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Abstract

In this paper we present a new mixed-variables symplectic tree code for planetesimal dynamics, which allows to use a very large

number of particles in numerical simulations of planet–disk interaction. Furthermore, we discuss how a wrong election of the number of

particles to model a planetesimal disk, in order to carry out realistic numerical simulations, can cause spurious result. If the particle

number is not enough, the close encounter between the planet and unrealistic massive particles will introduce a stochastic component of

planet migration. This has an impact on the migration rate and it can even change its sign. Finally, we describe how to determine the

minimum number of disk particles that should be used in numerical simulations, in order to have a correct description of the interaction,

especially when the dynamical friction on the planet is the relevant mechanism of migration.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The planet–planetesimal disk interaction has been
extensively studied by means of numerical simulations.
The attention of most papers was focused at the end of the
runaway phase, with special emphasis in the structure of
the disk in the neighborhood of the protoplanet (Ida and
Makino, 1992, 1993). In special Ida and Makino (1993)
have shown that even for a small (non-migrating) proto-
planet the ‘‘planet–planetesimal–planetesimal’’ interaction
evolves in a ‘‘planet dominated stage’’ (planet–planetesimal
interaction) in which the planet become a strong disk
perturbator scatter the disk and slow-down the runaway
growth.

Cionco and Brunini (2002) have simulated the dynamical
interaction between a massive planet and a non-self-
gravitating Keplerian 3D disk with a relative large number

of planetesimals. The planet can migrate freely within the
disk and the disk can evolve without limits. The N-body
simulations with large number of particles enable them to
study the problem in a resonant perspective, together with
other interactions as scattering, ejection, encounters and
accretion. However, Cionco and Brunini (2002) were not
able to extend their investigation to small mass planets,
because of the possible artifacts that the number of
particles could introduce in the numerical simulations.
Although in most papers containing N-body numerical

simulations of planet disk interaction some attention is
paid to the number of particles used, in none of them a
detailed investigation of this effect is carried out. There-
fore, we do not have a criterion helping us to decide the
number of particles that a simulation of planet–disk
interaction should include, in order to furnish reliable
results.
Recently, we have developed a tree code for simulations

of large collisional systems (Brunini and Viturro, 2003).
A comparison between the behavior of the tree code and a
direct hybrid integrator (the one used in Cionco and
Brunini, 2002) revealed that the tree codes are useful in
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numerical simulations of planetary accretion, specially
during intermediate stages, where dynamical friction
dominates the evolution of planetary embryos embedded
in disks, which is the case we are interested in.

In this paper, we first present an improved version of our
tree code, where we take advantage of the fact that the
bodies evolve mostly under a central potential. We
therefore have implemented a hybrid symplectic algorithm,
where the evolution under the central potential is
computed with the analytical formulation of the two-body
problem, but the perturbations are computed through an
octal tree code and therefore is substantially faster than the
previous version. After some numerical checks of the code,
we perform a series of numerical simulations in order to
determine the effect of the number of particles in N-body
simulations of planet–disk interaction.

2. The numerical code

An efficient numerical integrator designed for the
simulation of planetesimal dynamics in Keplerian disks
must fulfill the following characteristics:

� The integrator should be symplectic in order to preserve
the dynamical evolution of the system.
� It should take advantage of the fact that the bodies

evolve mostly under a central potential.
� Close encounters should be detected and integrated with

enough accuracy. This a very important point for the
comprehension of many process that affect the structure
of the system.
� The computation of the mutual gravitational interac-

tions in direct form should be avoided. The reason of
this is that the number of operations in its computation
increases proportional to the square of the number of
bodies.

At present, an integrator that incorporates all these
desirable properties does not exist in the literature.
Therefore, we have constructed a new integrator by
combining features from different already known integra-
tors. We used the symplectic integration scheme described
by Duncan et al. (1998), to satisfies the first two points. In
order to resolve the third point, we have incorporated the
scheme described by Chambers (1999). Finally, to avoid
the direct computation of the mutual interaction, we used a
tree code, as it is described by Brunini and Viturro (2003).
For the sake of completeness, we will describe briefly the
proposed solutions in the next section.

2.1. Symplectic integrators

The N-body problem is a Hamiltonian problem, and as
we know, in order to integrate a Hamiltonian system
numerically over a long time span, the symplectic

integrators present some advantages over the traditional
numerical integrators: they preserves the phase-space

structure of the system, and the accumulation of the
truncation errors does not display a secular component in
the energy of the system.
The Hamiltonian for ðN þ 1Þ bodies in mutual gravita-

tional interaction is

Hðq; pÞ ¼
XN

i¼0

jpij
2

2mi

� G
XN�1
i¼0

XN

j¼iþ1

mimj

jqi � qjj
, (1)

where qi ¼ ðxi; yi; ziÞ and pi ¼ ðpxi
; pyi

; pzi
Þ are the position

and momentum of body i (of mass mi) relative to a
Cartesian inertial frame.
The simplest division of the Hamiltonian is to separate

this in the sum of the kinetic and potential energy terms

H ¼ KðpÞ þUðqÞ. (2)

In this case a second-order symplectic integrator is the well-
known leapfrog integrator used in many codes

~p ¼ p0 �
t
2

qU

qq
ðq0Þ,

q ¼ q0 þ t
qK

qp
ð~pÞ,

p ¼ ~p�
t
2

qU

qq
ðqÞ. ð3Þ

However, in a Keplerian disk, the central mass m0 is
bigger than the mass of all the other bodies mi ðia0Þ.
Thereby the gravitational force due to the central body is
usually the dominant force, and as a result it is better to
write the Hamiltonian as

H ¼ HKep þH int, (4)

where HKep is the part that describes the central motion of
the bodies around the central body, and H int is the part
that describes the mutual interaction among the other
bodies. Symplectic integrators based on this division of the
Hamiltonian are known as mixed-variable symplectic

integrators (MVS methods).
The way of how this separation is done depends on the

canonical variables chosen. The standard MVS methods
use the Jacobian coordinates (Wisdom and Holman, 1992).
A widely known second-order MVS integrator is the SWIFT

code of Levison and Duncan (1994). However, it is more
suitable (and computational easier) to use the so-called
democratic heliocentric variables (Duncan et al., 1998).
These variables consist of coordinates Qi relative to the
central body and barycentric momenta Pi. They are
canonical variables too, and using them the Hamiltonian
is split as

HðQ;PÞ ¼ HKep þH int þH�, (5)

where

HKep ¼
XN

i¼1

jPij
2

2mi

�
Gmim0

jQij

� �
, (6)
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H int ¼ �G
XN�1
i¼1

XN

j¼iþ1

mimj

jQi �Qjj
, (7)

H� ¼
1

2m0

XN

i¼1

Pi

�����
�����
2

. (8)

Here, a third term H� arises in the Hamiltonian, due to the
barycentric momentum of the central body. For this
division of the Hamiltonian a second-order symplectic
integrator can be easily found. Its action over the temporal
evolution of the phase-space canonical coordinates u, for a
time t is

uðtÞ ¼ etĤint=2etĤ�=2etĤKepetĤ�=2etĤint=2uð0Þ, (9)

where Ĥ � ½ ;H� is a differential linear operator defined
by the Poisson bracket with the relevant part of the
Hamiltonian. Examining the way like each Hamiltonian
part performs, we can describe the integration algorithm as
follows: (i) the coordinates remain fixed, and each body
receives an impulse to its momentum owing to the other
bodies (but not from the central body) during an interval
t=2, (ii) the momenta remain fixed, and each body takes a
shift in position by an amount ðt=2m0Þ

PN
i¼1Pi, (iii) the

bodies move on an unperturbed Keplerian orbit for t, (iv)
as step (ii), (v) as step (i).

This integrator scheme has two remarkable advantages
regarding the classical leapfrog integrator. First, the
Keplerian motion given by the action of HKep has a well-
known analytic solution. Thereby, the advance of each
body in a time step is performed with a minimum
computational effort. Moreover, contrary to standard
MSV methods, all bodies evolve around the same central
body, with the same central mass.

Second, if all the bodies remain in well-separated orbits,
it will happen jH intj5jHKepj, jH�j5jHKepj by the ratio of
the body’s mass to the central mass, � ¼

PN
i¼1mi=m0.

Therefore, one step of the integrator has a truncation error
Oð�t3Þ instead of Oðt3Þ as a leapfrog integrator. This allows
us, for the same precision, to use a longer time step by a
factor ��1=3 compared with a leapfrog method. This
reduces the computational time.

However, this advantage remains valid only if close
encounters between the ‘‘small’’ bodies do not take place. If
two bodies have a close encounter, the mutual distance will
become small and then the corresponding term in H int

becomes comparable in size to HKep. This increases the
error per step from Oðt3Þ to OðtÞ. In order to maintain the
accuracy the size of the time-step might be reduced.
However, in a symplectic integrator a change of the time-
step destroys its symplectic nature.

2.2. Resolving close encounters

It is not a trivial task to develop a symplectic integrator
that accurately predicts and integrate close encounters. The
standard MSV methods, using Jacobian coordinates,

cannot handle arbitrarily close encounters. One solution
is the one given by Duncan et al. (1998) in their SYMBA

integrator. This code is a multiple time-step symplectic
integrator which employs democratic heliocentric vari-
ables, and it splits up the perturbation term, giving to each
part a separated fixed step size where weaker perturbations
have bigger step sizes. This integrator, although truly
symplectic, is troublesome to implement and to modify for
our purpose.
Another way to maintain in the split Hamiltonian, H int

smaller than HKep, is by transferring the conflictive term
from the first to the second part, during each close
encounter. However, this naı̈ve exchange at each close
encounter eventually destroys the symplectic nature of the
integrator. In order to make the integrator truly symplec-
tic, it never has to transfer the terms between the different
parts of the Hamiltonian. The correct procedure is
described by Chambers (1999). He rewrites the interaction
terms in HKep and H int introducing a changeover function K

which form is such as it tends to one when the mutual
distance jQi �Qjj among the bodies i and j is large, while
tending to zero when this distance is small:

HKep ¼
XN

i¼1

jPij
2

2mi

�
Gmim0

jQij

� �

� G
XN�1
i¼1

XN

j¼iþ1

mimj

jQi �Qjj
½1� KðjQi �QjjÞ�,

H int ¼ �G
XN�1
i¼1

XN

j¼iþ1

mimj

jQi �Qjj
KðjQi �QjjÞ: ð10Þ

This form for K ensures H int remains smaller than HKep,
even during a close encounter. In the absence of
encounters, HKep can be integrated analytically as before.
On another hand, when two bodies have a close encounter
we have a three body problem (the central body and the
bodies in close encounters). This situation is no longer
integrable analytically, but in the practice, the equations
can be integrated numerically with a traditional integrator
(typically, we employ the Bulirsch–Stoer method). This
contribution non-symplectic in the above scheme gives to
the resulting integrator the category of hybrid.

2.3. A tree code

The direct evaluation of the inter-particle interaction is
time-consuming due to the fact that it scales as N2. A way
to speedup the computation is to employ a tree code

because it scales as N logðNÞ.
An octal tree code specifically designed for planetesimal

dynamics was implemented by Brunini and Viturro (2003).
This code effectively predicts and integrates close encoun-
ters. However, the leapfrog algorithm is chosen to integrate
the equations of motion and therefore it does not take
advantage of the fact the bodies evolve mostly under a
central potential. Our implementation is a modified version
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of the Brunini and Viturro code, which is based itself on the
basic algorithm described by Barnes and Hut (1986, 1989),
Hernquist (1987), Barnes (1995) and Pfalzner and Gibbon
(1996). A brief description of the tree code is as follows.

The first step in the tree code is the construction of the
tree structure. This construction begins by creating a cube
which contains the entire system of bodies and identifying
this cube with the largest cell (called the root) of the tree.
Then, this cell is subdivided into eight equal cubic subcells,
and each one of these subcells are also recursively
subdivided, until the ending cells (the leaves of tree)
contain either one body or it is empty. With this spatial
division of the system, the total masses, center-of-mass
coordinates and quadrupoles moments are calculated for
each cell to rove the tree using fast recursive formulae for
the calculus. This provides a second-order approach to the
gravitational potential of the system to be used in the
computing of the interaction amongst the bodies.

The interaction system computing on a body starts
traversing the tree from the root to the leaves. A cell will
contribute as a whole to this interaction if it is far enough
from the body. Otherwise, the process is repeated over the
descendant subcells. The criterion to decide when a cell
must be subdivide or not is related to the aperture angle

defined as the ratio between the size of the cell and its
distance from the body in consideration. In the simplest
case a cell is subdivided when the aperture angle is greater
than a certain threshold value (typically, in the range
0.5–0.7).

2.4. Detecting close encounters

As a bonus, the tree structure may be used to determine
the particles in close encounters. As part of the process of
integration, the code requires to know those particles in
close encounters. A close encounter condition is defined as
follows. For each particle i, we compute its Hill’s radius,
defined as

RHi
¼ ri

mi

3m0

� �1=3

, (11)

where ri is the heliocentric distance of the particle and mi its
mass. The particles in close encounter with i are the
nearest-neighbors whose distance to i satisfies the condition

rijomaxðaRHi
; aRHj

Þ, (12)

where a is a proportionality factor. We adopted a ¼ 3
according to others authors (Levison and Duncan, 1994;
Duncan et al., 1998; Chambers, 1999; Brunini and Melita,
2002).

Hence, the problem requires an efficient method for the
nearest-neighbor searching. A direct procedure, based on
the computing of the mutual distance between pairs, is
time-consuming. A better algorithm may be constructed
using the tree structure. Our code implements the
algorithm employed by Brunini and Viturro (2003), which
is based on the same ideas described by Hernquist and

Katz (1989). In order to search for neighbors at a distance
rph from a body, it is put in a cube of size 2h (the ‘‘search
cube’’). Starting with the root cell, the tree is traversed
through in a similar manner as in the computation of the
gravitational interactions. The question is if the ‘‘search
cube’’ overlaps the cell that is being examined. If it does not
overlap, then the branch of tree behind such cell will not
contain nearest-neighbor and the search of it will be
stopped. Otherwise, if the overlapping occurs, the cell will
be divided into subcells and we will continue the search on
the next hierarchy level of such branch. In the case that the
cell that overlaps the ‘‘search cube’’ is a leave (this means, a
body) it must be verified that such body really lie along the
distance h. If this is the case, the body is added to the list of
nearest-neighbors. This procedure is repeated over each
tree branch.

2.5. Testing the code

We have performed a series of numerical experiments in
order to test the new code. Essentially they are the same we
have already presented in Brunini and Viturro (2003) and
therefore we consider redundant to include them here. We
have obtained excellent agreement with the previous
experiments, even using a step size considerably larger.
This is because of the hybrid nature of our symplectic code,
which, in contrast to the previous version, exploit the fact
that most of the motion is performed in the central,
Keplerian potential. The details of these tests are available
in the web site indicated at the end of this paper.

3. On the number of particles in planet–disk numerical

simulations

A remarkable point in planet–disk numerical simulations
is the number of particles used to describe the disk of
planetesimals. As the planet’s mass M of a simulations
decreases, more particles are required to obtain reliable
results for a given disk mass. Thus, if the disk does not
contain enough particles, the planet–disk interaction will
be dominated by the strong interaction at close encounter
between the planet and unrealistic massive ‘‘particles’’.
We have designed a series of numerical simulations in

order to determine which is the right number of particles
for the same scenario described in Cionco and Brunini
(2002). Our model consists in one planet of mass M

immersed in a disk of N equal mass planetesimals, each one
of mass m, orbiting around the Sun. According to Wahde
et al. (1996), the self-interaction between the planetesimals
was not considered. This assumption is also supported by
the results of Ida and Makino (1993). They have shown
that the mutual interaction between planetesimals is
weaker than the effect due to the scattering by the
protoplanet in the case M=m4102. In all our simulations
we have M=mb102. Planet–planetesimal interaction was
fully accounted for. Collisions with the planet were treated
as perfect accretion. All those planetesimal reaching a
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hyperbolic orbit were eliminated from the system. In our
simulations there is no particle that hits the Sun, indeed an
insignificant number (p2) reaches a heliocentric distance
less than 1AU. The simulations were carried out for five
different planet masses (10, 8, 6, 4 and 2M�), placed
initially at 5AU on a circular orbit. In all the simulations
we have used the same planetesimal disk with constant
surface density of 10 g cm�2 consistent with a model of
minimum mass solar nebula ð0:01M�Þ. In all our simula-
tions, the initial orbital eccentricities and inclinations of the
particles were generated at random with uniform prob-
ability distribution in the range ð025Þ � 10�3. The inner
disk limit was setted at 2AU, and the outer limit at
12.5AU, thus covering all the relevant resonances. The
time step of the integrations was t ¼ 0:1 yr ðp5� 10�2 of
the smallest orbital period in each simulation). As a result
of some pre-tests, this step size allows us a reasonable
quicker computational time and also a suitable close
encounter detection.

One of the most interesting results in simulations of
planet–disk interaction, is the variation of the planetary
semi-major axis, which determines the migration speed and
the torque of the disk on the planet (Cionco and Brunini,
2002). As it was shown by Cionco and Brunini (2002), for
the simulated disk, the planet–disk interaction should
result in an inward migration of the planet, with a
migration rate compatible with the predictions of the
linear theory of density waves, as representative of the
dynamical friction in disks. With the aim of checking the
sensitivity of the results with respect to the number N of
planetesimals, we have run simulations with the same disk
mass, but with different number of particles in the range of
1000–250 000, for each planetary mass M. In total we have
run 16 simulations for five planet masses.

When the ‘‘granularity’’, defined by the relation M=m, is
bigger than a critical value, we expect that the effect of
resonant dynamical friction among the particle disk and
the planet, is completely superseded by the effect of the
close encounters, which drive us toward a wrong model.
When the number of particles is increased, the noise of
granularity is reduced and the action of dynamical friction
becomes relevant, obtaining an appropriate migration rate.
An example of the this situation is shown in Fig. 1. This
figure shows the temporal evolution of the semi-major axis
for the case of a planet with 2M� initially placed at 5AU in
a simulated disk with three different initial number N of
planetesimals. In the first run, N ¼ 50 000, as a result the
mass of each particle is m ¼ 0:00327M� (and M=m ’ 610).
In the second run, N ¼ 150 000 and m ¼ 0:00164M�

(M=m ’ 1830). In the last run, N ¼ 250 000, m ¼

0:00065M� (M=m ’ 3000). The above results show clearly
that the disk models of the first and second run are not
reliable while the third run shows a migration rate
compatible with the scenario of our model.

In order to verify that the wrong results are a
consequence of a poor modeling of the dynamical friction,
we use a statistical description of planetesimal orbits

(Stewart and Wetherill, 1988), the so-called ‘‘particle-in-
a-box’’ approach. This model conceives the planetesimals
in nearly co-planar, nearly circular concentric orbits. The
mutual gravitational interactions perturb this orbits, drive
to small non-negligible values of their eccentricities and
inclinations. The statistical method ignores the individual
orbits and instead of uses a probability density to describe
the distribution of orbital elements in the planetesimal
population. Assuming the orbital perihelia and longitudes
of the node are randomly oriented, the eccentricity and
inclination distribution of the population can be described
by a single variable, the mean square random velocity, v,
with respect to a circular zero-inclination reference orbit

v ¼
5

8
e2 þ

1

2
i2

� �1=2

vK , (13)

where vK is the local circular Keplerian velocity, e is the
eccentricity and i is the inclination (measured in radians).
Several mechanisms can affect the random velocity
evolution of the population. A single equation that
describes the evolution of a test body of mass M interacting
with a population of bodies of mass m was given by
Stewart and Wetherill (1988). In our gas-free disk of
particles, this equation splits into four terms. The rate of
change in V , the rms velocity of body of mass M, is
given by

dV

dt
¼ Aþ Bþ C þD, (14)

where the four terms on the right-hand side are:

1. A viscous stirring caused by gravitational encounters,

A / ðM þmÞV 2 þ ðmv2 �MV 2Þ. (15)

2. B viscous stirring caused by inelastic collisions,

B / mðV2 � v2Þ þ 2MV2. (16)
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3. C velocity damping due to energy dissipated by inelastic
collision,

C / �½mðV 2 � v2Þ þ 2MV 2�. (17)

4. D energy transfer from large bodies to small ones via
dynamical friction,

D / mv2 �MV 2. (18)

The proportional factors can be found, for example, in
Lissauer and Stewart (1993). The dynamical friction term
(and the second term in A) tends to drive the system toward
an equipartion of random kinetic energy, where the
random velocities of the smaller bodies increase while the
random velocities of the larger bodies decrease.

The particle-in-a-box approach described above only
works well locally. Therefore, we have carried out the
computation of the four terms in the rate of change of V

taken only the planetesimals within an annulus of width
3RH centered at the distance of the protoplanet. The results
show the C term does not strongly affect the velocity
evolution. Thus the Aþ B and D terms lead the random
velocity evolution. If the dynamical friction must be
significant, the D term must take control over the Aþ B

term and we expect the jAþ Bj=jDj ratio stays lower than
one time along. Fig. 2 shows the relative contribution of
Aþ B and D terms on the three runs and we can confirm
that just only in the third run the action of dynamical
friction is relevant. In fact, for the first and second run, the
condition jAþ Bj4jDj is satisfied by 12% of times, while
only by 4% in the third run.

Table 1 and Fig. 3 present the planetesimals number
needed to obtain reliable results in our simulations. As we
mention above, for our particular disk conditions, inward
planetary migration is expected and, therefore, the
dynamical friction term should be

mv2 �MV 2o0. (19)

In a planetesimal disk, we can assume that there is a
mass dependence of random velocities of the form

(Safronov, 1969)

v ¼
m

M

� �q

V , (20)

where the exponent q is negative, and q ¼ �1
2
if energy

equipartition is completely achieved (Wetherill and
Stewart, 1989). Combining these two last equations, and
using the fact that the disks of all our simulations all have
the same mass, we found that the number of planetesimals
should be

N4M0=M, (21)

where M0 is a proportionality constant.We observe in
Fig. 3, that, in our simulations, the necessary planetesimal
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Table 1

Reliable simulations for the runs

M N m _a

10 20 000 0.00830 �3:22
8 50 000 0.00327 �5:42
6 50 000 0.00327 �7:72
4 100 000 0.00082 �5:35
2 250 000 0.00065 �1:04

The mass M of the planet and the mass m of individual disk particles are

expressed in Earth mass. The migration rate _a is expressed in units of

10�6 AUyr�1.
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Fig. 3. The number of particles that give reliable results for different
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same for all the simulations (see text).
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number to obtain suitable results scales as M�1:3, which is
compatible with the prediction above. As it is evident,
the exact value of q is not relevant to determine the
scale relation between the number of planetesimals
in a given disk and the mass of the planet to get a
reasonable characterization of the dynamical friction on
the planet.

4. Conclusions

In this paper, we have presented a new improved version
of a tree code for planetesimal dynamics, which is
completely symplectic and exploit the fact that in a
planetesimal disk, most of the motion is performed in a
central potential. The performance of the code has allowed
us to perform simulations with very large number of
planetesimals, and to explore the importance of using
many particles in planet–disk simulations. We have shown
that the use of less planetesimals than a certain number
could get unreliable results. These results are potentially
dangerous, because, as it is shown in Fig. 1, the semi-major
axis of the planet could experience a smooth migration in
the wrong direction, even if the dynamical interaction with
the disk is poorly modeled. Although our results have been
obtained with a particular disk structure (constant surface
density), the scale relation would be valid in more general
cases. Therefore, a possible strategy to use in a simulation
with a given disk structure, is to perform a series of test
simulations with a massive planet of mass M0, where a
small number N0 of planetesimals is required (and there-
fore representing a relative fast numerical experiment).
Once the minimum N0 furnishing reliable migration
direction and rate is obtained, we could determine the
number of particles N that should be used in the simulation
of interest, with the given planetary mass M, through the
scaling relation

NXN0
M0

M

� �1:3

. (22)

The DAEDALUS integrator: The symplectic integrator
described in this paper, named DAEDALUS, is publicly
available in the Grupo de Ciencias Planetarias site of the
Facultad de Ciencias Astronómicas y Geofı́sicas, Universi-

dad Nacional de La Plata, at the address: http://
gcp.fcaglp.unlp.edu.ar. Copies of the source code,
instructions for how to compile and run the program, and
example integrations can be obtained here.
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Barnes, J.E., 1995. In: Muñoż-Tuñón, C., Sánchez, F. (Eds.), The

Formation of Galaxies. Cambridge University Press, Cambridge p. 399.

Barnes, J.E., Hut, P., 1986. A hierarchical OðN logNÞ force-calculation

algorithm. Nature 324, 446–449.

Barnes, J.E., Hut, P., 1989. Error analysis of a tree code. Astrophys. J.

Suppl. 70, 389–417.

Brunini, A., Melita, M.D., 2002. The existence of a planet beyond 50AU

and the orbital distribution of the classical Edgeworth–Kuiper–belt

objects. Icarus 160, 32–43.

Brunini, A., Viturro, H.R., 2003. A tree code for planetesimal dynamics:

comparison with a hybrid direct code. Mon. Not. R. Astron. Soc. 346,

924–932.

Chambers, J.E., 1999. A hybrid symplectic integrator that permits close

encounters between massive bodies. Mon. Not. R. Astron. Soc. 304,

793–799.

Cionco, R.G., Brunini, A., 2002. Orbital migrations in planetesimal discs:

N-body simulations and the resonant dynamical friction. Mon. Not.

R. Astron. Soc. 334, 77–86.

Duncan, M.J., Levison, H.F., Lee, M.H., 1998. A multiple time step

symplectic algorithm for integrating close encounters. Astron. J. 116,

2067–2077.

Hernquist, L., 1987. Performance characteristics of tree codes. Astrophys.

J. Suppl. 64, 715–734.

Hernquist, L., Katz, N., 1989. TREESPH—a unification of SPH with the

hierarchical tree method. Astrophys. J. Suppl. 70, 419–446.

Ida, S., Makino, J., 1992. N-body simulation of gravitational interaction

between planetesimals and a protoplanet. II—Dynamical friction.

Icarus 98, 28–37.

Ida, S., Makino, J., 1993. Scattering of planetesimals by a protoplanet—

slowing down of runaway growth. Icarus 106, 210–227.

Levison, H.F., Duncan, M.J., 1994. The long-term dynamical behavior of

short-period comets. Icarus 108, 18–36.

Lissauer, J.J., Stewart, G.R., 1993. Growth of planets from planetesimals. In:

Levy, E.H., Lunine, J.I. (Eds.), Protostars and Planets III, pp. 1061–1088.

Pfalzner, S., Gibbon, P., 1996. Many-Body Tree Methods in Physics.

Cambridge University Press, Cambridge, MA.

Safronov, V.S., 1969. Evolution of the protoplanetary cloud and

formation of the Earth and the Planets, NASA TTF-677.

Stewart, G.R., Wetherill, G.W., 1988. Evolution of planetesimal velocities.

Icarus 74, 542–553.

Wahde, M., Donner, K.J., Sundelius, B., 1996. Dynamical friction in disc

galaxies with non-zero velocity dispersion. Mon. Not. R. Astron. Soc.

281, 1165–1182.

Wetherill, G.W., Stewart, G.R., 1989. Accumulation of a swarm of small

planetesimals. Icarus 77, 330–357.

Wisdom, J., Holman, M., 1992. Symplectic maps for the N-body problem.

Astron. J. 102, 1528–1538.

ARTICLE IN PRESS
A. Brunini et al. / Planetary and Space Science 55 (2007) 2121–2127 2127


