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Assessing forage quantity and quality through remote sensing can facilitate grassland
and pasture management. However, the high spatial and temporal variability of canopy
conditions may limit the predictive accuracy of models based on reflectance measure-
ments. The objective of this work was to develop this type of models, and to challenge
their capacity to predict plant properties under a wide range of environmental condi-
tions. We manipulated Paspalum dilatatum canopies through different stress treatments
(flooding, drought, nutrient availability, and control) and by artificially varying the
amount of senescent biomass. We measured canopy reflectance and constructed simple
models, based on either normalized vegetation indices or a few selected wavebands, to
estimate biomass and two variables related to forage quality: proportion of photosyn-
thetic vegetation and biomass C:N ratio. General models satisfactorily predicted plant
properties for the whole set of environmental conditions, but failed under specific
conditions such as drought (for estimates of plant biomass), fertilization (for estimates
of C:N ratio), and different levels of senescent tillers (for estimates of the proportion of
photosynthetic vegetation). Where general models failed, specific models, based on
different bands, achieved satisfactory accuracy. The general models performed better
when based on a few selected bands than when based on two-band vegetation indices,
having better accuracy (higher R2) and parsimony (lower BIC). However specific
models performed similarly for both approaches (similar R2 and BIC). These results
indicate that these plant properties can be predicted from reflectance information under
a broad range of conditions, but not for some particular conditions, where ancillary
data or more complex models are probably needed to increase predictive accuracy.

1. Introduction

Farmers need near real-time information of forage quality and quantity at the paddock
scale to properly manage forage resources (Diaz-Solis et al. 2006; Grigera, Oesterheld,
and Pacin 2007; Phillips et al. 2009). A cattle management system in which forage
allowance (kg forage/kg body weight) is regulated on a seasonal basis can improve
animal performance and forage condition (Soca and Orcasberro 1992; Jochims et al.
2013). It is easy to find the divisor of this ratio, the stocking rate, but it is difficult to
determine the dividend, forage biomass, due to its variable nature in both time and space.
In addition, forage biomass may widely vary in its quality (i.e. in its capacity to be
consumed, assimilated, and transformed into animal products (Huston and Pinchak
1991)). Estimations of forage quantity and quality based on remote sensing at moderate
spatial resolution could capture this variation and serve as a tool for decision-making
(Phillips et al. 2009).
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However, the predictive capacity of models assessing plant properties through canopy
reflectance is often limited to a set of conditions which limits its utilization for decision-
making. Canopy reflectance measured by remote sensors integrates physical and biologi-
cal process occurring on the ground (Roberts et al. 2004). Due to the convergence among
plant traits (Grime 1977), many plant properties may be confidently estimated by a few
absorption features. For example, the normalized difference vegetation index (Tucker
1977) can estimate leaf area index (Thenkabail, Smith, and De Pauw 2000), chlorophyll
concentration (Reddy et al. 2001), leaf biomass (Freitas, Mello, and Cruz 2005), nitrogen
deficiency (Peñuelas et al. 1994), and vegetation cover (Reddy et al. 2001), among others.
However, the ability of canopy reflectance to estimate plant properties is often context
dependent, which may hinder the ability to estimate a given plant property under other
environmental conditions than those for which relations between reflectance and the plant
property were tested (Ollinger 2011). It is then necessary to identify specific relations
between plant and spectral properties to develop reliable models, capable of being used
under a wide range of conditions.

Since biomass and forage quality of grasslands and pastures are highly variable in
both space and time, a single model may not be applicable to a wide range of field
conditions (Jackson and Huete 1991; Kokaly and Clark 1999). Variation in space is due to
abiotic factors such as soil characteristics, topography, aspect, water and nutrient avail-
ability, and the interaction with grazer preferences, conditioned by landscape character-
istics and human intervention (fences, distance to water). Variation in time is mainly
caused by grazing events, phenological changes, and weather conditions. Biomass and
forage quality and their variation can be studied using manipulative experiments, field
studies, and simulation models. Typically, field studies can explore a narrower range of
canopy conditions than manipulative experiments or simulation models. At the landscape
level there is some empirical evidence that forage quality and quantity estimations are
unaffected by water stress, seasonal variance, and grazing (Beeri et al. 2007; Phillips,
Beeri, and Liebig 2006; Cho and Skidmore 2009). In addition, simulation models allow
the identification of bands related to forage properties and insensitive to changes in solar
zenith angle (Cho, Skidmore, and Atzberger 2008). However, we found no manipulative
experiments that explore a wide range of canopy and environmental conditions. It is
important to identify those environmental conditions that affect the relationship between
spectral reflectance and plant properties, to determine the extent and limitations of model
estimates of forage quantity and quality based on reflectance.

The plant–light interactions that allow one to infer the quantity and quality of plant
biomass are scale dependent, with an increasing complexity from individual leaf to
canopy (Ollinger 2011). At the leaf scale, spectra for all types of vegetation share some
basic features. Green leaves strongly absorb in the visible region (400–700 nm), due to
pigment composition, and reflect in the near-infrared region (700–1300 nm), due to
photon scattering in the mesophyll. Another common feature is the strong water absorp-
tion around 1450 and 1950 nm (Asner 1998), which may obscure other minor absorption
features related with the concentration of organic compounds (i.e. cellulose, lignin,
protein, waxes, oil, sugar, starch) that partially overlap with the region of water absorption
(SWIR I 1300–1900 nm and SWIR II 1900–2500 nm; Curran 1989; Elvidge 1990).
Finally, individual green and senescent leaves differentially absorb radiation in the 400–
800 nm region (Asner 1998). At the canopy scale, the amount and distribution of
senescent and green leaf area and soil cover are the dominant controls of reflectance
(Asner 1998). These basic features are useful for inferring different canopy properties. For
example, bands in the green region (540–560 nm) and in the red edge (the shift between
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visible and near-infrared), where chlorophyll absorption is low, are useful in the detection
of chlorophyll concentration (Filella and Peñuelas 1994; Hatfield et al. 2008), while a
minor absorption feature related to cellulose (a C–H bond stretch overtone at 1722 nm)
allows the estimation of biomass (Wang et al. 2011).

Two commonly used methods to assess plant properties through remote sensing are
the identification of two-band vegetation indices and band selection procedures based on
multivariate analysis. The normalized vegetation index, the ratio between the difference
and the sum of the reflectance of two bands, was used to estimate biomass quantity
(Gamon et al. 1995; Thenkabail, Smith, and De Pauw 2000) and quality (Phillips, Beeri,
and Liebig 2006). Partial least squares analysis is a multivariate technique that facilitates
processing of the high dimensionality and collinearity of hyperspectral data (Carrascal,
Galván, and Gordo 2009). The combination of full-spectrum, partial least squares models
and band selection techniques eliminates redundant information and facilitates interpreta-
tion of the selected bands from a biophysical approach (Clevers et al. 2007; Darvishzadeh
et al. 2008; Kawamura et al. 2008, 2010).

The objective of this work was to develop models to estimate forage quantity and
quality from reflectance measurements, and challenge their predictive capacity under a
wide range of environmental conditions. We manipulated canopies of Paspalum dilata-
tum, a native perennial grass from the Pampean region in Argentina, to obtain a wide
range of variation in forage quantity and quality. Canopy variations were generated by
different stress treatments (flooding, drought, nutrient availability, and control) and by
artificially varying the amount of senescent biomass. We constructed simple models,
based on either normalized vegetation indices or a few selected wavebands, to estimate
biomass and two variables related with quality: proportion of photosynthetic vegetation
and C:N ratio. We evaluated: (1) the predictive accuracy of general models constructed for
the whole dataset to include a wide range of environmental conditions; (2) the systematic
error associated with particular conditions given by treatments; and (3) the need for
generation of specific models under particular conditions to improve model accuracy.

2. Material and methods

2.1. Experimental set-up

We carried out an experiment in a controlled-condition glasshouse at the Faculty of
Agronomy, University of Buenos Aires (lat. 34° 35′ S, long. 58° 28′ W). The experiment
produced a wide variation in the quantity and quality of plant biomass and the proportion
of senescent biomass. Paspalum dilatatum specimens were collected from natural grass-
lands of the Flooding Pampa region, where this species is a dominant and valuable forage.
Plants were propagated vegetatively to yield 160 individuals for the experiment. Each
individual plant was placed in a pot filled with 50% natural grassland soil and 50% sand
to improve soil permeability (a total of 2413 cm3 of substrate). The plants were randomly
assigned to one of four environmental treatments: flooding, fertilization, drought, or
control (40 plants per treatment). Flooded plants were watered daily to maintain 3 cm
of water above the soil surface. Fertilized plants received an initial dose of 1.2 g of triple
superphosphate and 1 g of urea. Pots of fertilized, control, and drought treatments were
weighed and watered daily. Based on pot weight and substrate texture, the two former
treatments received water to attain field capacity, while the drought treatment was watered
to reach 50% field capacity. In order to maximize the variation in canopy conditions,
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within each treatment, half of the plants were left intact and half were initially pruned to a
height of 6 cm. The experiment started on 17 November and ended on 17 December 2008.

Measurements of spectral and plant properties were conducted on four dates (17
November and 1, 10, and 17 December). In order to relate biomass and C:N ratio to
spectral properties on each date, the spectral reflectances of 10 individual pots of each
treatment (5 clipped and 5 unclipped) were measured (4 dates × 4 treatments × 10
replicates, n = 160). Coverage of each individual plant was around 500 cm2 (37% of
the measured area – see below). In order to relate the mass proportion of photosynthetic
vegetation to spectral properties on each date, the spectral radiances of three replicates of
four groups of three control pots combining pruned and unpruned pots (0, 1, 2, and 3
clipped pots per group) were measured under three levels of senescent biomass. The three
levels of senescent biomass were generated by manually adding to each pot 0, 1, or 3
senescent tillers of known mass mimicking their natural position (4 dates × 3 levels of
extra senescent biomass × 4 groups of pots × 3 replicates, n = 144). After spectral
measurement, all pots were harvested in preparation for measurement of a suit of plant
properties (see Section 2.3).

2.2. Spectral reflectance

Spectral radiance was measured using a portable spectroradiometer (Field-Spec Pro FR;
Analytical Spectral Devices [ASD], Boulder, CO, USA) with a 25° field of view and a
spectral sampling of 1.4 nm in the 350–1000 nm range and 2 nm in the 1000–2500 nm
range. Spectral resolution is 3 nm in the 350–1000 nm range and 10 nm in the 1000–
2500 nm range, calculated to 1 nm resolution wavelength for output data using a cubic
spline interpolation function in ASD software (RS2 for Windows). A spectralon reference
panel (Labsphere Inc.) was used as white reference to calculate reflectance.

In order to control for atmospheric, illumination, and background conditions, mea-
surements were made within a box (150 cm height × 50 cm width) whose interior was
painted black (matt black No 63476, Krylon, Sherwin Williams). The sensor was inside
the box, 95 cm above the base of the canopy, producing a viewing area of diameter
41.5 cm. Around and above the sensor were placed four 150 W tungsten lamps (Philips
Spotline R95, Buenos Aires, Argentina). A black-painted tray covered the pot soil and the
space between pots, with the plant canopy emerging above the tray through a hole. In this
way, only the canopy was measured while the background was kept constant. White
standards with the reference panel were taken inside the black box every 10 minutes.

2.3. Plant properties

On each date, all measured plants were harvested. Above-ground plant biomass was
separated into green blades, senescent blades, green sheaths, senescent sheaths, and
inflorescences (not separated into green and senescent), and each component was dried
and weighed. A sub-sample of each plant component was ground using a mortar grinder
and then analysed for total C and N by dry combustion using a LECO CN analyser
(LECO, Corp., St. Joseph, MI). Green and senescent materials were analysed separately.
Total biomass was computed as the sum of all plant components. The mass proportion of
photosynthetic vegetation was estimated as the ratio between green and total
(green + senescent) blades and sheaths, considering both natural and added biomass.
C:N ratio was calculated as the ratio between the mass concentration of C and N. As
expected, the three plant properties varied widely across dates and treatments (Table 1).
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2.4. Spectral data analysis

Prior to the analysis, spectral data were restricted to the 400–2400 nm range because of the
high spectral noise outside that range. Additionally, the remaining bands were averaged at
5 nm wavelength intervals in order to reduce the size of the data set (400 bands). Then, we
used empirical regression analysis to explain the variation in the three plant properties based
on these processed spectra. When working with hyperspectral data, bands often exceed the
number of observations, are highly correlated, and contain redundant information. As a
consequence, overfitting and collinearity may limit the calculation and interpretation of the
linear regression equations (Carrascal, Galván, and Gordo 2009; Kawamura et al. 2008).
Additionally, as we were not only interested in getting a good predictive model, but also in
assessing whether the bands included in the models were related to known biophysical
properties, we tried to keep as few bands as possible. Thus, we estimated plant properties
through linear regression models based on either two-band vegetation indices (VIs) or small
sets of reflectance bands obtained by combining partial least squares models with waveband
selection (multiband). For both approaches, we first selected one from many potential
vegetation indices or sets of bands, and then evaluated the predictive accuracy of models
developed with the selected indices or bands by a bootstrap procedure. Details on band
selection and predictive accuracy testing are given below.

2.4.1. Band selection

For both approaches (VI and multiband), we selected the combination of wavebands with
the minimum predictive error. Predictive error was assessed by the root mean squared
difference (RMSD) from leave-one-out cross-validation:

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ŷci � ycið Þ2
n

s
; (1)

Table 1. Descriptive statistics for plant biomass (B), C:N ratio, and the proportion of photosyn-
thetic vegetation (PV) for the whole data set (All) and for each treatment separately.

Statistical descriptor

Plant property Treatment Minimum Mean Maximum SD CV

B (gm−2) All 34 99 262 47 0.47
Control 38 88 172 31 0.35
Flooded 39 100 180 34 0.34
Nitrogen 38 141 262 60 0.43
Drought 34 68 105 19 0.28

C:N ratio All 18 51 98 18 0.35
Control 39 58 83 12 0.2
Flooded 38 53 71 9 0.17
Nitrogen 18 29 45 9 0.32
Drought 45 66 98 17 0.26

PV All 0.36 0.61 0.91 0.15 0.24
0 0.66 0.77 0.91 0.06 0.08
1 0.52 0.62 0.75 0.06 0.09
3 0.36 0.44 0.51 0.04 0.09

Note: SD, standard deviation; CV, coefficient of variation. The number of observations was 160 for B and C:N,
and 144 for PV.
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where ŷ and y are the cross-validated predicted and measured values for the variables of
interest, respectively, and n is the number of observations.

For models based on vegetation indices, the RMSD of all combinations of two out of
400 bands was compared (similarly to Mutanga and Skidmore 2004). For the multiband
models, to better deal with the random component of the data, the selection procedure was
more complex and consisted of three steps. The first step was a partial least squares model
with stepwise waveband selection (similar to Kawamura et al. 2008) repeated 500 times
for data sets randomly re-sampled with replacement. The partial least squares equation
was as follows:

Y ¼ βXþ e; (2)

where Y is a vector of the plant property observations, X is a matrix of reflectance values
per spectral band, β is the matrix of weighted coefficients and ε is the error vector. A large
absolute weighted value indicates an important X variable and thus, an informative band.
The β matrix is calculated from the partial least square loadings of the model with the
optimum number of latent variables. The minimum RMSD from leave-one-out cross-
validation was used to select the optimum number of latent variables to be included in the
regression models. Waveband selection was carried out stepwise, from the model with 400
bands to that with one band, by removing the band with the lowest β coefficient in each
step (for more details see Kawamura et al. 2008). Because the re-sampling procedure has
a random component, the band importance ranking (order of elimination) changed
between iterations. We considered important those bands that appeared more often than
expected by chance (p < 0.01) within the five final wavebands. Since the number of bands
selected with this procedure was high (between 30 and 50), we performed a second
selection step by eliminating bands that were correlated. The second step consisted of a
hierarchical clustering based on Euclidean distance. We arranged correlated bands into six
to eight groups and then calculated all the possible multiple linear regression models using
one band from each group. The selected bands in this step were those included in the
model with the lower RMSD. The third step for selecting wavebands consisted of using
the Bayesian information criterion (BIC, Schwarz 1978) to select the best multiple
regression model with those bands selected in step 2. The BIC is a criterion for model
selection that penalizes models by their number of parameters to reduce over-fitting. The
penalty value is higher in the BIC than in the Akaike criterion. The final number of bands
in multiband models ranged between 4 and 7.

To test our band selection procedure, we compared the predictive accuracy between
multiband models and the full spectrum partial least squared models (the initial models
before band selection). RMSD did not differ between models, indicating that the band
selection procedure gained simplicity at no significant cost to prediction ability.

2.4.2. Model predictive ability evaluation

A bootstrap procedure (similar to Mutanga, Skidmore, and Prins 2004) was applied to test
the predictive accuracy and bias of the two approaches (VI and multiband). First, the full
dataset, including data from all treatments, was divided into calibration and evaluation
subsets (n = 1000 iterations). In order to evaluate the predictive accuracy of general
models for a wide range of environmental conditions, we randomly extracted 70% of the
data for calibration and 30% for evaluation from the whole data set. In order to evaluate
the predictive accuracy of specific models for particular treatments, for validation we used
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only a random subset (30%) of data from one treatment at a time. For each iteration, a
regression model from the calibration subset was used to predict the plant properties in the
evaluation subset, and some descriptors of the predictive accuracy of models were
recorded and finally averaged. The descriptors of predictive accuracy calculated were:
the coefficient of determination (R2), the root mean squared difference (RMSD), and the
relative error (RE), which provide a measure of the goodness-of-fit; and Theil’s partial
inequality coefficients and the slope and intercept of the fitted regression line between
observed and predicted values, which provide a measure of the randomness of the error.
Theil’s partial inequality coefficients (Smith and Rose 1995) distinguish between different
sources of predictive error: a proportion associated with mean differences between
observed and predicted values (Ubias), a proportion associated with the slope (β) of the
fitted model and the 1:1 line (Uβ = 1), and a proportion associated with the unexplained
variance (Ue). The descriptors were calculated as follows:

Ubias ¼ n OBS� PREð Þ2P
n obsi � preið Þ2 ; (3)

Uβ¼1 ¼ β � 1ð Þ2Pn prei � PREið Þ2P
n obsi � preið Þ2 ; (4)

Ue ¼
P

n esti � obsið Þ2P
n obsi � preið Þ2 ; (5)

where ‘obs’ and ‘pre’ are the observed and predicted values, respectively; OBS and PRE
are the means of the observed and predicted values, respectively; ‘est’ are the values
estimated from the fitted regression model; and n is the number of observations in the
validation dataset. Second, for those treatments in which general models had a significant
non-random prediction error (i.e. the slope or the intercept of the fitted regression line
between observed and predicted values differing from 1 and 0, respectively), two kinds of
specific model using only the specific treatment dataset (70% calibration and 30%
evaluation) were developed and tested: (1) models based on the same bands as the general
models (re-parameterized) and (2) models with new band selection (based on new bands).

To evaluate the performance of VI against multiband models relative to the number of
model parameters, we also used BIC (Schwarz 1978). BIC balances goodness-of-fit and
model complexity (an undesired source of variance) in a single metric.

All data handling and calculations were performed with R software (R Development
Core Team 2011), and PLS regression was analysed using the ‘pls’ package in R (Bjørn-
Helge, Wehrens, and Liland 2011).

3. Results

General models based on canopy reflectance of a few bands closely captured variations in
plant biomass, C:N ratio, and proportion of senescent biomass across a wide range of
environmental conditions (Table 2, Figure 1). However, a significant reduction in model
accuracy was observed under some specific environmental conditions. General multiband
models, which were based on four to seven bands, presented higher fit and lower
predictive error than general VI models, which were based on only two wavebands.
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The coefficient of determination (R2) of observed versus cross-validated predicted values
was 0.13–0.24 higher for multiband than VI models, while both RMSD and RE were
10–40% lower for multiband than VI models (Table 2). Among plant properties, the
proportion of photosynthetic vegetation showed a higher coefficient of determination and
lower relative error than biomass or C:N. The general models lacked systematic error, as
indicated by the high proportion of error accounted for by the unexplained variance (Ue)
and by the lack of significant departure from 0 and 1 of the intercept and the slope.
However, when these general models were evaluated only under the specific environ-
mental conditions of each treatment, the goodness-of-fit decreased in all cases and a
significant systematic error appeared in some cases: drought treatment for biomass
estimations, fertilized treatment for C:N estimations based on vegetation indices, and
most of the treatments with addition of senescent tillers when estimating the proportion of
photosynthetic biomass for both VI and multiband approaches (Figure 1).

Figure 1. Relationship between observed and predicted plant biomass, C:N ratio, and the propor-
tion of photosynthetic vegetation (PV) for multiband (a, c, and e plots) and VI (b, d, and f plots)
models. The grey, diagonal lines correspond to the 1:1 relation. Observed versus predicted models
correspond to all the data (dotted lines) and to treatments where the intercept or the slope differed
from 0 and 1, respectively (solid lines). Open circles represent the drought treatment in plant
biomass plots and the fertilized treatment in C:N ratio plots. In the PV plots, senescent tiller
treatments are represented as open circles for one tiller addition, open triangles for three-tiller
addition, and crosses for no addition.
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The spectral bands included in the general models were associated with absorption
features related to specific biochemical components and differed among plant properties
(Figure 2, Table 3). For biomass, the best multiband model was based on four bands: one
in the red (682 nm), another in the near-infrared (932 nm), and two (1547 and 1797 nm) in
the shortwave–infrared I region (1300–1900 nm, Figure 2(a)). The near-infrared band
included in the model was highly correlated with its neighbouring bands (broad band),
which indicates that other bands in the region were similarly useful, while the other three
bands were correlated with a few neighbouring bands (narrow band), indicating a discrete
absorption feature. These bands are related to photosystem II activity (682 nm) and
structural carbohydrates such as cellulose (1547 nm) and hemicellulose (1797 nm). The
best VI model combined a band in the visible (522 nm) with one in the red edge (712 nm,
Figure 2(b)), related to low chlorophyll absorption and with nitrogen and protein content,
respectively. This model was highly specific: few models (0.2% of possible models)
combining one band in the red edge with another in the visible range reached values >90%
of R2 for the best model.

In regard to C:N ratio, the best general multiband model was based on five bands
located in the red (677 nm), red edge (707 and 747 nm), and shortwave–infrared II (2187
and 2282 nm) regions (Figure 2(c)). The bands in 677 and 707 nm were narrow bands
(neighbouring bands had much lower prediction ability), while those in 747, 2187, and
2282 nm were broader bands with similar prediction ability. These bands are related to the
content of chlorophyll a and b (677 nm), nitrogen and protein (707 and 747 nm), cellulose
(2187 and 2282 nm), and starch (2187 nm). The best VI model combined two bands in the
shortwave–infrared I region (1542 and 1797 nm, Figure 2(d)), related to cellulose and
starch, and hemicellulose content, respectively. This model was also very specific: only
0.1% of all the possible VI models reached >90% of R2 for the best model.

In regard to the proportion of photosynthetic vegetation, the best general multiband
model was based on seven bands distributed across the whole spectrum apart from the
near-infrared region. There were four specific bands in the blue (467 nm), red (697 nm),
red edge (722 nm), and shortwave–infrared I (1337 nm) regions and three broad bands in
the shortwave–infrared I (1572 nm) and shortwave–infrared II (1967 and 2127 nm)
regions (Figure 2(e)). These bands are related to contents of chlorophyll a, b, and
carotenoids (467 nm), photosystem I activity (697 nm), nitrogen and protein content
(722 nm), starch (1572 and 1967 nm), and lignin (2127 nm). The best VI model combined
two bands in the shortwave–infrared I region, 1392 and 1797 nm (Figure 2(f)), related to
the content of water and hemicellulose, respectively. This model was also quite specific:
only a low proportion of other VI models (1.2% of possible models) reached >90% of R2

for the best model. These VI models combined either one band in the red edge and
another in the 1300–1700 nm region, or one band near 1400 nm and another in either the
1700 or 2200 nm region.

For those environmental conditions where general models presented significant sys-
tematic error (Figure 1), specific models based on either re-parameterization or new band
selection satisfactorily accounted for the variation in plant properties (Table 4). Re-
parameterization of the corresponding general models (i.e. same bands with different
parameters) significantly reduced the relative error and the proportion of error accounted
for by non-random components (non-random error) for all traits and treatments with the
exception of biomass under drought, where only the systematic error was reduced. New
band selection reduced the relative and the non-random error of re-parameterized models
only for the multiband approach; new VI models reduced the relative but not the non-
random error. Some of the newly selected bands for the multiband approach belonged to
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Figure 2. Selected bands for estimating plant biomass (B), C:N ratio, and the proportion of
photosynthetic vegetation (PV) by multiband (a, c, and e plots) and VI (b, d, and f plots) models.
Multiband plots show average reflectance of six increasing ranges of each plant property (thinner to
thicker lines). The limits of the six ranges are: minimum, percentiles 5, 25, 50, 75, 95, and
maximum. The black dotted line denotes the background reflectance without plants. Black vertical
lines indicate bands selected for the optimal multiband models, and grey vertical lines indicate bands
having a high correlation with selected bands (R2> 0.99). VI plots show wavebands used in the best
VI models for each plant property. Open circles indicate the combination of bands with the highest
R2, while grey areas indicate those combinations of bands having R2 > 90% (dark grey), >80%
(grey), and >70% (light grey) of the maximum R2. The R2 values are the average of 1000 cross-
validations (70% calibration, 30% evaluation).
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the broad region of bands previously included in the general models (broad bands). For
VI, the best combination of bands for the specific models coincided with those selected
for the general models (or with combinations of bands reaching similar R2 values) in only
two of the five treatments where systematic error was observed (treatments with 0 and 1
extra senescent tillers added to estimate the proportion of photosynthetic biomass). The
new bands included in these specific models were also related to known absorption
features (Table 3). For the estimation of biomass under drought, the new bands were
related to contents of protein (1752 and 2352 nm) and structural compounds (1392, 1777,
and 2352 nm). For the estimation of C:N under fertilization, the new bands were related to
photosynthesis (657 nm is related to chlorophyll content and 682 to photosystem II
activity). For the estimation of the proportion of photosynthetic biomass under different
levels of senescent biomass, the new bands were mainly spread along the visible (400–
700 nm) and shortwave–infrared I (1300–1900 nm) regions.

4. Discussion

Simple general models based on reflectance of a few bands accounted for the variation in
forage quantity and quality in single-species canopies under controlled background and
illumination conditions. However, general models were inaccurate under certain environ-
mental conditions. Biomass estimations were as accurate as in previous studies on pasture
or grassland canopies under experimental conditions (Mutanga and Skidmore 2004), and
more accurate than studies at the patch scale under field conditions (Chen et al. 2009;
Clevers et al. 2007; Kawamura et al. 2008). C:N ratio estimations were less accurate than
previous estimations performed on pastures at the landscape scale during the growing
season and under contrasting grazing and fertilization conditions (Phillips, Beeri, and
Liebig 2006). Our estimates of the proportion of photosynthetic vegetation were as
accurate as those performed on grasslands and shrublands (Serrano et al. 2000). Our
study differs from previous studies in regard to experimental variation of environmental
conditions frequently acting on grasslands and pastures. Thus, it challenged the ability of
remote sensing in estimating plant properties. The results showed that models performed
satisfactorily in general, but failed under specific conditions such as drought (for plant
biomass estimates), fertilization (for C:N ratio estimates), and different levels of senescent
tillers (for estimates of the proportion of photosynthetic vegetation). For these situations,
specific models achieved satisfactory accuracy levels. These results are in line with other
studies showing that partitioning datasets into groups of homogeneous observations
increases the accuracy of models for predicting forage quality (Mutanga, Skidmore, and
Prins 2004; Serrano, Peñuelas, and Ustin 2002).

The difference in the selected bands between general and specific models was
probably due to changes in canopy–light relationships associated with treatments.
Consequently, different absorption features explained the variation in forage quantity
and quality (Asner 1998; Curran 1989; Kokaly and Clark 1999). As previously seen for
crops (Thenkabail, Smith, and De Pauw 2000), information on plant properties was based
mainly on narrow or intermediate band widths (63% of the selected bands were <50 nm
width). Besides, as expected, most of the selected bands (88%) coincided with known
absorption properties. For predicting biomass quantity, the selected bands for the general
model were located in the visible, red-edge, and near-infrared regions, where absorption
features related with pigments occur (Ustin et al. 2009). By contrast, under the drought
treatment, bands in the shortwave–infrared regions (SWIR I 1300–1900 and SWIR II
1900–2500 nm) became important for both VI and multiband models. This could be due
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to the higher concentration of structural or dehydration avoidance compounds (i.e.
cellulose, hemicellulose, lignin, and waxes) that appear under stress (Beard 1989) and
that have absorption features at these regions. For predicting C:N ratio, the two bands in
the general VI model were related to structural compounds (1542 and 1797 nm, Curran
1989; Elvidge 1990), while in the specific VI model for the fertilized treatment, bands
were located in the flanks of red absorption (657 and 682 nm), which are correlated with
chlorophyll (Ustin et al. 2009). For predicting the proportion of photosynthetic vegetation,
the multiband model was based on a high number of bands distributed across the whole
spectrum, which hinders interpretation, while both bands in the VI models were related to
structural compounds. Specific models, based on different bands, were needed for each
level of addition of senescent tillers, probably due to the strong variation in canopy
conditions associated with the added extra non-photosynthetic material. At first glance,
the need to change the predictors according to the conditions could be seen as a limitation
of spectroscopy. Nevertheless, this reflects how it is possible to retrieve information on
several plant properties provided that the influence of certain environmental conditions is
considered.

Comparing both approaches, multiband models performed better than VI models for
general, and similarly for specific, conditions. Similarly to Cho et al. (2007), general
multiband models, based on a higher number of predictors (between 4 and 7 bands)
presented better predictive power and fewer treatments with significant systematic error
than models based on two-band vegetation indices. Besides, in agreement with previous
studies (Clevers et al. 2007; Kawamura et al. 2008, 2010), a drastic reduction in the
number of predictors (98–99%) did not diminish the predictive accuracy of multiband
models compared with models based on the full spectrum. However, for specific models,
predictive power was similar for both approaches. Re-parameterized models showed
higher systematic error with the multiband approach than with the VI approach because
of over-fitting of multiband models under more homogeneous canopy conditions. These
results show that VI models, which are simpler and easier to interpret than multiband
models, could be preferable for associating absorption features of specific wavebands with
plant properties.

Our results have implications on the potential of remote sensing for estimating these
plant properties under field conditions. The high proportion of narrow bands required for
achieving the highest estimations indicates that hyperspectral sensors would be needed.
Additionally, the inaccuracy of predictions of general models for some treatments indi-
cates that it may be difficult to extrapolate models in space and time. Similar to the
treatments evaluated here, variation in time and space due to biotic and abiotc factors
affecting canopy reflectance can be a hindrance in the estimation of forage quantity and
quality (Ollinger 2011). However, the more accurate predictions of biomass, C:N, or
proportion of photosynthetic vegetation achieved when different bands were used for
those treatments indicates that adaptive models changing bands for different conditions
based on ancillary data could improve the predictive accuracy of general models. This
kind of empirical study, performed under experimentally controlled environmental con-
ditions and integrated with radiative transference models (i.e. PROSPECT, SAIL) and
ecological theory can help to identify drivers of reflectance, facilitating upscaling from
simple to complex canopies. It would then be possible to develop predictive models
capable of dealing with the varying vegetation structure and background conditions
occurring in natural multispecies canopies.
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