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Abstract

The safety and efficacy of chemotherapeutics can vary as a function of the time of their delivery 

during the day. This study aimed to improve the treatment of glioblastoma (GBM), the most 

common brain cancer, by testing whether the efficacy of the DNA alkylator temozolomide (TMZ) 

varies with the time of its administration. We found cell-intrinsic, daily rhythms in both human 

and mouse GBM cells. Circadian time of treatment impacted TMZ sensitivity of murine GBM 

tumor cells in vitro. The maximum TMZ-induced DNA damage response, activation of apoptosis 

and growth inhibition occurred near the daily peak in expression of the core clock gene Bmal1. 
Deletion of Bmal1 (Arntl) abolished circadian rhythms in gene expression and TMZ-induced 

activation of apoptosis and growth inhibition. These data indicate that tumor cell-intrinsic 

circadian rhythms are common to GBM tumors and can regulate TMZ cytotoxicity. Optimization 

of GBM treatment by timing TMZ administration to daily rhythms should be evaluated in 

prospective clinical trials.
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Introduction

Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in 

adults. Despite extensive research and clinical trials, median survival remains about 15 

months (Stupp et al., 2009). Therefore, all opportunities to improve outcomes should be 

pursued. In 2005, a landmark paper demonstrated a 2.5-month increase in median survival 
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and an increase in the 2-year survival rate (10% to 27%) by treating GBM with TMZ 

chemotherapy during and after radiotherapy (Stupp et al., 2005). Since then, TMZ has been 

a standard component of GBM treatment. Investigating opportunities to enhance the anti-

tumor efficacy of TMZ has significant potential for expedited translation to patients.

The efficacy and tolerability of cancer chemotherapeutics at different times of day has been 

investigated. Drug administration based on daily biological rhythms is known as 

chronotherapy. Chrono-chemotherapy has increased 5-year survival rates in acute 

lymphoblastic leukemia and increased the objective response rate in colorectal cancer while 

reducing toxicities (Levi et al., 1995; Schmiegelow et al., 1997). Chronotherapy has never 

been applied to the treatment of brain tumors. Standard administration of TMZ is a single, 

daily dose for 5 consecutive days at the start of every 28-day treatment cycle (Newlands et 

al., 1992; Stevens et al., 1987). The time of day of TMZ administration has not been tested 

as an independent variable in analyses of outcome or toxicity. Its oral administration and 1.8 

h half-life in plasma (Beale et al., 1999) make TMZ an ideal candidate for chronotherapy.

Daily rhythms in sleep, hormone release and other processes can affect drug efficacy and 

toxicity (Vitaterna et al., 2001). The foundation of daily rhythms is a molecular clock that 

generates near 24 h oscillations in gene expression through BMAL1- and CLOCK-mediated 

transcription of circadian genes including the Period (Per1, Per2 and Per3) and 

Cryptochrome (Cry1 and Cry2) loci. With a delay of about 12 h, the PER and CRY proteins 

accumulate and repress BMAL1/CLOCK-dependent transcription of genes including of Per 
and Cry (Reppert and Weaver, 2002). This feedback loop creates daily oscillations in 

approximately 50% of genes (Zhang et al., 2014). Transcription of Bmal1 (Arntl) peaks in 

anti-phase to the Period genes (Nakajima et al., 2004; Preitner et al., 2002; Sato et al., 2004) 

and loss of Bmal1 abolishes molecular and cellular circadian rhythms (Bunger et al., 2000).

We aimed to test whether GBM cells exhibit intrinsic circadian rhythms in gene expression 

and their response to chemotherapy. Using an in vitro mouse model of GBM, we examined 

the role of Bmal1 in daily rhythms in Per2 expression and TMZ-induced DNA damage.

Materials and Methods

Human GBM cell culture:

Low passage primary human GBM cells were obtained and utilized in accordance with a 

Washington University Institutional Review Board (IRB) approved Human Studies Protocol 

(#201102299). They were maintained as adherent cultures on laminin (Sigma L2020) coated 

tissue culture plates in RHBA media (Clonetech), supplemented with 20 ng/ml epidermal 

growth factor (EGF, Sigma) and 20 ng/ml basic fibroblast growth factor (bFGF, Chemicon) 

as described (Barone et al., 2014).

The Cancer Genome Atlas (TCGA) Queries:

Details of core clock gene mutations in GBM were obtained by querying TCGA through 

cbioportal.org. Three datasets were queried: TCGA provisional with 604 samples, TCGA 

2013 with 206 samples and TCGA 2008 with 580 samples. We searched for mutations-only 
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in the following genes: (CLOCK, ARNTL, ARNTL2, NPAS2, CRY1, CRY2, PER1, PER2, 
PER3, CSNK1D, CSNK1E, RORA, RORB, RORC, NR1D1 AND NR1D2).

Clock gene sequencing:

Total RNA was isolated using the RNeasy Mini system and then treated with DNase I 

according to the manufacturer’s instructions (Qiagen). 1.5 μg of total RNA from cultured 

human GBM cells was reverse transcribed with the SuperScript III using random hexamers 

and Oligo(dT) (Invitrogen). 50 ng of this reaction served as template for quantitative real-

time RT-PCR analysis using iTaq Universal SYBR Green Supermix PCR reagents (Biorad). 

Primers (Table S1) were designed by DS Gene software (Accelyrs, Inc. San Diego, CA. 

USA) to include the specific mutation of interest identified from the analysis of clock gene 

mutations in the TCGA database and had the following parameters: 18–27 bases, product 

100–200 bp and product melting temperatures within 66°C–78°C. PCR reaction products 

were cleaned using the QIAquick PCR Purification Kit according to the manufacturer’s 

instruction. Gene amplicons were verified by size on a DNA agarose gel. Samples were then 

sequenced for mutation(s) using Genewiz services (South Plainfield, NJ).

Animals:

Animals were used in accordance with National Institutes of Health guidelines following 

protocols approved by the Washington University Animal Studies Committee. NCR nude 

mice (Taconic Farms, Inc., NY) and Nf1flox/flox;GFAP-Cre were housed under a 7am lights-

on, 7pm lights-off schedule.

Male Astrocyte Cultures:

As a cellular model of mesenchymal GBM (mes-GBM), primary cultures of astrocytes were 

prepared from male, postnatal day 1 Nf1flox/flox;GFAP-Cre mice and rendered null for p53 

function as previously described (Sun et al., 2014; Warrington et al., 2007). Due to increased 

risk for mesenchymal GBM in male mice and humans (Sun et al., 2014), we limited our 

studies to male mes-GBM astrocytes.

Expression of CRISPR-Cas9 expression vectors:

The Genome Engineering Center at Washington University in St. Louis designed and cloned 

six guide RNAs targeting and disrupting the Bmal1 locus (Bmal1 KO). Bmal1 WT and KO 

cultures were used at the same passage number in parallel experiments.

Expression of Per2-luc and Bmal1-luc reporters:

We infected astrocyte cultures with lentiviral reporter constructs expressing firefly luciferase 

driven by the mouse Bmal1 (Bmal1-luc) (Liu et al., 2008; Zhang et al., 2009) or Period2 
(Per2-luc) (Ramanathan et al., 2012) promoters (generous gifts of Dr. Andrew Liu 

(University of Memphis)).

Expression of Casp-luc reporter:

Mes-GBM astrocyte cultures were transfected with the Caspase-3/7-luciferase plasmid 

(Casp-luc; generous gift of Dr. Alnawaz Rehemtulla (University of Michigan)) (Galban et 
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al., 2013) using Fugene 6 (Promega, Madison, WI). Stable lines were selected with 400 

μg/ml G418 (Santa Cruz Biotechnology, Dallas, TX) and maintained in CO2- buffered 

DMEM supplemented with 10% FBS, 1% penicillin/streptomycin. We performed 4 

independently plated experiments with Bmal1 WT and Bmal1 KO cultures from 2 lots of 

mes-GBM cells. Of the 8 independent cultures recorded, 1 Bmal1 WT and 1 Bmal1 KO 

cultures were excluded because they did not respond to TMZ.

γH2AX immunofluorescence staining and quantification:

γH2AX staining measured DNA repair response in mes-GBM astrocytes. Cells plated on 

poly-D-lysine-coated glass coverslips were fixed with 4% paraformaldehyde, permeabilized 

with Triton-X-100, incubated with mouse anti-phospho-S139 H2AX primary antibody 

(1:800; Molecular Probes) for 3 h at 37°C, and incubated with Alexa Fluor 568 Donkey anti-

mouse IgG (1:10,000; Life Technologies, Carlsbad, CA) for 1 h at room temperature (RT). 

Astrocyte nuclei were stained with DAPI (Life Technologies, Carlsbad, CA). Nuclear 

γH2AX staining intensity was quantified by two individuals blinded to treatment conditions 

by ImageJ analysis of integrated density of fluorescent images. Staining across - high-

powered fields of view per coverslip was averaged across two coverslips per treatment 

condition. Thresholds for positive staining were defined by the intensity distributions of 

TMZ-versus DMSO-treated cells.

Bioluminescence recordings in vitro:

We detected light from clock gene reporters (Bmal1-luc or Per2-luc) with photomultiplier 

tubes (HC135–11; Hamamatsu Corp.) in light-tight incubators (Beaule et al., 2011; 

Marpegan et al., 2009; Prolo et al., 2005). We integrated bioluminescence every 6 min over a 

4–5 day experimental period. During recordings, we sealed lids with vacuum grease and 

maintained cultures at 34°C in bioluminescence recording medium (HEPES-buffered 

DMEM supplemented with 10% FBS, B27 (1X; Gibco/Life Technologies, Carlsbad, CA) 

and 0.1 mM D-luciferin (Xenogen, Alameda, CA)), as previously reported (Marpegan et al., 

2009). Bioluminescence from GBM cultures was recorded with a low light imaging system 

(Stanford Photonics) consisting of a light-tight incubator coupled to ICCD camera (XR/

Mega10-Z, Stanford Photonics) controlled with Micro-Manager software (Edelstein et al., 

2014). Cells were plated in laminin coated 96-well plates (2.5×104cells/well) and 

maintained in a mixture of 50% bioluminescence recording medium and 50% RHBA 

supplemented with 20 ng/ml EGF and 20 ng/ml bFGF. Images were obtained by integrating 

light every three minutes and then processed using ImageJ software to obtain the average 

signal intensity for each well every half hour. In Casp-luc experiments, we entrained cultures 

by shifting the temperature between 30°C and 34°C every 12 hours for 48 hours (Buhr et al., 

2010).

Statistical Analysis:

Comparisons between treatments and genotypes (GraphPad Prism version 6.0, GraphPad, 

San Diego, CA) considered astrocytes derived from a single litter of mice as a single 

biological replicate. We performed statistical analyses on at least 3 biological replicates per 

experiment, with each lot derived from an independent litter of pups. Circadian period of 
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bioluminescence recordings was analyzed with Chronostar V2.0 software (gift of A. Kramer 

and B. Maier, Charite).

Results

Human GBM cells are circadian

To determine whether GBM cells have intrinsic daily rhythms, we characterized expression 

of the core circadian gene, BMAL1 (also called ARNTL), in human primary low-passage 

GBM cell lines. Using a transgenic bioluminescent reporter, we recorded BMAL1 promoter 

activity continuously for 5 days from GBM cells cultured from 5 patients (Figure 1). We 

found daily rhythms in BMAL1 expression from all 5 lines with circadian periods ranging 

from 22.5–27.8 h. Because altered clock gene expression in human cancers has implicated 

circadian rhythms in tumor progression (Stevens, 2005; Wang et al., 2014), we used The 

Cancer Genome Atlas (TCGA; cbioportal.org) database to explore known mutations in core 

clock genes of human GBM tumors (Brennan et al., 2013). Twenty-six missense, five 

nonsense and one in-frame deletion were identified in 16 genes critical for circadian timing 

(CLOCK, ARNTL, ARNTL2, NPAS2, CRY1, CRY2, PER1, PER2, PER3, CSNK1D, 
CSNK1E, RORA, RORB, RORC, NR1D1 AND NR1D2) in 1390 GBM samples (Figure 2). 

Thus, approximately 2% of GBM cases had mutations in at least one of the core clock 

genes. We then sequenced the DNA of our 5 GBM cell lines and found only one line (B18) 

carried one of the known clock gene mutations (PER1S784F). This line, however, possessed 

strong circadian rhythms. We conclude that human GBM cells are intrinsically circadian and 

mutations that affect their circadian timing are rare.

Murine mes-GBM astrocytes exhibit circadian rhythms in TMZ response

To further test the role of circadian timing in GBM biology, we generated a mouse model of 

GBM. Mouse cortical astrocytes rendered null for neurofibromin (Nf1) and P53 function 

(mes-GBM; (Sun et al., 2014)) were transduced with a real-time luciferase reporter for either 

Bmal1 (Bmal1-luc) or Period2 (Per2-Luc) (Liu et al., 2008; Ramanathan et al., 2012; Zhang 

et al., 2009). Cultured mes-GBM astrocytes expressed circadian, anti-phase rhythms for at 

least 4 days in Per2-luc and Bmal1-luc with periods of 23.6±3.2 h and 23.1±2.6 h, 

respectively (mean±SD; Figure 3A), consistent with their expression patterns in other cell 

types (Reppert and Weaver, 2002). Thus, endogenous circadian rhythms are conserved in 

human and mouse GBM cells.

To test whether the presence of circadian rhythms in gene expression affect GBM response 

to chemotherapy, we treated mes-GBM astrocytes with temozolomide (TMZ), the first-line 

chemotherapeutic for GBM, based on circadian time. Cells received either 1 mM TMZ or 

vehicle (DMSO) for 6 hours at 1 of 4 times phases of Bmal1-luc expression during the day 

after plating (Figure 3B). We counted viable cells by their ability to exclude trypan blue 72 

hours after TMZ or DMSO addition. We defined growth inhibition as the number of TMZ-

treated living cells divided by the number of DMSO-treated living cells at each treatment 

time (i.e. the death of all TMZ-treated cells would equal 100% growth inhibition). The 

greatest TMZ-induced growth inhibition occurred near the peak of Bmal1-luc expression 
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(Figure 3C). Thus, TMZ sensitivity of mes-GBM astrocytes varied with the phase of Bmal1 
expression.

To assess whether the rhythm in growth inhibition was due to rhythms in response to TMZ-

induced DNA damage, we treated mes-GBM astrocytes with 1 mM TMZ or DMSO at 1 of 4 

phases of Bmal1-luc expression during the day after plating (Figure 4A) and stained for 

phosphorylation of histone H2AX (γH2AX), an early step in DNA damage response (DDR) 

and a commonly used marker for DNA double-strand breaks (Bonner et al., 2008; Rogakou 

et al., 1999). We exposed cells to TMZ or vehicle for 6 hours, changed the media and fixed 

the cells 12 hours later. We quantified nuclear staining for γH2AX (p5Ser139; example 

staining in Figure S1) and calculated the fraction of γH2AX positive cells divided by the 

total DAPI-stained nuclei per field of view (Figure 4B). TMZ-induced γH2AX (γH2AXTMZ 

- γH2AXDMSO) was maximal near the peak of Bmal1-luc expression (Figure 4C). There 

was a mean 2.85fold difference in TMZ response at the peak versus trough of Bmal1-luc 
expression across 3 independent experiments. These results demonstrate a time of day-

dependent rhythm in the response of mes-GBM astrocytes to TMZ-induced DNA damage.

Daily rhythms in TMZ-induced γH2AX and growth inhibition led us to test whether there 

was a time of day-dependent rhythm in TMZ-induced apoptosis. Mes-GBM astrocytes 

stably expressing a luciferase reporter of caspase 3 and 7 activities (Casp-luc) (Galban et al., 

2013) were treated with TMZ or DMSO for 6 hours at 1 of 4 phases of Per2-luc expression 

during the day after plating (Figure 5A). TMZ-induced activation of Casp-luc 
bioluminescence above the levels evoked by DMSO was calculated from measurements 

taken 48 hours after treatment. We expressed Casp-luc activation as fold change relative to 

the response at the Per2-luc falling phase (Figure 5B). There was a significant increase in 

Casp-luc bioluminescence when mes-GBM astrocytes were treated at the trough of Per2-luc, 

which in parallel dishes corresponded to the peak of Bmal1. Thus, TMZ-induced activation 

of apoptosis in the mes-GBM astrocytes had a circadian rhythm.

Circadian rhythms in TMZ-induced apoptosis are Bmal1-dependent

The correlation between high Bmal1 expression and high TMZ sensitivity led us to 

hypothesize that increased TMZ sensitivity is Bmal1-dependent. We used CRISPR-Cas9 

genome editing to disrupt the Bmal1 gene (Bmal1 KO) and abrogate BMAL1 protein 

expression (Figure S2). Loss of Bmal1 abolished circadian rhythms in Per2-luc expression 

(Figure 5C). These data demonstrate disruption of the molecular clock in Bmal1 KO mes-

GBM astrocytes.

To determine the necessity of Bmal1 expression to generate rhythms in TMZ-induced 

apoptosis, Bmal1 KO mes-GBM astrocytes stably expressing Casp-luc were treated with 

TMZ at 1 of 4 times according to the Per2-luc rhythm of a WT culture (Figure 5A). Loss of 

Bmal1 expression abolished the rhythm in TMZ-induced caspase activity (Figure 5D) and 

reduced the ratio of TMZ to vehicle Casp-luc activity to 15.3 to 42.3 percent of that 

observed in Bmal1 WT across three independent experiments.
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Discussion

Our study uniquely demonstrates endogenous circadian rhythms in human and murine GBM 

cells and their response to TMZ chemotherapy. We found cell-intrinsic daily rhythms in 

DNA repair, apoptosis and growth inhibition, with maximum TMZ sensitivity of all 3 

measures occurring near the peak of Bmal1 expression. Furthermore, our studies indicate 

that tailoring TMZ administration to the peak of Bmal1 (trough of Per2) expression in tumor 

cells can enhance TMZ efficacy. Taken together, these data support a rhythm in tumor 

response to TMZ at the level of DNA repair and leads to a rhythm in programmed cell death.

These experiments build upon research that has previously demonstrated regulation of the 

DDR by the circadian clock. Through direct protein-protein interactions, PER1 and PER3 

enhance activation of cell cycle arrest in response to DNA double-strand breaks (Gery et al., 

2006; Im et al., 2010). Our study is the first to test circadian regulation of the DDR in 

glioma cells. It will be important to determine if other cell types exhibit circadian rhythms in 

their repair of DNA damage.

The correlation between the peak of Bmal1 expression and the greatest sensitivity to TMZ 

combined with the loss of circadian rhythm in TMZ-induced apoptosis in Bmal1 KO mes-

GBM astrocytes suggests an important role for BMAL1 in regulating response to DNA 

damage. These findings are consistent with the daily variations observed in colon cancer cell 

sensitivity to irinotecan, achieving peak sensitivity at the peak of Bmal1 transcription 

(Dulong et al., 2015). Overexpression of Bmal1 increased sensitivity of colon cancer cells to 

oxaliplatin (Zeng et al., 2014). Bmal1 knockdown reduced etoposide-induced apoptosis of 

colon cancer cells (Zeng et al., 2010). These data are consistent with our findings that loss of 

Bmal1 leads to ablation of the rhythm in caspase activation and a reduction in maximal TMZ 

efficacy. There are no data showing a direct interaction of BMAL1 with proteins involved in 

apoptosis, but there are reports of Per2 overexpression altering expression of apoptotic genes 

(Hua et al., 2006). Thus, BMAL1 may act as an indirect regulator of apoptosis through its 

role as a transcriptional activator. Irinotecan is also reported to induce greater cytotoxicty at 

the peak of Bmal1, suggesting circadian regulation of a common DNA repair pathway in 

response to both of these chemotherapies.

Future studies should test whether Bmal1 is playing a direct or indirect role in regulating the 

DDR and gliomagenesis (Jiang et al., 2016). Identifying rhythmic transcripts of DDR-

related genes that lose rhythmicity in Bmal1 KO cells would provide a list of candidate 

regulators. In contrast, identifying DDR-related proteins in complex with Bmal1 would 

suggest a more direct role. At present, the Bmal1-luc and Per2-luc reporters serve as useful 

tools to help us understand circadian clock regulation within tumor cells and to guide the 

search for the mechanism of circadian regulation of the tumor cell-intrinsic response to 

TMZ.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Human GBM cells are circadian.
(A-E) Representative bioluminescence traces of Bmal1-luc expression in the five human 

GBM cell lines (B05, B18, B36, B49, and B66). Each trace shows the mean (solid line) and 

SEM (grey error bars) of four replicate cultures fitted by a sine function (dashed line). Note 

that all cultures expressed intrinsic daily rhythms in Bmal1-luc. (F) Circadian period of the 5 

GBM lines (Mean ± SD, n=4 independent platings).
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Figure 2. Genetic alterations in circadian clock genes in cancer.
A) TCGA-based analysis revealed the frequency of amplifications (red), deletions (blue), 

mutations (green) or multiple alterations (gray) among 16 clock genes in different cancers. 

Arrows indicate evaluations of genetic alterations from 3 independent GBM tumor datasets. 

B and C) 32 mutations were identified in 16 core clock genes in three TCGA datasets 

comprised of 1390 GBM samples.
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Figure 3. Mes-GBM astrocytes have rhythmic sensitivity to temozolomide in vitro.
A) Mes-GBM astrocytes express Bmal1-luc (black) and Per2-luc (gray) in anti-phase, with 

rhythmic periods of 25.3 h and 22.2 h, respectively, in these representative traces. B) A 

representative trace shows how mes-GBM astrocytes were treated with TMZ or DMSO at 1 

of 4 times (arrows) in their daily Bmal1 expression. C) TMZ-induced growth inhibition 

varied with time of treatment (1 representative experiment shown), peaking near the peak of 

Bmal1-luc expression in 3 independent biological replicates.
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Figure 4. Phosphorylation of histone H2AX varies with time of treatment in vitro.
A) Bmal1-luc reporter mes-GBM cells showed oscillation of bioluminescence over time 

(one representative experiment, n=3). Arrows indicate times of TMZ or DMSO treatment for 

different mes-GBM cultures. B) Percent of phosphor-H2AX (γH2AX) positive cells varied 

with time of 1mM TMZ treatment (one representative experiment, n =3). C) Relative to 

γH2AX staining of mes-GBM astrocytes treated at the trough of Bmal1 expression, TMZ 

induced a response at the peak, but not the trough, of Bmal1 expression (Two-way ANOVA, 

Tukey’s multiple comparisons, * = p<0.05, n= 3).
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Figure 5. Rhythmic Per2-luc expression and activation of apoptosis depend on Bmal1 in vitro.
A) A representative culture of mes-GBM astrocytes showing circadian Per2-luc 
bioluminescence. B) TMZ-induced activation of a bioluminescent caspase reporter was 

highest when delivered at the trough of Per2-luc (i.e. peak of Bmal1-luc) (Kruskal-Wallis 

test, and Dunn’s multiple comparisons test, p<0.05). CRISPR-mediated loss of Bmal1 
resulted in arrhythmic Per2-luc expression in mes-GBM cells. D) Caspase activation did not 

depend on the time of TMZ application in Bmal1 KO mes-GBM astrocytes (One-way 

ANOVA, Dunn’s multiple comparisons test, p>0.05).
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