star
directly through the boundary layer. As the accretion rates
decreases, the role played by the stellar magnetic field
becomes more important, so that it influences the flow
of matter around the star. When the mass transfer rate
is sufficiently low (1.3 × 10−11 M⊙/yr < ṀNS < 1.4 ×
10−9 M⊙/yr) the magnetosphere radius becomes larger than
the corotation radius, and the star enters the propeller

regime. In the strong propeller regime, disk matter acquires
angular momentum from the rotating magnetosphere fast
enough that most of it is ejected by a conical outflow. At the
same time, a significant amount of angular momentum and
energy flow along the open stellar field lines, giving axially
symmetric jets. Finally, for even smaller accretion rates
(ṀNS < 1.3×10−11 M⊙/yr), accretion onto the NS surface is
suppressed, and the star becomes a pulsar. This is the pulsar

regime. Evidently, there is an important relation between
the magnetic field intensity of the NS and its accretion rate.
The above given values for these regimes should increase for
a stronger magnetic field. Thus, to find β we would need to
compute the NS magnetic field evolution.

In the standard model of accreting NSs (or black
holes, BH), the system NS(BH)-accretion disk is
considered (Shakura & Sunyaev 1973; White, Stella &
Parmar 1988; Mitsuda et al. 1989; Church, Inogamov &
Balucińska-Church et al. 2002; Kulkarni & Romanova 2009).
The structure and radiation of stationary disks around NSs
is determined by several parameters: the mass of the NS,
the accretion rate, the level of turbulence and/or small
scale magnetic fields, etc. If matter flows through the inner
boundary at a rate substantially higher than ṀEdd, the
gas should flow away perpendicularly from the inner region

of the disk driven by radiation pressure. Many authors
have developed models of two and three components in
order to account for the observed emission spectra in these
NS(BH)-accretion disk systems. However, these models do
not link the amount of matter lost by the donor star that
is accreted by the NS(BH).

Takahashi & Makishima (2006) show that the energy
spectra of 18 LMXBs is successfully accounted for by a
model consisting of a canonical NS (MNS = 1.40 M⊙) with
ṀNS < ṀEdd. They consider a combination of two optically
thick components, one due to the accretion disk and the
other radiated by the NS surface. As the accretion rate
increases, the disk luminosity increases but the emission
from the NS surface saturates or even decreases. When
ṀNS ∼> ṀEdd, the LMXB spectrum consists of three
optically thick components; the softest from a retreated
disk, the hardest from the NS surface, and an intermediate
component presumably due to the outflows caused by the
increased radiation pressure.

Again, we could establish a link between the type of
model that fits the energy spectrum of these objects and
ṀNS. Then, according to the best fit to the energy spectrum
of the NS we could model the accretion onto the NS and
consequently model β. In any case, the value of β found
in this way corresponds to the very short timescale of
observations, while in evolutionary studies we need the value
of β averaged on far longer time periods.

Evidently, computing β from first principles is a very
difficult task. It may be considered that a way to find β
is to compute the effects on the evolution of CBSs induced
by changes in β. In order to explore the viability of such
strategy, in this paper we compute a grid of evolutionary
models. We consider the evolution of solar composition
donor stars members of CBSs for a wide range of initial
parameters (masses for the donor star Mi and accreting
NS (MNS)i, and orbital periods Pi). Also, we consider
different values for β (between 0 and 1, with ∆β = 0.25)
for the cases of (MNS)i/M⊙= 0.80, 1.00 and 1.20, and with
∆β = 0.125 for the case of (MNS)i/M⊙= 1.40 extending
our previous calculations (with β= 0.5) presented in De
Vito & Benvenuto (2010). For simplicity, we shall consider
that β remains constant along each calculation. Then, we
shall analyze the sensitivity of the evolutionary tracks due
to changes in β. We shall be particularly interested in helium
WDs, that are expected to be the type of objects found in
some CBSs with accurate mass determinations (see below,
§ 4).

The reminder of the paper is organized as follows:
in Section 2 we present the main characteristics of our
evolutionary code. In Section 3 we present and analyze the
results obtained from our calculations. The main part of the
paper ends in Section 4 where we discuss of our results and
make some concluding remarks. In Appendix A we present
tables of our main numerical results and the relation between
WD mass and the final orbital period is given in Appendix B.

2 THE COMPUTER CODE

The code employed here has been presented in Benvenuto
& De Vito (2003) where we described a generalized
algorithm based on the Henyey technique that allows for
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the simultaneous computation of the donor stellar structure
and the mass transfer rate in a fully implicit way. The
code has updated physical ingredients. For temperatures
T > 6 × 103 K we considered radiative opacities given
by Iglesias & Rogers (1996) while at lower temperatures
we employed molecular opacities given by Ferguson et al.
(2005). Conductive opacities have been taken from Itoh
et al. (1983). Our equation of state has been that of
Magni & Mazzitelli (1979). Nuclear reaction rates have
been taken from Caughlan & Fowler (1988). Neutrino
emission has been described following the works by Itoh
& Kohyama (1983); Munakata, Kohyama & Itoh (1987);
Itoh et al. (1989) and Itoh et al. (1992). Diffusion processes
(gravitational settling, chemical and thermal diffusion) have
been accounted for following Althaus & Benvenuto (2000).
We consider the Mixing Length Theory as described in
Kippenhahn, Weigert & Hofmeister (1967), setting the
Mixing Length parameter l to l/Hp = 1.7432 (here Hp

is the pressure scale height defined by Hp ≡ dr/d ln P
where P denotes the total pressure and r is the distance
measured from the stellar centre). Convective core overshoot
is included as in Demarque et al. (2004). This important
physical phenomenon consist in the presence of material
motions and mixing beyond the canonical boundary for
convection defined by the clasic Schwarzschild criterium. A
proper treatment of convective core overshoot would require
a radiative hydrodynamic treatment near the convective
edge. The overshoot lenght is evaluated in terms of the local
pressure scale height, multiplied by a constant parameter
less than unity (ΛOS). In their paper, Demarque et al. (2004)
use values of ΛOS from 0 to 0.2 depending on the value of
the stellar mass compared to Mconv

crit (the critical mass above
which stars have a substantial convective core after pre
main sequence phase). This value depends on the chemical
composition. For futher details see Demarque et al. (2004).
Furthermore, we considered grey atmospheres and neglected
external irradiation due to the companion.

Let us now quote the physical ingredients we considered
that are specifically related to binary evolution. To compute
the radius RL of a sphere with a volume equal to that
of the Roche Lobe, we employed the standard expression
given by Eggleton (1983). We adopted the mass transfer
rate expression given by Ritter (1988). The orbital evolution
has been computed following Rappaport, Joss & Webbink
(1982) and Rappaport, Verbunt & Joss (1983). Mass and
angular momentum losses have been described by two free
parameters α and β (defined above). Gravitational radiation
and magnetic braking were described as in Landau &
Lifshitz (1975) and Verbunt & Zwaan (1981) respectively.

In our treatment of the orbital evolution, as stated
above, we consider that the NS is able to retain a β fraction
of the material coming from the donor star ṀNS = β|Ṁ |
(where Ṁ is the mass transfer rate from the donor star1),
as done in Benvenuto & De Vito (2005). We considered
that β remains constant throughout all Roche lobe overflow
(RLOF) episodes. Also, we assumed that material lost
from the binary systems carries away the specific angular
momentum of the compact object (α = 1).

1 We use absolute value because, according to our definition Ṁ
is a negative quantity.

3 NUMERICAL RESULTS

We have constructed a grid of evolutionary models for the
donor component of CBSs. We considered a wide range
of initial masses Mi for the normal, solar metallicity star
(Mi/M⊙ = 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25,
2.50, 2.75, 3.00, 3.25, 3.50). For the mass (MNS)i of the
accreting NS, we have selected four different initial values
((MNS)i/M⊙ = 0.80, 1.00, 1.20 and 1.40).

While most of the known NS masses are around 1.4 M⊙,
some NSs have masses clearly below that value. Good
examples are the NSs in the X-Ray binaries SMC X-1,
Cen X-3 and 4U1538-52 with masses of 1.17+0.16

−0.16, 1.09+0.20
−0.36,

and 0.96+0.19
−0.16 M⊙ respectively (Lattimer & Prakash 2004;

Lattimer & Prakash 2007). This justifies our choice of
0.8 M⊙ as the minimum value for (MNS)i. Very recently,
Demorest et al. (2010) have detected a NS with a mass of
MNS = 1.97±0.04M⊙ in the PSR J1614-2230 binary system
(with an orbital period of 8.6866194196 days) orbiting
together with a WD of M = 0.500 ± 0.006M⊙. While this
detection indicates that considering NSs with initial masses
larger than 1.4 M⊙ should also be meaningful, notice that
the WD is too massive to have a helium rich interior (see,
e.g., Iben & Tutukov 1985). Thus, this binary should not
correspond to the class of systems we are interested in here.

We choose the initial orbital period of the systems Pi

in order to obtain helium WDs or members of ultracompact
binary systems (those in which the orbital period is less
than 1 h; see, e. g., Fedorova & Ergma 1989; van der
Sluys, Verbunt & Pols 2005) as the final state of the
donor stars. Besides, for each group of initial parameters
(masses of the components and orbital periods) we have
considered five values of β (0.00, 0.25, 0.50, 0.75 and 1.00)
for the cases of (MNS)i/M⊙ = 0.80, 1.00, 1.20 and refined
our grid considering a step of ∆β = 0.125 for the case
of (MNS)i= 1.40 M⊙. We have performed more than a
thousand evolutionary sequences in which we have followed
the evolution of the donor star from the ZAMS on. In order
to end our calculations we have considered several situations.
As we are interested in helium WDs, we only consider
objects with a central temperature log10 (Tc/K) < 8, below
the threshold for helium burning. Also, we stop if the mass
transfer rate exceeds a value of 10−5 M⊙/yr, or if the mass
of the accreting NS is greater than 2.5 M⊙. This value
is larger than the maximum mass of NS corresponding
to many nuclear matter equations of state (Lattimer &
Prakash 2004). In the case of systems that evolve to an
open configuration, we stopped computations if the WD
luminosity is log10 (L/L⊙) 6 −5 or if it is much older
(20 Gyr) than the Universe. In the case of ultracompact
systems, we ended the calculations when M 6 0.050 M⊙ or
P 6 0.05 days.

As we varied the parameters defining the CBS over a
wide range of values, it is not surprising that we have found
a large variety of evolutionary paths. In some cases the mass
transfer episode is stable and the rate of mass exchange
is self-regulated, while in others |Ṁ | increases to extreme
values leading to common envelope evolution.

It is known that a dynamical mass transfer instability
occurs when the radius of the Roche lobe shrinks more
rapidly (or expands less slowly) than the donor star. The
adiabatic response of a star to mass loss has long been
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understood (see, e.g., Hjellming & Webbink 1987). Stars
with radiative envelopes (e.g., upper main sequence stars)
contract as response to mass loss while stars with convective
envelope (e.g., lower main sequence or red giant stars)
expand (for a detailed explanation see, e.g., Soberman,
Phinney & van den Heuvel 1997; Podsiadlowski et al. 2002).
When the donor star is perturbed by removal of some mass,
it falls out of hydrostatic and thermal equilibrium. In the
process of reestablishing equilibrium, the star will either
grow or shrink. Also the Roche lobe changes in response
to the mass transfer/loss. As long as the donor star’s
Roche lobe continues to enclose the star, mass transfer is
stable. Otherwise it is unstable and proceeds on a dynamical
timescale. We define for the donor star and its Roche
lobe ζdonor = ∂ ln R/∂ ln M and ζL = ∂ ln RL/∂ ln M
respectively. The stability of mass transfer is determined by
a comparison of ζdonor and ζL. Given R ∼= RL (the condition
for the onset of RLOF) the initial stability criterion is
ζL 6 ζdonor. Tauris & Savonije (1999) have studied the
behavior of ζL(q, β) for LMXBs, where q = M/MNS. They
found that ζL does not depend strongly on β, which is in
agreement with our calculations (see Tables A1 - A4). These
authors found that, in general, the Roche lobe increases
(ζL < 0) when material is transferred from a light donor
to a heavier NS (q < 1) and correspondingly RL decreases
(ζL > 0) when material is transferred from a heavier donor
to a lighter NS (q > 1). These are the cases (a large value
of q and/or stars with convective envelope) where we find
unstable mass transfer situations.

On the contrary, for the case of the most massive initial
NSs, our grid extends to initial masses of the donor star
up to 3.5 M⊙. In this case the calculations are stopped
because of the onset of helium burning at the stellar
core (log10 (Tc/K) > 8), or because the NS mass exceeds
the upper limit we have chosen (especially in the case of
β = 1). If we consider higher initial values for the mass
of the NS, this situation would be found more frequently.
Presumably, these CBSs should lead to BH formation.
Another interesting result is that the range of initial periods
for which CBSs lead to the formation of converging systems
extend to higher initial orbital periods (Pi) with decreasing
values of (MNS)i.

In order to analyze the changes in the evolution of
open CBSs by varying β, we may choose the set of
models corresponding to donor stars with initial mass
Mi = 1.00 M⊙, a NS with initial mass (MNS)i = 1.40 M⊙,
initial orbital period of Pi = 1.5 days and extreme values of
β (0 and 1) as a representative case. On the upper panels of
Fig. 1 we present the evolutionary tracks of the donor star
for these systems.

After core hydrogen exhaustion, the donor star
evolves towards the red giant region of the HR diagram,
overflowing its corresponding Roche lobe. Since then, the
star undergoes the first RLOF mass transfer episode. After
losing approximately 70% of its initial mass, the outer
hydrogen envelope embraces a so little mass fraction that
it is no longer able to stand as a giant and starts a fast
contraction to become a pre WD star. This contraction
heats up the bottom of the hydrogen envelope that now
is partially degenerate, meanwhile diffusion has leaded
some hydrogen inwards. Then a thermonuclear hydrogen
flash starts, leading to a sudden swell of the outer layers

that overflow the Roche lobe again. Now the amount of
transferred matter is far lower (approximately 10−3M⊙)
than that lost by the donor star during the first RLOF. This
transferred mass, together with the nuclear burning, still
active at the bottom of the hydrogen envelope, contribute
to lower the total hydrogen content of the star. This forces
the star to undergo a new contraction to become a pre WD
star again. In this set of models, the donor star undergoes
three flashes before evolving to the final WD cooling track.
A more detailed discussion of the evolution of this kind of
systems has been presented in Benvenuto & De Vito (2004).

Notice that the evolutionary tracks shown in Fig. 1 are
barely dependent on β. The same is found when we analyze
the evolution of the mass transfer rate and the mass of the
donor star, as shown in the bottom left and middle panels of
Fig. 1. More significant changes are found for the evolution
of the orbital period as shown in the bottom, right panel of
Fig. 1.

From the analysis give above, we find that changes in β
induce smooth changes in the configuration of the resulting
CBSs. In view of this fact we have constructed surfaces to
study the behaviour of the masses of both stars and the
final orbital period as functions of β and log10 (Pi/days).
As we are interested on the formation of helium WDs, the
surfaces cover an ample region of the parameter space only
for the case of donors with low initial masses (say 1.00
to 1.50 M⊙); for higher initial donor masses, surfaces are
much narrower. These surfaces give a direct insight on the
dependence of evolutionary sequences with the parameter
β. In Fig. 2 we show the mass of the donor star remnant as
a function of β and log10 (Pi/days) for systems with initial
masses Mi/M⊙ of 1.00, 1.25 and 1.50 for the donor star
and (MNS)i = 1.40 M⊙ for the NS component. In Fig. 3 we
show the ratio of the final to the initial orbital periods for
the same models included in Fig. 2.

In order to present our results regarding the final NS
mass, we found it useful to make a simple transformation.
In our models we have assumed that

ṀNS = Min
(

β|Ṁ |, ṀEdd

)

. (1)

If β|Ṁ | 6 ṀEdd were fulfilled throughout the entire
evolution of the system, we may integrate it, finding that

MNS − (MNS)i = −β
(

M − Mi

)

, (2)

where M and MNS stand for the final WD and NS
masses, respectively. So, we may define FNS as

FNS = MNS − (MNS)i + β
(

M − Mi

)

. (3)

Clearly, if ṀNS 6 ṀEdd is fulfilled in all RLOFs, then
FNS = 0. Thus, FNS (Eq. 3) shows the effects due to the
stages at which ṀNS > ṀEdd forcing a supplementary
mass loss rate from the system apart from the (1 − β)|Ṁ |
contribution. In Fig. 4 we show the surface defined by FNS

for the same set of models included in Figs. 2-3.
In view of the fact that the surfaces shown in Figs. 2-4

are very smooth, it is useful to represent them by a suitable
function F (x, y). We found it adequate to consider the
quotient of polynomials given by

F (x, y) =
C1 + C2x + C3y + C4x

2 + C5y
2 + C6xy

1 + C7x + C8y
, (4)
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Figure 1. Upper panels show the evolutionary tracks of the donor component of a CBSs with initial mass Mi = 1 M⊙ for the donor
star, (MNS)i = 1.40 M⊙ for the neutron star, and an initial orbital period of Pi = 1.5 days. The three loops in the H-R diagrams are due
to hydrogen shell flashes and very little mass transfer is associated with any beyond the first mass transfer episode (for details, see main

text). Left (right) panel corresponds to the case of β = 0.0 (1.0). Lower panels show the results corresponding to the same evolutionary
calculations related to the evolution of the mass transfer rate during the first RLOF (left panel), donor mass (middle panel) and orbital
period (right panel). Notice that the final period is slightly dependent on β while the others are almost unaffected.

where we assign x = β and y = log10 (Pi/days). The
coefficients Ci, i = 1, · · · , 8 are found by standard least
squares method and the results are given in Table 1. These
fits allow for an immediate calculation of the final orbital
period and donor mass values. To compute the final NS mass
we have firstly to compute donor star mass and then apply
Eq. (3).

These fits provide a useful description of the dependence
of the characteristics of these systems as a function of β
and log10 (Pi/days). While these surfaces correspond to the
cases of initial masses of Mi/M⊙ = 1.00, 1.25, and 1.50 and
(MNS)i = 1.40 M⊙, it should be stressed that in defining
the surfaces we do not have to compute a large number of
time consuming binary evolutionary sequences. If necessary,
this technique may be extended to other values of donor and
NS masses employing the results given in Tables A1-A4 of
Appendix A.

As stated above, for the case of more massive donor
stars, the range of initial periods for which CBSs evolve to
produce helium WDs is much narrower, making it impossible
to construct surfaces similar to those already presented. In
Fig. 5 we show 2D plots for selected systems, showing the
dependence of the final masses and period of these systems
as functions of β. The behaviour of these quantities is similar
to that found for the case of less massive donor stars.

4 DISCUSSION AND CONCLUSIONS

In this paper we have computed the evolution of close binary
systems (CBSs) composed of a normal, solar composition,
donor star and a neutron star (NS) companion. The range of
masses and periods has been chosen in order to study CBSs
that evolve to open, helium white dwarf (WD)-millisecond
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Figure 2. The final mass of the donor star for the case of systems with (MNS)i = 1.4 M⊙ and normal stars with Mi = 1.00 M⊙ (upper
panel), Mi = 1.25 M⊙ (middle panel), and Mi = 1.50 M⊙ (bottom panel) as a function of the logarithm of the initial orbital period Pi

(in days) and the fraction β of the mass that can be accreted by the NS. The surface corresponding to the case of an initial donor mass

of 1.50 M⊙ does not extend on a rectangular region because in the region not shown, the mass of the NS gets larger than 2.50 M⊙.
Notice that the grey scale on the surface indicates the mass values.
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Figure 3. The ratio of the final to the initial orbital period for the case of systems with (MNS)i = 1.4 M⊙ and normal stars with
Mi = 1.00 M⊙ (upper panel), Mi = 1.25 M⊙ (middle panel), and Mi = 1.50 M⊙ (bottom panel) as a function of the logarithm of the
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of an initial donor mass of 1.50 M⊙ does not extend on a rectangular region because in the region not shown, the mass of the NS gets
larger than 2.50 M⊙. As in Fig. 2, the grey scale on the surface corresponds to the value of the function on the vertical axis.
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Figure 4. The function FNS = MNS−(MNS)i +β
(
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)

(defined in Eq. 3) for the case of systems with (MNS)i = 1.4 M⊙ and normal

stars with Mi = 1.00 M⊙ (upper panel), Mi = 1.25 M⊙ (middle panel), and Mi = 1.50 M⊙ (bottom panel) as a function of the logarithm

of the initial orbital period Pi (in days) and the fraction β of the mass that can be accreted by the NS. The surface corresponding to the
case of an initial donor mass of 1.50 M⊙ does not extend on a rectangular region because in the region not shown, the mass of the NS
gets larger than 2.50 M⊙. FNS gives the amount of material lost from the binary system because of super-Eddington acretion rates onto

the NS. If ṀNS 6 ṀEdd were fulfilled during all RLOFs, then FNS = 0. The departure of FNS from zero is barely noticeable for the case
of a Mi = 1.00 M⊙ donor star. However, for the case of Mi/M⊙ = 1.25 and 1.50 the surfaces get larger negative values the larger β and
Pi. These conditions corresponds to short RLOF episodes when the donor is a red giant undergoing super-Eddington transfer rates. As
in Fig. 2, the grey scale on the surface corresponds to the value of the function on the vertical axis.
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Table 1. Values of the coefficients corresponding to the fit of the function defined in Eq. (4) to the surfaces shown in Figs. 2-4. In the
last column we give the maximum relative error of the fit with respect to the numerical results. In most regions of these surfaces the
error is much smaller.

Fit to Mf [M⊙]
M/M⊙ C1 C2 C3 1000 × C4 C5 C6 C7 C8 Error

1.00 0.23300 -0.034933 1.02946 -0.67879 0.240747 -0.057173 -0.143095 3.70149 5%
1.25 0.22853 -0.027247 1.20325 -0.51458 0.244226 -0.064110 -0.125305 4.08725 1%
1.50 0.20805 -0.031279 2.91613 7.29667 0.463526 -0.109318 -0.090219 9.69335 1%

Fit to Pf /Pi

M/M⊙ C1 C2 C3 C4 C5 C6 C7 C8 Error

1.00 8.48258 0.115165 41.7855 0.502319 -18.7955 -6.80065 0.212949 1.36773 5%
1.25 8.42498 -0.317404 65.9782 0.129753 -30.7561 -10.5503 0.076967 1.5722 1%
1.50 4.21298 -2.18037 387.409 1.42005 -180.716 -50.0681 0.299583 10.352 2%

Fit to FNS [M⊙]

M/M⊙ 100 × C1 100 × C2 100 × C3 100 × C4 100 × C5 C6 C7 C8 Error

1.00 -0.45035 1.63095 1.21402 -1.35300 -0.64233 -0.017375 -0.454202 -0.390476 10%
1.25 -1.16727 6.38160 3.61386 -6.21125 -1.62558 -0.105957 -0.351645 -0.332994 3%
1.50 -1.19452 3.22075 14.5978 -2.16577 -4.70089 -0.730932 -0.901429 1.134020 5%
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Figure 5. The final mass of the donor star (upper panels), the ratio of the final to the initial orbital period (middle panels), and the

function FNS = MNS − (MNS)i + β
(

M −Mi

)

(defined in Eq. 3, see also Fig. 4) (lower panels) as a function of β. Left panels correspond

to systems with (MNS)i = 1.4 M⊙ and Mi = 2.00 M⊙, Pi = 1.5 d, while right panels depict the cases of the same initial NS mass and
Mi = 3.50 M⊙, Pi = 1.0 d and 1.5 d. For these high mass values of the donor star, the range of initial periods that produce a helium

WD is much more restricted, which does not allow for constructing surfaces like those presented in Figs. 2-4.

c© 2011 RAS, MNRAS 000, 1–18



10 M. A. De Vito & O. G. Benvenuto

pulsar (MSP) pairs or to ultracompact systems. In order
to compute the orbital evolution of these system we have
considered that the NS is able to accrete a β fraction of
the mass coming from the donor star. We assumed an
upper limit for the accretion rate of the NS, imposed by
the Eddington accretion rate (see § 1). In previous works
we have studied the evolution of CBSs varying the initial
configuration, defined by the orbital period, and the masses
of the donor and NS. In this work we explored the evolution
of CBSs for a variety of values of β.

While our model results are given in Tables A1-A4,
in some favourable cases we have been able to construct
surfaces for the final mass of the donor star, the orbital
period and the mass of the NS by means of the function
FNS given in Eq. (3). Also we presented fits (Eq. 4 and
Table 1) to these surfaces that allow for a fast evaluation
of the final CBS configuration as a function of Pi and β. It
is clear that, in the case of the systems that evolve to an
open configuration, the mass of the resulting WD is barely
sensitive to the value of β. The final orbital period, in most
cases (for a given initial configuration) exhibits moderate
changes of approximately 25%. However, in some particular
cases, changes are even larger than 100% (see, e.g., in
Table A2 the case of Mi = 2.50 M⊙, (MNS)i = 1.00 M⊙,
Pi = 1.50 d). As expected, the most sensitive quantity is the
final NS mass.

The grid presented in this paper should be useful to
study the characteristics of CBSs composed of low mass
WDs and MSPs. There are five systems of this kind (see
Table 2) in which the masses of the components have been
measured with high precision thanks to the detection of the
relativistic Shapiro delay in pulsar timing (see Taylor &
Weisberg 1989 and references therein). Let us now discuss
the possibility of inferring the value of β from the data
available of these systems.

Looking for a progenitor configuration of a CBS is a
way to test the theory of CBS evolution. If correct, we
should be able to find plausible initial configurations. The
most sensitive quantity to changes of β is the final NS mass.
In order to recycle a NS we do need a minimum amount
of mass to be accreted (see Cook, Shapiro & Teukolsky
1994). The exact value of such minimum amount of mass
depends on the initial rotation rate of the NS and on the
still uncertain cold nuclear matter equation of state. This
uncertainty, together with the unknown initial mass and spin
of the NS prevent us from employing the observational data
available on the NS to further constrain the parameter space
for the initial configuration. Remarkably, WD properties are
barely dependent on β while in most cases the orbital period
shows a moderate dependence with this parameter. Thus, it
is very difficult to determine β by means of evolutionary
studies. This would be the case, even if the masses of the
components of the systems were known far more accurately.

In this work, as usual, we considered the value of β as
constant. Of course, this may not be the actual case. If so,
our β could be considered as a kind of effective mean value.
In any case, our results indicate that if we are interested
in the evolution of the donor star moving on a circular
orbit, considering a fixed β is justified. Including modeling
of physical processes that may modulate the accretion rate
onto the NS (e.g. magnetic field evolution) has a minor

effect on the results presented in this paper. Thus, these
improvements are not warranted in this context.

Another interesting issue is the fact that existing models
do not reproduce the orbital period distribution of binary
MSP well. Also, the proposition that low mass X-ray binaries
(LMXBs) are progenitors of binary MSPs has the difficulty
that the birthrates of both types of systems do not match
each other. Very recently, Hurley et al. (2010) performed
an exhaustive study of the birthrate of LMXBs and binary
MSPs and their orbital period distributions. These authors
considered the formation of NSs that become MSPs as due
to core-colapse supernovae and accretion-induced collapse
of oxygen/neon WDs. Figs. 4-6 of Hurley et al. (2010) show
the theoretical and observed orbital period distribution of
binary MSPs. Despite the amount of details considered in
that study, they found a poor agreement. In this paper we
have found some dependence of the final orbital period with
the value of β. Considering this effect in the context of
the orbital period distribution of binary MSPs may help
to bring theoretical predictions closer to observations. This
possibility certaily deserves a detailed study.

The authors want to thank to our anonymous referee
for his/her very useful and constructive reports that guided
us to largely improve the original version of this paper.
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Table 2. The close binary systems composed of a millisecond pulsar and a low mass WD for which it has been possible to detect the
Shapiro delay effect and measure the masses of both components. All these systems belong to the Galactic plane population. From left to
right, the Table presents the name of the pulsar, its spin period, the WD and pulsar masses, the orbital period and the relevant reference
respectively.

Name Pp MWD MNS P Reference
[ms] [M⊙] [M⊙] [d]

PSR J0437-4715 5.757 0.236 ± 0.017 1.58 ± 0.18 5.741 van Straten et al. (2001)
PSR J1614+2230 3.15 0.500 ± 0.006 1.97 ± 0.04 8.687 Demorest et al. (2010)

PSR J1713+0747 4.57 0.28 ± 0.03 1.3 ± 0.2 67.825 Splaver et al. (2005)

PSR B1855+09 5.362 0.258+0.028
−0.016 1.50+0.26

−0.14 12.327 Kaspi, Taylor & Ryba (1994)

PSR J1909-3744 2.947 0.2038 ± 0.0022 1.438 ± 0.024 1.533 Jacoby et al. (2005)
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APPENDIX A: THE GRID OF MODELS

In Tables A1-A4 we present the main results of our
calculations. Each Table corresponds to a fixed value of the
initial mass of the NS (MNS)i and gives the final masses
of the donor and NS (M and MNS respectively), and the
final orbital period Pf for each initial configuration (defined
by the initial mass of the donor star Mi, the initial orbital
period Pi, and β). We do not present results corresponding
to initial donor masses of 0.50, 0.65, and 0.80 M⊙ because
the corresponding systems produce donor star with final
masses of 0.05 M⊙ or eventually the donor star overfill its
Roche lobe on the ZAMS.
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Table A1: Results corresponding to the case of an initial neutron star mass of (MNS)i =
0.80 M⊙. Each horizontal block corresponds to a value of the initial mass of the donor star,
Mi. In each block it can be seen the dependence of our results with the initial orbital period Pi
(horizontally) and the value of β (vertically). For each Pi, we give the final orbital period, Pf
(in days), and the final masses of the donor and accreting neutron star, M and MNS (in solar

units), respectively. ”Ṁ divergent” corresponds to the case in which |Ṁ| > 10−5 M⊙/year;

”Ṁ in ZAMS” corresponds to objects that overfill their Roche lobe on the ZAMS; ”logTc > 8”
corresponds to objects that ignite helium in their cores; ”MNS > 2.5” indicates that the mass
of the NS exceeds the limit value of 2.5 M⊙. Numbers in italics corresponds to the value of the
orbital period at 13 Gyr, for systems that evolve to ultracompact configurations in which the
final mass of the donor star is larger than 0.15 M⊙.

Pi = 0.50 d Pi = 0.75 d Pi = 1.00 d Pi = 1.50 d Pi = 3.00 d Pi = 6.00 d Pi =12.00 d

β Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS
[d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙]

Mi = 1.00 M⊙
0.00 0.027 0.049 0.800 1.139 0.178 0.800 3.946 0.212 0.800 9.193 0.234 0.800 23.560 0.261 0.800 45.773 0.283 0.800 82.802 0.302 0.800
0.25 0.027 0.050 1.038 1.375 0.182 1.004 4.488 0.215 0.995 9.787 0.236 0.965 22.602 0.261 0.937 45.222 0.280 0.859 77.446 0.300 0.900
0.50 0.028 0.050 1.275 1.516 0.184 1.207 4.492 0.218 1.174 9.408 0.235 1.132 21.524 0.260 1.084 40.365 0.279 1.023 72.826 0.298 0.999
0.75 0.026 0.050 1.513 1.722 0.186 1.408 4.610 0.216 1.327 9.447 0.235 1.245 20.473 0.258 1.200 38.099 0.277 1.135 68.628 0.296 1.052
1.00 0.026 0.050 1.740 1.790 0.186 1.581 4.400 0.218 1.461 8.963 0.233 1.372 19.306 0.257 1.306 36.058 0.275 1.208 65.365 0.294 1.128

Mi = 1.25 M⊙
0.00 0.040 0.050 0.800 0.012 0.050 0.800 3.381 0.209 0.800 Ṁ divergent

0.25 0.040 0.050 1.100 0.011 0.050 1.100 4.161 0.214 1.058 Ṁ divergent

0.50 0.041 0.050 1.400 0.011 0.050 1.394 4.720 0.217 1.286 Ṁ divergent

0.75 0.041 0.050 1.700 0.011 0.050 1.676 4.561 0.216 1.461 Ṁ divergent

1.00 0.042 0.049 1.999 0.012 0.050 1.931 4.449 0.216 1.609 Ṁ divergent

Mi = 1.50 M⊙
0.00 0.045 0.050 0.800 0.041 0.050 0.800 0.020 0.050 0.800 Ṁ divergent

0.25 0.046 0.050 1.163 0.042 0.050 1.163 0.312 0.172 1.132 Ṁ divergent

0.50 0.048 0.050 1.525 0.042 0.050 1.525 0.452 0.176 1.435 Ṁ divergent

0.75 0.048 0.050 1.877 0.043 0.050 1.876 0.451 0.174 1.690 Ṁ divergent

1.00 0.048 0.050 2.192 0.043 0.050 2.190 0.614 0.181 1.900 Ṁ divergent

Mi = 1.75 M⊙
0.00 0.046 0.051 0.800 0.039 0.050 0.800 0.042 0.050 0.800 9.917 0.246 0.800 Ṁ divergent

0.25 0.047 0.050 1.184 0.040 0.050 1.176 0.043 0.050 1.192 11.151 0.248 1.030 Ṁ divergent

0.50 0.048 0.050 1.489 0.041 0.049 1.463 0.044 0.050 1.481 10.305 0.247 1.122 Ṁ divergent

0.75 0.047 0.050 1.717 0.042 0.050 1.722 0.044 0.050 1.740 9.689 0.246 1.204 Ṁ divergent

1.00 0.048 0.050 1.933 0.042 0.050 1.961 0.045 0.050 1.982 9.089 0.246 1.268 Ṁ divergent

Mi = 2.00 M⊙
0.00 0.044 0.056 0.800 0.039 0.050 0.800 0.042 0.050 0.800 0.040 0.049 0.800 Ṁ divergent

0.25 0.047 0.050 1.080 0.040 0.050 1.092 0.042 0.050 1.088 0.034 0.050 1.090 Ṁ divergent

0.50 0.048 0.050 1.285 0.040 0.049 1.301 0.043 0.049 1.297 0.036 0.049 1.298 Ṁ divergent

0.75 0.047 0.050 1.454 0.041 0.050 1.497 0.043 0.050 1.494 0.033 0.049 1.489 Ṁ divergent

1.00 0.047 0.050 1.627 0.041 0.050 1.686 0.043 0.050 1.673 0.032 0.050 1.670 Ṁ divergent

Mi = 2.25 M⊙
0.00 Ṁ divergent Ṁ divergent Ṁ divergent 4.207 0.248 0.800 logTc > 8

0.25 Ṁ divergent Ṁ divergent 0.044 0.049 0.998 0.036 0.050 1.088 Ṁ divergent

0.50 Ṁ divergent Ṁ divergent Ṁ divergent 2.265 0.222 1.039 logTc > 8

0.75 Ṁ divergent Ṁ divergent Ṁ divergent 1.856 0.215 1.139 Ṁ divergent

1.00 Ṁ divergent Ṁ divergent Ṁ divergent 1.675 0.212 1.238 logTc > 8

Mi = 2.50 M⊙
0.00 Ṁ divergent Ṁ divergent Ṁ divergent Ṁ divergent Ṁ divergent

0.25 Ṁ divergent Ṁ divergent Ṁ divergent 0.036 0.050 1.087 Ṁ divergent

0.50 Ṁ divergent Ṁ divergent Ṁ divergent Ṁ divergent Ṁ divergent

0.75 Ṁ divergent Ṁ divergent Ṁ divergent Ṁ divergent Ṁ divergent

1.00 Ṁ divergent Ṁ divergent Ṁ divergent Ṁ divergent Ṁ divergent
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Table A2: Results corresponding to the case of an initial neutron star mass of (MNS)i =
1.00 M⊙. Its structure is the same as that of Table A1.

Pi = 0.50 d Pi = 0.75 d Pi = 1.00 d Pi = 1.50 d Pi = 3.00 d Pi = 6.00 d Pi =12.00 d

β Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS
[d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙]

Mi = 1.00 M⊙
0.00 0.030 0.050 1.000 1.488 0.183 1.000 5.328 0.221 1.000 12.716 0.240 1.000 32.000 0.270 1.000 62.460 0.292 1.000 111.815 0.314 1.000
0.25 0.027 0.050 1.238 1.991 0.191 1.202 5.496 0.223 1.194 12.484 0.242 1.189 30.707 0.270 1.182 59.116 0.290 1.175 103.935 0.312 1.152
0.50 0.030 0.050 1.475 1.794 0.188 1.405 5.606 0.223 1.388 12.327 0.241 1.376 29.055 0.267 1.355 54.776 0.288 1.321 97.655 0.308 1.281
0.75 0.027 0.050 1.713 2.209 0.196 1.602 5.598 0.224 1.581 11.942 0.241 1.550 27.499 0.266 1.504 51.372 0.286 1.450 91.058 0.307 1.378
1.00 0.027 0.050 1.950 2.292 0.197 1.802 5.649 0.222 1.754 11.650 0.238 1.701 25.985 0.263 1.641 48.590 0.284 1.565 87.662 0.304 1.465

Mi = 1.25 M⊙
0.00 0.040 0.050 1.000 0.011 0.050 1.000 4.993 0.223 1.000 14.705 0.246 1.000 Ṁ divergent 71.873 0.296 1.000 126.245 0.319 1.000

0.25 0.041 0.050 1.300 0.013 0.050 1.299 4.824 0.220 1.257 Ṁ divergent Ṁ divergent Ṁ divergent 117.104 0.317 1.126

0.50 0.041 0.050 1.600 0.011 0.050 1.585 5.058 0.222 1.513 Ṁ divergent Ṁ divergent Ṁ divergent 109.431 0.315 1.243

0.75 0.042 0.050 1.900 0.011 0.050 1.866 5.376 0.223 1.769 Ṁ divergent Ṁ divergent Ṁ divergent 103.497 0.312 1.331

1.00 0.042 0.050 2.200 0.169 0.156 2.094 5.392 0.223 1.988 15.252 0.247 1.664 55.033 0.289 1.518 Ṁ divergent 98.673 0.311 1.394

Mi = 1.50 M⊙
0.00 0.041 0.050 1.000 0.042 0.049 1.000 1.504 0.192 1.000 Ṁ divergent

0.25 0.043 0.050 1.363 0.043 0.050 1.363 0.616 0.178 1.330 Ṁ divergent

0.50 0.045 0.050 1.725 0.044 0.050 1.725 0.287 0.169 1.664 Ṁ divergent

0.75 0.046 0.050 2.088 0.044 0.050 2.088 0.132 0.165 1.999 Ṁ divergent

1.00 0.047 0.050 2.450 0.045 0.050 2.450 0.330 0.171 2.314 Ṁ divergent

Mi = 1.75 M⊙
0.00 0.044 0.050 1.000 0.041 0.050 1.000 0.046 0.050 1.000 21.950 0.255 1.000 Ṁ divergent

0.25 0.045 0.050 1.418 0.042 0.050 1.417 0.046 0.050 1.425 24.333 0.256 1.334 Ṁ divergent

0.50 0.047 0.050 1.787 0.043 0.050 1.774 0.045 0.050 1.804 22.337 0.255 1.480 Ṁ divergent

0.75 0.047 0.050 2.105 0.043 0.050 2.105 0.045 0.050 2.160 20.426 0.256 1.578 Ṁ divergent

1.00 0.048 0.050 2.428 0.043 0.050 2.432 MNS > 2.5 19.581 0.253 1.668 Ṁ divergent

Mi = 2.00 M⊙
0.00 0.047 0.050 1.000 0.040 0.050 1.000 0.042 0.050 1.000 0.028 0.049 1.000 Ṁ divergent

0.25 0.048 0.050 1.401 0.041 0.050 1.387 0.043 0.049 1.387 0.746 0.190 1.381 Ṁ divergent

0.50 0.049 0.050 1.745 0.041 0.050 1.698 0.044 0.050 1.700 1.134 0.203 1.665 Ṁ divergent

0.75 0.048 0.050 2.027 0.042 0.050 1.996 0.044 0.050 2.002 1.377 0.209 1.929 Ṁ divergent

1.00 0.049 0.050 2.326 0.042 0.050 2.289 0.045 0.050 2.284 1.415 0.211 2.173 Ṁ divergent

Mi = 2.25 M⊙
0.00 0.048 0.050 1.000 0.040 0.050 1.000 0.042 0.050 1.000 0.030 0.050 1.000 logTc > 8

0.25 0.049 0.050 1.360 0.040 0.050 1.344 0.042 0.050 1.331 0.884 0.195 1.378 Ṁ divergent
0.50 0.050 0.050 1.654 0.041 0.049 1.610 0.043 0.050 1.591 0.019 0.049 1.577 logTc > 8
0.75 0.049 0.050 1.887 0.041 0.050 1.868 0.043 0.050 1.826 0.016 0.049 1.813 logTc > 8
1.00 0.049 0.050 2.129 0.042 0.050 2.117 0.044 0.050 2.059 0.513 0.175 1.914 logTc > 8

Mi = 2.50 M⊙
0.00 Ṁ divergent 0.040 0.050 1.000 0.041 0.050 1.000 2.186 0.210 1.000 logTc > 8
0.25 0.049 0.050 1.264 0.040 0.050 1.280 0.042 0.050 1.270 1.064 0.188 1.225 logTc > 8

0.50 Ṁ divergent 0.041 0.050 1.498 0.043 0.050 1.489 2.153 0.209 1.366 logTc > 8
0.75 0.049 0.050 1.672 0.041 0.050 1.710 0.043 0.050 1.685 2.394 0.212 1.513 logTc > 8
1.00 0.049 0.050 1.862 0.041 0.050 1.916 0.043 0.050 1.884 2.294 0.212 1.658 logTc > 8

Mi = 2.75 M⊙
0.00 Ṁ divergent Ṁ divergent Ṁ divergent 8.788 0.258 1.000 logTc > 8

0.25 Ṁ divergent Ṁ divergent Ṁ divergent 5.629 0.237 1.152 logTc > 8

0.50 Ṁ divergent Ṁ divergent Ṁ divergent 5.855 0.237 1.272 logTc > 8

0.75 Ṁ divergent Ṁ divergent 3.915 0.203 1.472 6.962 0.247 1.382 logTc > 8

1.00 Ṁ divergent Ṁ divergent 3.583 0.200 1.611 4.905 0.234 1.512 logTc > 8
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Table A3: Results corresponding to the case of an initial neutron star mass of (MNS)i =
1.20 M⊙. Its structure is the same as that of Table A1.

Pi = 0.50 d Pi = 0.75 d Pi = 1.00 d Pi = 1.50 d Pi = 3.00 d Pi = 6.00 d Pi =12.00 d

β Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS
[d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙]

Mi = 1.00 M⊙
0.00 0.032 0.050 1.200 1.868 0.190 1.200 6.800 0.227 1.200 15.801 0.246 1.200 39.491 0.276 1.200 76.043 0.299 1.200 135.766 0.320 1.200

0.25 0.029 0.050 1.438 2.437 0.196 1.400 6.943 0.230 1.392 15.248 0.248 1.387 36.988 0.274 1.381 Ṁ divergent 125.088 0.318 1.368
0.50 0.032 0.050 1.675 2.056 0.191 1.603 6.648 0.228 1.585 14.538 0.246 1.575 34.881 0.272 1.563 74.913 0.298 1.750 117.062 0.315 1.522
0.75 0.030 0.050 2.113 2.550 0.200 1.799 6.580 0.228 1.778 14.095 0.245 1.764 32.584 0.272 1.736 61.401 0.292 1.701 109.045 0.313 1.642
1.00 0.030 0.050 2.350 2.199 0.194 2.004 6.589 0.226 1.972 13.729 0.243 1.943 30.827 0.269 1.901 57.699 0.290 1.831 103.518 0.311 1.737

Mi = 1.25 M⊙
0.00 0.040 0.050 1.200 0.218 0.157 1.200 6.437 0.228 1.200 18.630 0.255 1.200 48.508 0.283 1.200 93.566 0.306 1.200 165.170 0.329 1.200
0.25 0.041 0.050 1.500 0.256 0.159 1.473 5.637 0.223 1.456 18.627 0.255 1.448 46.585 0.281 1.440 86.705 0.305 1.418 153.222 0.327 1.400
0.50 0.041 0.050 1.800 0.287 0.161 1.744 5.770 0.225 1.712 18.509 0.255 1.690 44.012 0.279 1.639 82.040 0.301 1.601 143.609 0.323 1.545
0.75 0.042 0.050 2.100 0.300 0.162 2.016 5.869 0.225 1.968 17.715 0.253 1.903 41.305 0.277 1.833 76.234 0.299 1.746 134.533 0.322 1.651
1.00 0.042 0.050 2.400 0.603 0.171 2.276 5.989 0.226 2.223 17.260 0.251 2.093 38.806 0.276 1.984 71.608 0.298 1.875 128.302 0.320 1.725

Mi = 1.50 M⊙
0.00 0.040 0.050 1.200 0.047 0.050 1.200 1.944 0.197 1.200 30.821 0.271 1.200 59.786 0.294 1.200 Ṁ divergent 178.858 0.334 1.200

0.25 0.041 0.050 1.563 0.047 0.050 1.563 1.423 0.192 1.526 30.613 0.271 1.507 Ṁ divergent Ṁ divergent 165.969 0.332 1.366

0.50 0.043 0.050 1.925 0.046 0.050 1.925 1.296 0.190 1.854 28.718 0.270 1.718 51.389 0.289 1.567 Ṁ divergent Ṁ divergent

0.75 0.043 0.050 2.288 0.045 0.049 2.288 0.963 0.185 2.184 26.877 0.268 1.863 48.631 0.287 1.647 Ṁ divergent Ṁ divergent

1.00 MNS > 2.5 MNS > 2.5 MNS > 2.5 25.190 0.266 1.982 46.326 0.285 1.721 Ṁ divergent Ṁ divergent

Mi = 1.75 M⊙
0.00 0.040 0.050 1.200 0.044 0.050 1.200 0.042 0.050 1.200 35.149 0.265 1.200 Ṁ divergent

0.25 0.041 0.050 1.625 0.044 0.049 1.625 0.044 0.050 1.625 36.149 0.266 1.560 Ṁ divergent

0.50 0.043 0.050 2.036 0.043 0.050 1.771 0.050 0.050 2.046 36.019 0.265 1.879 Ṁ divergent

0.75 0.043 0.050 2.392 0.045 0.050 2.391 0.052 0.050 2.437 34.828 0.264 2.077 Ṁ divergent

1.00 MNS > 2.5 MNS > 2.5 MNS > 2.5 34.462 0.263 2.295 Ṁ divergent

Mi = 2.00 M⊙
0.00 0.040 0.050 1.200 0.043 0.050 1.200 0.047 0.050 1.200 3.051 0.231 1.200 Ṁ divergent

0.25 0.042 0.050 1.645 0.044 0.050 1.632 0.048 0.050 1.632 3.701 0.231 1.613 Ṁ divergent

0.50 0.045 0.050 2.026 0.044 0.049 1.992 0.047 0.050 1.996 3.524 0.230 1.969 Ṁ divergent

0.75 0.044 0.050 2.363 0.044 0.050 2.341 0.047 0.049 2.356 3.760 0.233 2.309 Ṁ divergent

1.00 MNS > 2.5 MNS > 2.5 MNS > 2.5 MNS > 2.5 Ṁ divergent

Mi = 2.25 M⊙
0.00 0.043 0.050 1.200 0.042 0.050 1.200 0.043 0.050 1.200 1.515 0.203 1.200 logTc > 8

0.25 0.045 0.050 1.624 0.042 0.050 1.605 0.044 0.050 1.595 3.458 0.232 1.615 Ṁ divergent
0.50 0.048 0.050 1.980 0.043 0.049 1.935 0.044 0.050 1.926 2.685 0.218 1.857 logTc > 8
0.75 0.047 0.050 2.304 0.043 0.050 2.259 0.044 0.049 2.237 2.885 0.220 2.135 logTc > 8
1.00 MNS > 2.5 MNS > 2.5 MNS > 2.5 3.025 0.221 2.403 logTc > 8

Mi = 2.50 M⊙
0.00 0.048 0.050 1.200 0.040 0.050 1.200 0.042 0.049 1.200 2.490 0.211 1.200 logTc > 8
0.25 0.048 0.050 1.596 0.041 0.050 1.571 0.043 0.050 1.555 3.456 0.221 1.495 logTc > 8
0.50 0.050 0.050 1.922 0.042 0.049 1.874 0.043 0.049 1.851 3.676 0.222 1.736 logTc > 8
0.75 0.049 0.050 2.228 0.042 0.050 2.168 0.044 0.050 2.123 3.737 0.223 1.961 logTc > 8
1.00 MNS > 2.5 0.042 0.050 2.460 0.044 0.050 2.401 3.708 0.223 2.181 logTc > 8

Mi = 2.75 M⊙
0.00 Ṁ in ZAMS 0.040 0.050 1.200 0.042 0.049 1.200 6.720 0.239 1.200 logTc > 8
0.25 0.050 0.050 1.545 0.041 0.049 1.538 0.042 0.049 1.519 7.465 0.243 1.439 logTc > 8
0.50 0.051 0.050 1.810 0.041 0.049 1.804 0.043 0.049 1.777 7.224 0.240 1.621 logTc > 8
0.75 0.050 0.050 2.086 0.042 0.050 2.093 0.043 0.049 2.037 6.629 0.239 1.809 logTc > 8
1.00 0.050 0.050 2.343 0.042 0.050 2.363 0.044 0.050 2.289 6.446 0.238 1.988 logTc > 8

Mi = 3.00 M⊙
0.00 Ṁ in ZAMS 0.041 0.050 1.200 0.049 0.050 1.200 14.798 0.262 1.200 logTc > 8

0.25 Ṁ in ZAMS 0.041 0.050 1.481 0.033 0.050 1.467 13.888 0.261 1.386 logTc > 8

0.50 Ṁ in ZAMS 0.041 0.050 1.711 0.043 0.050 1.702 12.748 0.258 1.539 logTc > 8

0.75 Ṁ divergent 0.041 0.050 1.934 0.050 0.050 1.934 11.713 0.256 1.686 logTc > 8

1.00 Ṁ divergent 0.042 0.050 2.157 0.018 0.050 2.142 11.579 0.256 1.825 logTc > 8

Mi = 3.25 M⊙
0.00 Ṁ divergent Ṁ divergent 9.088 0.224 1.200 13.606 0.269 1.200 logTc > 8

0.25 Ṁ divergent Ṁ divergent 8.662 0.223 1.399 14.804 0.246 1.390 logTc > 8

0.50 Ṁ in ZAMS Ṁ divergent Ṁ divergent 12.625 0.257 1.498 logTc > 8

0.75 Ṁ divergent Ṁ divergent Ṁ divergent 11.5265 0.257 1.633 logTc > 8

1.00 Ṁ divergent Ṁ divergent 6.767 0.217 1.920 11.679 0.240 1.927 logTc > 8
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Table A4: Results corresponding to the case of an initial neutron star mass of (MNS)i =
1.40 M⊙, but for the case of ∆β = 0.125. Its structure is the same as that of Table A1.

Pi = 0.50 d Pi = 0.75 d Pi = 1.00 d Pi = 1.50 d Pi = 3.00 d Pi = 6.00 d Pi =12.00 d

β Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS
[d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙]

Mi = 1.00 M⊙
0.000 0.030 0.049 1.400 2.676 0.202 1.400 8.428 0.234 1.400 18.154 0.256 1.400 45.317 0.281 1.400 85.966 0.305 1.400 153.780 0.326 1.400
0.125 0.030 0.049 1.519 2.733 0.203 1.500 8.360 0.234 1.496 17.747 0.255 1.493 43.820 0.280 1.490 83.531 0.303 1.487 147.790 0.325 1.484
0.250 0.030 0.049 1.638 2.763 0.201 1.599 8.265 0.234 1.591 17.320 0.254 1.586 42.377 0.279 1.580 79.671 0.302 1.574 142.231 0.323 1.569
0.375 0.031 0.050 1.756 2.790 0.202 1.699 8.142 0.234 1.687 16.887 0.254 1.680 40.906 0.278 1.670 77.468 0.300 1.662 136.886 0.322 1.653
0.500 0.031 0.050 1.876 2.807 0.202 1.798 8.022 0.233 1.782 16.519 0.253 1.773 39.656 0.277 1.760 74.703 0.299 1.749 131.840 0.320 1.734
0.625 0.031 0.049 1.994 2.816 0.202 1.897 7.913 0.233 1.878 16.152 0.252 1.867 38.265 0.277 1.851 71.349 0.299 1.834 127.280 0.319 1.809
0.750 0.031 0.049 2.113 2.895 0.201 1.996 7.804 0.233 1.974 15.791 0.252 1.960 37.205 0.275 1.942 69.687 0.296 1.917 123.357 0.318 1.873
0.875 0.031 0.050 2.232 2.940 0.202 2.095 7.758 0.232 2.070 15.694 0.249 2.054 35.874 0.274 2.030 67.428 0.295 1.994 119.721 0.317 1.930
1.000 0.031 0.050 2.350 2.839 0.203 2.195 7.653 0.232 2.166 15.489 0.249 2.147 34.809 0.274 2.116 65.304 0.294 2.066 116.665 0.316 1.978

Mi = 1.25 M⊙
0.000 0.040 0.050 1.400 0.320 0.166 1.400 7.370 0.231 1.400 23.033 0.261 1.400 58.196 0.290 1.400 110.846 0.314 1.400 197.219 0.336 1.400
0.125 0.041 0.049 1.550 0.322 0.167 1.535 7.455 0.232 1.527 22.748 0.261 1.523 56.549 0.289 1.560 107.108 0.313 1.517 189.941 0.335 1.514
0.250 0.041 0.050 1.700 0.393 0.169 1.670 7.567 0.231 1.654 22.440 0.261 1.647 54.977 0.288 1.640 103.145 0.312 1.632 182.545 0.333 1.621
0.375 0.041 0.049 1.850 0.416 0.171 1.805 7.578 0.232 1.781 21.844 0.260 1.771 53.639 0.287 1.754 99.414 0.310 1.742 175.907 0.332 1.713
0.500 0.041 0.050 2.000 0.467 0.170 1.939 7.603 0.232 1.908 21.539 0.260 1.894 51.671 0.286 1.874 95.815 0.309 1.843 169.556 0.331 1.791
0.625 0.042 0.050 2.150 0.449 0.168 2.075 7.591 0.232 2.035 21.141 0.259 2.018 50.024 0.285 1.983 92.421 0.308 1.933 164.098 0.329 1.857
0.750 0.042 0.050 2.300 0.467 0.168 2.209 7.629 0.232 2.162 20.694 0.259 2.138 48.284 0.284 2.086 89.281 0.307 2.015 159.527 0.328 1.911
0.875 0.042 0.050 2.450 0.510 0.171 2.343 7.562 0.232 2.289 20.235 0.259 2.250 46.877 0.283 2.182 86.421 0.306 2.090 155.819 0.327 1.954
1.000 MNS > 2.5 0.566 0.172 2.475 7.568 0.232 2.416 19.795 0.258 2.355 45.309 0.282 2.273 84.734 0.303 2.158 153.045 0.327 1.986

Mi = 1.50 M⊙
0.000 0.040 0.049 1.400 0.049 0.050 1.400 5.596 0.212 1.400 39.336 0.280 1.400 73.236 0.300 1.400 125.082 0.321 1.400 224.885 0.345 1.400
0.125 0.041 0.050 1.581 0.049 0.049 1.581 4.281 0.207 1.562 38.700 0.279 1.552 71.660 0.299 1.548 121.458 0.320 1.539 217.655 0.343 1.504
0.250 0.041 0.050 1.763 0.050 0.049 1.763 3.997 0.207 1.723 37.784 0.278 1.705 69.576 0.298 1.675 117.674 0.319 1.662 201.689 0.340 1.686
0.375 0.041 0.050 1.944 0.050 0.049 1.944 3.802 0.206 1.885 36.913 0.278 1.850 66.945 0.297 1.785 113.368 0.318 1.773 195.484 0.338 1.774
0.500 0.042 0.050 2.125 0.049 0.047 2.127 3.664 0.205 2.048 35.651 0.277 1.967 64.441 0.296 1.881 110.062 0.315 1.879 190.066 0.337 1.827
0.625 0.042 0.050 2.306 0.049 0.048 2.307 3.436 0.204 2.209 34.473 0.275 2.055 62.259 0.295 1.963 105.107 0.315 1.969 186.039 0.336 1.866
0.750 0.042 0.050 2.488 0.048 0.048 2.489 3.294 0.204 2.371 33.266 0.275 2.129 60.218 0.294 2.036 102.551 0.313 2.052 183.440 0.336 1.890
0.875 MNS > 2.5 MNS > 2.5 MNS > 2.5 32.263 0.274 2.198 58.355 0.293 2.103 98.645 0.313 2.127 183.440 0.336 1.890
1.000 MNS > 2.5 MNS > 2.5 MNS > 2.5 31.364 0.273 2.260 56.988 0.292 2.150 96.139 0.311 2.209 182.181 0.336 1.905

Mi = 1.75 M⊙
0.000 0.042 0.050 1.400 0.049 0.050 1.400 0.966 0.187 1.400 41.801 0.287 1.400 Ṁ divergent Ṁ divergent Ṁ divergent

0.125 0.042 0.050 1.613 0.049 0.050 1.613 0.564 0.180 1.596 41.146 0.289 1.583 74.770 0.315 1.497 Ṁ divergent Ṁ divergent

0.250 0.042 0.048 1.825 0.049 0.050 1.825 0.441 0.176 1.793 41.137 0.287 1.761 74.324 0.309 1.630 Ṁ divergent Ṁ divergent

0.375 0.042 0.049 2.038 0.048 0.048 2.038 0.288 0.165 1.993 40.751 0.285 1.924 71.532 0.308 1.697 Ṁ divergent Ṁ divergent

0.500 0.042 0.049 2.250 0.048 0.050 2.251 0.004 0.154 2.196 39.877 0.281 2.159 69.508 0.307 1.748 Ṁ divergent Ṁ divergent

0.625 0.042 0.049 2.463 0.048 0.049 2.463 0.015 0.050 2.463 40.765 0.279 2.153 67.987 0.306 1.783 Ṁ divergent Ṁ divergent

0.750 MNS > 2.5 MNS > 2.5 MNS > 2.5 40.459 0.278 2.249 66.808 0.306 1.805 Ṁ divergent Ṁ divergent

0.875 MNS > 2.5 MNS > 2.5 MNS > 2.5 40.154 0.276 2.428 65.987 0.306 1.820 Ṁ divergent Ṁ divergent

1.000 MNS > 2.5 MNS > 2.5 MNS > 2.5 39.951 0.277 2.401 65.260 0.305 1.839 Ṁ divergent Ṁ divergent

Mi = 2.00 M⊙
0.000 0.042 0.048 1.4000 0.047 0.048 1.400 0.033 0.050 1.400 27.918 0.273 1.400 Ṁ divergent Ṁ divergent Ṁ divergent

0.125 0.043 0.049 1.6438 0.048 0.049 1.644 0.033 0.050 1.644 24.391 0.271 1.616 Ṁ divergent Ṁ divergent Ṁ divergent

0.250 0.042 0.049 1.8878 0.047 0.047 1.888 0.035 0.049 1.877 21.793 0.268 1.833 Ṁ divergent Ṁ divergent Ṁ divergent

0.375 0.043 0.050 2.1231 0.048 0.049 2.096 0.036 0.049 2.088 19.259 0.266 2.041 Ṁ divergent Ṁ divergent Ṁ divergent

0.500 0.042 0.048 2.3330 0.047 0.048 2.303 0.038 0.049 2.285 17.574 0.265 2.229 Ṁ divergent Ṁ divergent Ṁ divergent

0.625 MNS > 2.5 0.046 0.047 2.500 0.038 0.050 2.487 16.007 0.264 2.414 Ṁ divergent Ṁ divergent Ṁ divergent

0.750 MNS > 2.5 MNS > 2.5 MNS > 2.5 LogTc > 8 Ṁ divergent Ṁ divergent Ṁ divergent

0.875 MNS > 2.5 MNS > 2.5 MNS > 2.5 MNS > 2.5 Ṁ divergent Ṁ divergent Ṁ divergent

1.000 MNS > 2.5 MNS > 2.5 MNS > 2.5 MNS > 2.5 Ṁ divergent Ṁ divergent Ṁ divergent

Mi = 2.25 M⊙
0.000 Ṁ in ZAMS 0.045 0.049 1.400 0.051 0.050 1.400 5.404 0.240 1.400 LogTc > 8

0.125 Ṁ in ZAMS 0.046 0.049 1.662 0.050 0.049 1.651 6.107 0.243 1.625 LogTc > 8

0.250 Ṁ in ZAMS 0.045 0.047 1.873 0.050 0.048 1.851 6.248 0.242 1.804 LogTc > 8

0.375 Ṁ in ZAMS 0.045 0.048 2.071 0.051 0.048 2.040 6.247 0.242 1.980 LogTc > 8

0.500 Ṁ in ZAMS 0.045 0.049 2.266 0.051 0.050 2.229 6.331 0.243 2.152 LogTc > 8

0.625 Ṁ in ZAMS 0.045 0.048 2.456 0.051 0.048 2.416 6.339 0.242 2.318 LogTc > 8

0.750 Ṁ in ZAMS MNS > 2.5 MNS > 2.5 6.342 0.242 2.486 LogTc > 8

0.875 Ṁ in ZAMS MNS > 2.5 MNS > 2.5 MNS > 2.5 LogTc > 8

1.000 Ṁ in ZAMS MNS > 2.5 MNS > 2.5 MNS > 2.5 LogTc > 8

Mi = 2.50 M⊙
0.000 Ṁ in ZAMS 0.043 0.048 1.400 0.047 0.049 1.400 4.572 0.229 1.400 LogTc > 8

0.125 Ṁ in ZAMS 0.043 0.047 1.639 0.048 0.049 1.629 5.309 0.233 1.601 LogTc > 8

0.250 Ṁ in ZAMS 0.044 0.048 1.831 0.048 0.048 1.814 5.464 0.234 1.761 LogTc > 8

0.375 Ṁ in ZAMS 0.044 0.047 2.018 0.049 0.049 1.991 5.702 0.235 1.913 LogTc > 8

0.500 Ṁ in ZAMS 0.044 0.048 2.201 0.049 0.049 2.165 5.818 0.236 2.065 LogTc > 8

0.625 Ṁ in ZAMS 0.045 0.049 2.379 0.048 0.047 2.339 5.988 0.237 2.212 LogTc > 8

0.750 Ṁ in ZAMS MNS > 2.5 MNS > 2.5 6.054 0.237 2.358 LogTc > 8
Continued on next page . . .
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Pi = 0.50 d Pi = 0.75 d Pi = 1.00 d Pi = 1.50 d Pi = 3.00 d Pi = 6.00 d Pi =12.00 d

β Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS Pf M MNS
[d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙] [d] [M⊙] [M⊙]

0.875 Ṁ in ZAMS MNS > 2.5 MNS > 2.5 MNS > 2.5 LogTc > 8

1.000 Ṁ in ZAMS MNS > 2.5 MNS > 2.5 MNS > 2.5 LogTc > 8

Mi = 2.75 M⊙
0.000 Ṁ in ZAMS 0.043 0.050 1.400 0.044 0.049 1.400 8.686 0.246 1.400 LogTc > 8

0.125 Ṁ in ZAMS 0.044 0.050 1.621 0.045 0.050 1.610 8.864 0.246 1.575 LogTc > 8

0.250 Ṁ in ZAMS 0.043 0.049 1.800 0.045 0.050 1.779 8.749 0.245 1.710 LogTc > 8

0.375 Ṁ in ZAMS 0.044 0.049 1.972 0.045 0.049 1.941 8.703 0.245 1.838 LogTc > 8

0.500 Ṁ in ZAMS 0.044 0.050 2.141 0.045 0.050 2.100 8.667 0.245 1.965 LogTc > 8

0.625 Ṁ in ZAMS 0.044 0.049 2.308 0.045 0.049 2.260 8.581 0.245 2.089 LogTc > 8

0.750 Ṁ in ZAMS 0.044 0.049 2.476 0.045 0.049 2.416 8.515 0.245 2.213 LogTc > 8

0.875 Ṁ in ZAMS MNS > 2.5 MNS > 2.5 8.464 0.244 2.335 LogTc > 8

1.000 Ṁ in ZAMS MNS > 2.5 MNS > 2.5 8.365 0.244 2.457 LogTc > 8

Mi = 3.00 M⊙
0.000 Ṁ in ZAMS 0.043 0.050 1.400 0.039 0.049 1.400 16.441 0.265 1.400 LogTc > 8

0.125 Ṁ in ZAMS 0.043 0.048 1.608 0.046 0.049 1.597 15.639 0.264 1.548 LogTc > 8

0.250 Ṁ in ZAMS 0.044 0.050 1.774 0.043 0.048 1.750 16.634 0.265 1.657 LogTc > 8

0.375 Ṁ in ZAMS 0.044 0.049 1.935 0.043 0.049 1.899 15.622 0.263 1.765 LogTc > 8

0.500 Ṁ in ZAMS 0.044 0.050 2.093 0.043 0.048 2.047 15.759 0.263 1.868 LogTc > 8

0.625 Ṁ in ZAMS 0.044 0.049 2.251 0.042 0.050 2.191 15.359 0.263 1.971 LogTc > 8

0.750 Ṁ in ZAMS 0.044 0.049 2.407 0.042 0.050 2.343 14.807 0.261 2.073 LogTc > 8

0.875 Ṁ in ZAMS MNS > 2.5 0.018 0.049 2.488 14.907 0.263 2.261 LogTc > 8

1.000 Ṁ in ZAMS MNS > 2.5 MNS > 2.5 14.243 0.261 2.272 LogTc > 8

Mi = 3.25 M⊙
0.000 Ṁ in ZAMS 0.043 0.047 1.400 13.502 0.235 1.400 27.587 0.283 1.400 LogTc > 8

0.125 Ṁ in ZAMS 0.045 0.048 1.588 13.938 0.236 1.553 26.881 0.282 1.526 LogTc > 8

0.250 Ṁ in ZAMS 0.048 0.047 1.749 13.858 0.235 1.672 25.864 0.281 1.615 LogTc > 8

0.375 Ṁ in ZAMS 0.044 0.049 1.887 12.813 0.233 1.786 24.914 0.280 1.705 LogTc > 8

0.500 Ṁ in ZAMS 0.050 0.048 2.033 12.946 0.234 1.898 24.003 0.279 1.790 LogTc > 8

0.625 Ṁ in ZAMS 0.047 0.049 2.177 12.390 0.232 2.010 23.211 0.278 1.878 LogTc > 8

0.750 Ṁ in ZAMS 0.044 0.048 2.321 13.151 0.234 2.118 22.525 0.277 1.959 LogTc > 8

0.875 Ṁ in ZAMS 0.048 0.047 2.492 12.430 0.232 2.229 21.856 0.276 2.043 LogTc > 8

1.000 Ṁ in ZAMS MNS > 2.5 11.866 0.231 2.339 21.0195 0.275 2.125 LogTc > 8

Mi = 3.50 M⊙
0.000 Ṁ in ZAMS 0.045 0.050 1.400 18.003 0.243 1.400 24.065 0.281 1.400 LogTc > 8

0.125 Ṁ in ZAMS 0.046 0.049 1.564 17.568 0.242 1.528 23.419 0.280 1.507 LogTc > 8

0.250 Ṁ in ZAMS 0.047 0.048 1.698 16.932 0.241 1.629 22.598 0.278 1.596 LogTc > 8

0.375 Ṁ in ZAMS 0.044 0.048 1.826 16.235 0.240 1.730 21.650 0.278 1.679 LogTc > 8

0.500 Ṁ in ZAMS 0.045 0.050 1.950 15.694 0.239 1.831 20.828 0.276 1.761 LogTc > 8

0.625 Ṁ in ZAMS 0.044 0.049 2.075 15.094 0.238 1.929 20.037 0.275 1.842 LogTc > 8

0.750 Ṁ in ZAMS 0.046 0.048 2.200 14.547 0.237 2.030 19.211 0.275 1.924 LogTc > 8

0.875 Ṁ in ZAMS 0.045 0.050 2.320 14.000 0.236 2.128 18.510 0.274 2.007 LogTc > 8

1.000 Ṁ in ZAMS 0.045 0.048 2.444 13.498 0.235 2.227 18.030 0.272 2.084 LogTc > 8
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APPENDIX B: THE RELATION BETWEEN

THE MASS OF THE WHITE DWARF AND THE

FINAL ORBITAL PERIOD

The mass of WDs resulting from the evolution of CBSs
satisfies a relation with the final orbital period of the
system. This relation has been studied previously by,
e.g., Rappaport et al. (1995), Tauris & Savonije (1999),
Nelson, Dubeau & MacCannell (2004). Recently, we have
examined quantitatively the predictions made by the
authors previously mentioned, and proposed a new relation
from our own calculations (De Vito & Benvenuto 2010). In
that work we considered the evolution of donor stars of CBSs
with different masses of the accreting NSs but a fixed value
of β (=0.5). Now, we add to these calculations the results
corresponding to different values of the parameter β. This is
shown in Fig. B1, where we show the results corresponding
to open systems and to converging systems in which the
mass of the donor star is larger than 0.15 M⊙ (in these
cases we plot the value of the orbital period at an age of
13 Gyr). We observe from Fig. B1 that the dispersion in the
relation we have plotted decreases as we move towards larger
masses of the WD and orbital periods. This is because in
these cases, the donor star is on the red giant branch at the
beginning of the first mass transfer episode, and then, the
core mass-radius relation is well satisfied (Joss, Rappaport
& Lewin 1987).

The WD mass-orbital period relation presented in
Fig. B1 is based on five times more models than that
shown in De Vito & Benvenuto (2010), which makes the
relation shown here as a more solid result. In any case
we should remark that the analytical fitting found in our
previous paper is in nice agreement with these new results.
A variation of the value of β produces a motion of the point
at most in the size of the symbols employed in the figure.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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Figure B1. The relation between the mass of the WD and the
final orbital period. We present with circles, triangles, squares
and pentagons the cases of accreting neutron stars with initial
mass values of 0.80, 1.00, 1.20 and 1.40 M⊙ respectively. The

colors red, green, blue, sky blue and magenta correspond to the
cases of β = 0.00, 0.25, 0.50, 0.75 and 1.00 respectively. Solid
line represents the fit to the MWD − P relation P = 2.6303 ×

106 (MWD/M⊙)8.7078 d given in De Vito & Benvenuto (2010).

We have plotted, in addition, data corresponding to four helium
white dwarfs belonging to close binary systems, companions of
millisecond pulsars, whose masses are known.
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