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A fuzzy-logic based model was built in order to assess the relative influence of different ecological and
management drivers on glyphosate resistance risk (GRR) in Sorghum halepense (L.) Pers. The model was
hierarchically structured in a bottom-up manner by combining 16 input variables throughout a logical
network. Input data were related to 1) herbicide usage, 2) crop rotation, 3) landscape characterization, 4)
weed dispersal, and 5) mean maximum and minimum seasonal temperature. Mean maximum and
minimum seasonal temperatures and the dominance of glyphosate use were the variables that showed

I}(fe); 'g:ggse resistance the highest sensitivity to input changes. Application of the model at a regional scale resulted in a wide
Fuzzy logic range of GRR values. The lowest range values (lower than 0 and between 0 and 0.25) were represented in

5.5% and 21.5% of the cropping area, respectively. Intermediate GRR range (between 0.25 and 0.5) were
assessed in 57.3% of the cropping area whilst the highest GRR range values (0.5—0.7) were represented in
only 15.6% of the studied area. The assessment of trade-offs between different ecosystem functions
through expert opinion can complement traditional analyses for predicting herbicide resistance risk

Risk modeling

based on solely the genetic aspect of the evolutionary process.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, herbicide-resistant weed populations
are increasingly evolving creating problems around the world
(Powles, 2008). Herbicide resistant weeds may be driven by ge-
netic, ecological, and agronomic factors. These factors are
included in both theoretical and empirical approaches for
assessing the risk of herbicide resistance in weeds aimed at
making accurate predictions of when, where and how much
resistance will appear (Maxwell et al., 1990). Most of these ap-
proaches are based on the herbicide effects on both morphological
and physiological weed traits that determine herbicide resistance.
However, our knowledge about the relative magnitude of both the
environmental factors or ecological characteristics of weed pop-
ulations on the evolution rate of herbicide resistance is still vague
or fuzzy (Neve et al, 2009). For example, we know that
outbreeding annuals with large populations and without persis-
tent soil seed banks are most likely to become resistant or that
inbreeding perennials with low seed production or asexual
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perennials are less likely to evolve resistance (Powles, 2008).
However, it is difficult to use this information for real cases, even
for particular species due to variability and the challenge of
establishing clear-cut definitions for each of these characteristics
that may be influenced by the interactions with other biological
factors. Moreover, in order to go beyond the simplified assump-
tion of random mating, the herbicide resistance models should
incorporate spatial structure and processes so that the implica-
tions of spatial aggregation of seeds and gene flow should then be
used (Neve et al., 2009).

In Argentina, some common weeds such as Parietaria debilis,
Petunia axilaris, Verbena litoralis, Verbena bonariensis, Hybanthus
parviflorus, Iresine diffusa, Commelina erecta and Ipomoea sp. have
been reported to be glyphosate-tolerant (Papa, 2000). Moreover,
over 16 million hectares in Argentina are dedicated to
glyphosate-resistant (GR) soybean production (Binimelis et al.,
2009). Recently, in some of the areas of transgenic glyphosate-
resistant crops in Argentina, there are evolved GR populations
of S. halepense (Powles, 2008). S. halepense is a C4 perennial and
rhizomatous grass weed which reproduces by seeds and rhi-
zomes, and became widely naturalized and weedy in Argentina
(Valverde and Gressel, 2006). Currently, there are records from
the province of Salta, northern Argentina, of appearance of GR S.
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halepense biotype (Valverde and Gressel, 2006). However, a
comprehensive risk assessment of glyphosate resistance risk has
not been conducted. Based on these antecedents, we integrated
eco-physiological and demographic information of S. halepense
with data on cropping practices, landscape; and climatic char-
acteristics of Argentina’s main cropping as drivers for assessing
the glyphosate resistance risk (GRR) for this weed. The model
was built using a fuzzy logic framework (Zadeh, 1965), which
provides a set of elements (i.e. membership functions, linguistic
variables and rule sets) that allows handling the uncertainty by
using interval-valued fuzzy sets instead of classifying member-
ship as either true or false as in the classical (Boolean) logic
system. The specific details about fuzzy modeling are described
in Appendix A.

2. Methods
2.1. GRR assessment

The model for assessing GRR (GRR model) was built using data
at plot level (see Section 3.1 Model structure). However, in order to
obtain GRR regional predictions, the model was run at the land-
scape level with average regional variables. The average regional
variables represent the modal conditions of a field crop for each
production region (see below). Therefore, we created a GIS data-
base and arranged the data for GRR model running, so data can flow
from GIS-created database into GRR model and modeling results
can be transferred to GIS for final presentation. A set of different GIS
database components was built:

1) Production regions: A number of 21 productive regions were
identified, covering nearly all the cropping areas of the country.
Production regions were defined using existing GIS databases
(Conte et al, 2007) along with feedback from AACREA
(Argentine Association of Agricultural Experimentation Con-
sortia), a nongovernmental association of farmers using ArcGIS
9.1 (ESRI Copyright® 2005).

2) Climate data: Maximum average and minimum average air
temperature data were interpolated using universal krigging,
whereby a polynomial is fit to the underlying spatial trend
(Journel and Huijbregts, 1978). This dataset was developed by
interpolating monthly historic climate observations (1961—
2010) from 90 meteorological stations (SMN, 2010) to a similar
resolution of the map of production regions (ca. 16 km
resolution).

3) Landscape data: representative values of landscape character-
ization (i.e. shrub and tree hedge closeness) of each production
region were empirically reconstructed. First, we determined
the dominant biome in each of the production regions studied
on the basis of existing GIS data (Burkart et al., 1999). Subse-
quently, we estimated an average value of the relative coverage
of trees and shrubs in the surrounding landscape, based on
physiographic description of each biome (Hauman et al., 1947).
Thus, average values were obtained for hedge shrub closeness
(% Sh), and hedge tree closeness (% Tr) for each productive re-
gion (see section 3.1.2). Finally, the values obtained were
compared by consulting local experts and technicians to adjust
the final values according to the most recent changes of the
landscape structure. Thus, final landscape data of each pro-
ductive region were based on the literature review and reflect
both an amount of certainty as well as some uncertainty con-
cerning the election of a single modal value of landscape
configuration for the whole production region.

4) Management data: Data on crop rotation and management
regime for each production zone were determined

analogously to landscape characterization. Therefore, we
proceeded to empirically reconstruct both a modal crop
rotation and management regime for each production zone. In
Argentina, cropping schemes have developed for rainfed
soybean (Glycine max Merr.) production that invariably em-
ploys no-tillage management. Often these schemes include
growing soybean in a sequence of crops including wheat
(Triticum aestivum L.); maize (Zea mays L.) and sunflower
(Helianthus annus L.) entailing an average of 88% of total
cropping area among the production regions (SAGPyA, 2009).
Regional variability in both crop rotation and management
were reconstructed using agro-economic monthly databases
(Mdrgenes Econémicos and Agromercado) for each production
region, as well as crop rotation records from SAGPyA (Secre-
tary of Agriculture, Husbandry, Fishing and Feeding, Argen-
tine Republic). Final crop rotation and management schemes
were also adjusted according to the elicited expertise from
technicians and farmers of each production zone. In order to
assess the current risk level of glyphosate resistance in the
agroecosystems studied, we included a set of management
variables that represent the current cropping conditions in
the studied regions. Thus, variables like mechanical weeding
or irrigation were disregarded as they are not used in the
study region. Moreover, other cropping system components
(e.g. sowing date and density, variety ability for competition,
intermediate crops) were omitted in order to build a more
generic risk assessment.

2.2. Model sensitivity

A sensitivity analysis was performed to assess the relative effect
of input variables on GRR assessment. Sensitivity of the dependent
variable GRR on each input variable x was quantified by a modified
sensitivity index I (Lenhart et al., 2002).

GRRy — GRR;
where I is the sensitivity index of the input variable x; GRRg is the
value of the dependent variable using all input variables at its
baseline value; and GRR; is the value of the dependent variable
when the input variable x were either increased or decreased.
Because the behavior of the system can undergo important
changes as a result of non-linear responses to input variables two
independent tests were undertaken (Paterson et al., 2008): 1)
Increasing GRR sensitivity analysis: Each input variable at a time
was changed (increased or decreased); until the fuzzy proposition
determined by its membership function becomes true, whereas
all others were held at their baseline values. The baseline for this
test is represented by all the input variables at the level where
each fuzzy proposition become false (i.e. the lowest value for
glyphosate resistance risk; GRRg = —1). This test evaluates the
sensitivity of the model to increase the overall risk value (GRR)
from the lowest risk condition (GRR = —1) when each variable
takes the value corresponding to the maximum risk; 2)
Decreasing GRR sensitivity analysis: Each input variable at a time
was changed; until the fuzzy proposition determined by its
membership function becomes false, whereas all others were held
at their baseline values. The baseline for this test is represented by
all the input variables at the level where each fuzzy proposition
become true (i.e. the highest value for glyphosate resistance risk;
GRRg = 1). This test evaluates the sensitivity of the model to
reduce the overall risk value (GRR) from the highest risk condition
(GRR = 1) when each variable takes the value corresponding to
the minimum risk.
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3. Results
3.1. Model structure

The first step in this model involves the formulation of the risk
problem in a hierarchical structure (Fig. 1). In this model, climatic,
geographic, agronomic, demographic, and eco-physiological data
were used for assessing the fulfillment of three intermediate
propositions related to risk for evolution of glyphosate-resistant S.
halepense: 1) low system diversity; 2) high frequency of resistance
alleles; and 3) high weed fecundity. The model criteria (i.e. the
membership functions) are shown in Table 1

3.1.1. Low system diversity

Overall system diversity was the first factor to be considered for
assessing the GRR evolution. According to thermodynamics, system
diversity should lead to a complex ecosystem network. In agricul-
tural system, a complex network entails a large number of species
interactions and human decisions that progressively reduce the
entropy dissipation and leads to higher level of system information
and complexity. These complex systems typically show high
dependence among their components which give them high
resistance to modifications, or resilience (Holling, 1973). Overall,
the model considered that more diverse cropping systems would
lead to a higher resilience level that will reduce the risk of devel-
opment of any functional or structural system change, including the
increase in mutation frequency conferring herbicide resistance
(Radosevich et al., 1992). We related two main dimension of system
diversity to GRR evolution:

3.1.1.1. High glyphosate dependence. The intensity of glyphosate for

weed management was used as a measure of herbicide diversity.
The input variable (Fig. 1) was calculated as follows:

% of Glyphosate use =

number of glyphosate applications during the crop rotation

halepense populations: 1) the gene flow; 2) the herbicide selection
pressure, and 3) the weed seedbank turnover.

3.1.2.1. High gene flow. Resistant genotype frequencies are modi-
fied by gene flow (i.e. propagule immigration, seed bank dynamics,
inbreeding, and random genetic drift) (Maxwell et al., 1990). Within
this module, two main forces related to gene flow in agro-
ecosystems were represented: a) the landscape structure and 2) the
propagule dispersion. Landscape structure, through the fuzzy
proposition High landscape openness, was represented by means of
the relative contribution of both trees and shrubs for closing the
landscape and acting as physical barriers for gene flow
(Weinstoerffer and Girardin, 2000). Two fuzzy variables (Shrub and
Tree presence, Fig. 1) were defined by using the input variables 1) %
shrub hedge closeness (% Sh), and 2) % tree hedge closeness (% Tr).
Both variables are defined in terms of the ease with which a given
observer situated within a crop field can obtain an extensive view
over the surrounding country, through both the shrub hedge and
the tree edge of each crop field (Weinstoerffer and Girardin, 2000).
Although these two variables are intrinsically qualitative, we
defined a multi-set fuzzy variable for defining three different states
of both shrub and tree presence (Appendix B). After both tree and
shrub presences are assessed by their respective membership
functions a final truth-value of the proposition High landscape
openness was calculated using a rule node (Appendix B). Both the
threshold values of each membership function and the rule node
conclusions were based on both the literature review and the au-
thor’s criteria about the influence of landscape structure on gene
flow intensity for assessing final GRR values. The third input vari-
able that influences the gene flow of S. halepense propagules is the
influence of farm machinery dispersion (i.e. secondary dispersion)
(Thill and Mallory-Smith, 1997). In Argentina, as the cropping sys-
tems becomes more intensive, the production processes are

(2)

As a measure of risk assessment, the fuzzification of this variable
was made through a membership function that defines a value of
80% of Glyphosate use for weed control as the situation where the
proposition High glyphosate dependence is true (Table 1). One of the
model assumptions is the use of herbicide (glyphosate) at the label
dose. This assumption omitted the potential sublethal effect of
reduced rates in increasing the evolution rate of herbicide resis-
tance. This assumption is based on the fact that the argentine
cropping systems usually receive doses equal to or higher than that
recommended by the manufacturer on the label.

3.1.1.2. Low crop genotype diversity. System diversity was also
related to both the species richness in the crop rotation (# crop
species) and the dominance of glyphosate-resistant (G-R) crops (% of
Glyphosate-resistant crop species) (Fig. 1). Membership functions for
these two input variables were represented in Table 1. Specifically, the
fuzzy proposition Monoculture becomes false (truth value = —1)
when the crop rotation include at least four different crops (Table 1).
The fuzzy proposition High G-R dominance becomes totally true when
the crop rotation exhibits at least 80% of G-R crops (Table 1).

3.1.2. High frequency of resistance alleles
The model relates three major determinants for assessing the
risk of increasing the frequency of resistant alleles in the S.

total number of herbicides applications during the crop rotation

dominated by managerial tasks performed by hired external eco-
nomic agents (Manuel-Navarrete et al., 2009). Thus, we used the
farm machinery ownership (FMO), as a proxy for the potential long-
range dispersal due to farm equipment movement. We identified
three FMO levels: 1) farm machinery owned by the landowner
(Own), 2) farm machinery that is owned by a mid-size contractor,
working within less than 100 km from the farm (Local) and 3) farm
machinery that is owned by a large contractor, who works in an
area exceeding 100 km away from the farm (Regional). The fuzzy
proposition Long-range propagule dispersion uses a qualitative
function that determines the total membership to the proposition
when the farm machinery is hired from a large contractor
(regional) and the null membership to the proposition when the
farm equipment comes from the landowner. In the case that farm
labor tasks were performed with a mixture of own and hired
equipment, it should be considered which of the two models is the
most dominant.

3.1.2.2. High herbicide selection pressure. The second logical node
for assessing the frequency of resistance alleles in the S. halepense
populations is the herbicide selection pressure. This pressure was
assessed by means of the frequency and the efficiency of herbicide
use. The number of glyphosate applications (# G applications)
determined the intensity of glyphosate usage during the crop
rotation (Table 1). We used the annual average number of
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Fig. 1. Fuzzy-logic network structure for assessing the glyphosate resistance risk (GRR) in Sorghum halepense. The network includes the input and calculated variables, the
membership functions (MF), the rule nodes (R), the fuzzy propositions, the logical nodes and the constants. Bold capital letters indicates the logical operator. Number in italics
corresponds to the relative importance of each antecedent, when the relative importance of each antecedent in the logical node differed from 1 (see Technical Appendix, for details).
MX and MN are maximum average and minimum average temperatures, respectively, for autumn (aut), winter (win), spring (spr) and summer (sum). Input variables and fuzzy

propositions description are in Table 1.

glyphosate applications during the crop rotation, as the input var-
iable for defining the fuzzy proposition High G frequency, is totally
true value when the cropping systems reaches an average value of
four Glyphosate application/year (Table 1). The other cause of weed
mortality that was related to selection pressure was the efficiency
of herbicide use. The perennial nature of S. halepense defines a
critical period for herbicide control that depends on the functional

relationships between sprout emergence and environmental fac-
tors (Benech Arnold et al., 1992). In the cropping systems studied,
failures in controlling weed populations are usually more associ-
ated with mismatch between the critical moment for controlling
weed populations and the time of herbicide application, than the
use of herbicide sub-doses. In S. halepense, the herbicide control
efficiency increases as the application is closest to the period of

Table 1

Linear membership functions (MF) description for calculating a set of fuzzy propositions from the logic network structure of Fig. 1. I and Iy are the variable (V) level where the
fuzzy proposition becomes totally true or false, respectively. See text for a full explanation of variable calculations.

MF Input variable (V) Code Range/unit Description Fuzzy proposition V value
I, Iy
1 % of Glyphosate use % G [0;100] Measure of Glyphosate (G) dominance for weed High G dependence 80 0
control during the crop rotation
2 % of Glyphosate resistant % G-R [0;100] Measure of dominance of glyphosate resistant High G-R dominance 80 0
crop species (G-R) crops used in the crop rotation
3 # crop species # spc [1;n] Number of crop species in the crop rotation Monoculture 1 4
5 # G applications #G [0;n] Annual average number of G applications during High G frequency 0
the crop rotation
6 Annual thermal time AnnTT °C days Proxy for assessing the effect of potential weed Low weed control opportunity 750 250
accumulation growth on the opportunity for weed control
7 % of no-tillage % NT [0;100] Proxy for soil disturbance influence on herbicide High weed seedbank turnover 100 0
resistance evolution
8 Life cycle/year # Cycle [1;n] Number of life cycles in one year High vegetative reproduction 6 1
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minimum rhizome biomass (Satorre et al., 1985). For this reason,
any environmental condition that increases the S. halepense growth
rate will necessarily shorten the time period (in days) of minimum
rhizome biomass. In order to incorporate the effect of weed growth
rate for defining the gap between maximal susceptibility and time
of controlling (the weed control opportunity), we used the tem-
perature regime (i.e. the thermal time accumulation) of each pro-
duction zone as a proxy for the potential growth rate of S. halepense
populations (Fig. 1). Annual thermal time accumulation (Table 1)
was calculated as using a base temperature (at and below which the
growth rate is zero) of 15 °C for S. halepense growth, and the ceiling
temperature (at and above which the growth rate is again zero) was
set at 35 °C (Ghersa et al., 1990). Instead of the usual thermal time
calculation using daily mean temperatures, we derived monthly
mean temperatures from the maximum and minimum monthly
temperatures for calculating the growing degree days (GDD) as the
independent variable in the modeling of S. halepense population
dynamics. As the GDD increases, the risk of mismatch between the
occurrence of critical control period and the herbicide application
increases. Thus, we used the annual thermal time accumulation (in
GDD) as an input variable for defining the fuzzy nature of the fuzzy
proposition Low weed control opportunity. The membership func-
tion (Table 1) uses a linear transition between two threshold
values: the false condition (250 °C day year~!) and the true con-
dition (750 °C day year~!). These two values represent the annual
thermal accumulation for completing 1 and 3 life cycle as seed—
rhizome—seed in one year, respectively (Holshouser et al., 1996).

3.1.2.3. High weed seedbank turnover. Inlow soil disturbance no-till
systems, weed seeds are concentrated on, or immediately below,
the soil surface, compared with distribution in the soil profile at
greater depths in systems with a greater amount of soil disturbance
(Colbach et al., 2000). In no-till systems, weed seedlings largely
resulted from seeds shed in the previous crop, with little buffering
against resistance evolution from older seeds that might have
susceptibility (Moss, 2002). Thus, weed seed bank turnover might
interact with increased herbicide use in no-till systems to increase
the risk of evolution of herbicide resistance in S. halepense pop-
ulations. We simply used the percentage of no-till system in the
crop rotation (% of no-till) as input variable for calculation the
membership to the fuzzy proposition High weed seedbank turnover
(Fig. 1).

3.1.3. High weed fecundity

AS. halepense life-table can be divided in 1) genet (sexual origin)
annual plants that develop from seed and produce new seeds and/
or rhizomes; and 2) ramet perennial plants that originated from
rhizome or crown buds that develop new rhizome buds and or
seed. Also, the growing season for the seed annual cycle is shorter
than for the rhizome perennial cycle, under the same environ-
mental conditions. We used the GDD model (Ghersa et al., 1990)
and climatic information to calculate and to map areas with
particular growing seasons and to estimate both the number of
generations for both genet and ramet plant populations and the
conditions for dormancy termination (Benech Arnold et al., 1992).
Particularly, the model is able to represent the effects of both
vegetative and sexual reproduction (through the release of seed
dormancy).

3.1.3.1. High vegetative reproduction. The potential vegetative
growth conditions were assessed by means of the GDD model
(Ghersa et al., 1990). This model calculates an amount of
250 °C days for completing the life cycle as seed—rhizome—seed
(Ghersa et al., 1990; Satorre et al., 1985). The annual thermal time
accumulation over the base temperature was used in order to

calculate the number of S. halepense life cycles due to vegetative
growth. Using this value as input variable of the membership
function (Fig. 1), it was possible to assess the fulfillment of the High
vegetative growth fuzzy proposition (Table 1).

3.1.3.2. Low seed dormancy. Seed dormancy is important in the
persistence of S. halepense in Argentinean cropping systems
(Benech Arnold et al., 1992). This dormancy may be partly over-
come by the stimulating effects of alternating temperatures, at a
particularly 30/20 °C regime (Benech Arnold et al., 1992). In order to
assess the alternating temperature effects, the model used the
maximum and minimum average temperature value for each one of
the annual season (autumn, winter, summer and spring) as input
variables (Fig. 1). The fulfillment of the alternating temperatures
regime was assessed using two membership functions that calcu-
late both the full membership to the upper limit (UPi) and the lower
limit (LOi) (Fig. 1). Finally, the AND and U logical connectives
computed the annual average membership value (Fig. 1). This value
range from —1 (null membership to alternating temperatures
regime) to 1 (full membership to alternating temperatures regime)
and it was used for assessing the truth value of the fuzzy proposi-
tion Low seed dormancy (Fig. 1).

3.2. Sensitivity analysis

The sensitivity tests (Fig. 2) showed that the relative change in
output values (when input variables were changed over the entire
input range) was below 40% for all variables (Fig. 2). GRR was most
sensitive to changes in the variable that measures the relative
participation of glyphosate in the overall herbicide used (% G)
(Fig. 2). The model behavior against contrasting changes in% G
(values from 0 to 80% G), were a change of 35% of the final value of
GRR (Fig. 2). The air temperature variables also showed relatively
high I values. However, this change only occurred in the scenario in
which all variables were kept in the baseline condition for the
minimum risk, and each of the temperature values were changed
until the condition is equivalent to the maximum risk. The value
obtained for these variables showed that, compared with more
extreme changes in temperature values, the risk value of GRR
increased by 19%, but only decreased by 1% (Fig. 2). This asymmetric
pattern indicates that the fuzzy network was more reluctant to
reduce the risk values than to increase them when the air tem-
peratures are changed. The remaining input variables presented a
symmetrical pattern of equal sensitivity both increased as
compared to the decrease of GRR (Fig. 2).

3.3. Regional assessment

The GRR regional assessment covered a cropping area of
1,338,300 km? (Map 1) from the estimated 10 x 10 km grid created
by kriging that contains 13,382 records. Climatic data from each
point was calculated by kriging and crop sequence, management
regime and landscape characteristics came from data at production
zone level (see Appendix B). Results from the regional model
application showed GRR values in the range of —0.24 to 0.74 (Map
1). However, only 5.5% of the area analyzed showed GRR values
lower than 0 (Map 1). GRR values ranging between 0 and 0.25 were
included in 21.5 percent of the remaining area; 57.3% appeared with
values in the range of 0.25—0.5, and 15.6% had values in the range of
0.5—0.74 (Map 1). Regarding the geographic distribution of the GRR
values, areas where glyphosate resistance risk was partially false
(i.e. GRR < 0) were located in the southern part of the study area
(the entire production zone 20 and part of the zone 18) and a small
portion of extreme northwest of the map, which is characterized by
sharp elevation change. These areas have the lowest values of
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intensity of use of glyphosate with a low temperature thermal
regime during the year (see Appendix B). Areas characterized by
high risk values were located mainly in the northwest of the
country (productive zone 0) and in the central region, the most
productive and long-agricultural history area among the cropping
areas of Argentina (productive zone 16) (Map 1). Another response
pattern that resulted from the regional assessment was the low
intrazonal GRR variability in north-central areas of the country
(Map 1). This lower intrazonal variability was associated to low
spatial variability of the temperature regime (data not shown), so
GRR values mainly respond to changes in the variables measured at
the production zone level (i.e. crop rotation, management regime
and landscape characterization).

4. Discussion

In this paper we derived a novel analytical framework for
modeling the relative influence of different ecological and man-
agement drivers on herbicide-resistance evolution rate. The nov-
elty of this approach compared to other models proposed earlier to
calculate the risk for herbicide evolution (i.e. classical parametric
models) (Gressel et al., 1996) are mainly based in 1) a shift from
probability theory to fuzzy logic for the management of uncertainty
and 2) a clear and operational model structure since it uses easily
available data and the rules; and inputs are totally explicit and can
be changed or updated as our knowledge about the system im-
proves. The modeling of the risk of herbicide resistance evolution in
large areas entails a large number of interactions and uncertainties.
In such highly complex systems, where both the statistical data and
the physical knowledge required for a purely probabilistic risk
analysis are scarce, a fuzzy logic approach for system modeling
could provide a complementary modeling approach, by using de-
grees of belief and plausibility instead of a probabilistic approach
where parameters are usually treated as fixed but unknown values
(Karimi and Hiillermeier, 2007). Furthermore, these fuzzy ap-
proaches can easily evolve toward traditional probabilistic methods
as information is collected and the risk assessment process
develops.

I for increasing GRR (%)

I for decreasing GRR (%)

b
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Although we have no data for a rigorous model validation, the
sites in which the model produced high GRR values (Northern
Cérdoba: productive zone 10, Southern Santa Fe Province: pro-
ductive zone 13, Eastern Salta: productive zone 0, and Tucuman:
productive zone 3) correspond to areas in which there are official
reports of the occurrence of glyphosate resistance for this weed
(Binimelis et al., 2009). Noteworthy is that similar risk values may
result from different effect integration of variables. For example, in
Eastern Salta (northern Argentina, productive zone 0) high risk
values are driven by high temperatures; whereas in North Buenos
Aires province (productive zone 16) the GRR values are determined
by agroecosystem characteristics that enhance gene flow and the
use of no-tillage. Despite that our model predictions indicated high
risk values for both zones, there are still no reports of resistance in
zone 16, which historically has received the highest accumulated
glyphosate dose application in Argentina (Viglizzo et al., 2004).
However, the model structure, by considering the multiple and
complex interaction among system components, would predict the
potential effects of both environmental and management drivers
on the risk of herbicide resistance evolution (not the parametric
assessment of a specific herbicide resistance evolution rate).

The GRR model results have both functional and practical im-
plications. For example, in productive zone 16, occurrences of her-
bicide resistant biotypes may be restricted due to environmental
conditions, basically temperature, which regulates population size
and growth and directly affect the evolution rate (Jasieniuk and
Maxwell, 1994). However, despite of the low probability, if resis-
tantindividuals would occur or are introduced into the zone through
seed immigration the model predicts that they will remain and
spread. Instead, in productive zone 0, there is a high probability for
spontaneous occurrence of resistant populations that is driven by
the environmental conditions that sustain high population size and
fast growth rates and short generation times interacting with
landscapes with high levels of agrochemical toxicity. Thus, in one
case management should be oriented to reduce gene flow whilst in
the other should focus in reducing the selective pressure.

Most of the available information to deal with resistance evo-
lution is oriented toward handling the problem once it is detected.

T T T T T T T
#G #spc %G %GR %NT %Sh %Tr

T T T T T T T T
FMO  MN,; MNg, MNg, MN,, MX,, MXg, MXg, MX

win

Fig. 2. Results of sensitivity index I calculations on each input variable. Sensitivity outcome was calculated by changing each input variable until the value of individual maximum
risk using a baseline of GRR = —1 (minimum risk) (a); and by changing each input variable until the value of individual minimum risk, using a baseline of GRR = 1 (maximum risk)
(b). Variable codes are in Table 1 and Fig. 1. % Sh and % Tr are shrub and tree closeness, respectively (see Fig. 1).
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Map 1. Regional assessment of the glyphosate resistance risk (GRR) values. The color scale indicates the risk value for the range observed (—0.24—0.74). The numbers represent the
code for each production region (zone code). (For interpretation of the references to color in this legend, the reader is referred to the web version of this article.)

This means that permanent monitoring and screening is advised for
early detection of resistance and then various tools and practices
are recommended to deal with the problem (Shane Friesen et al.,
2000). However, many of these approaches are not incorporated
because they are costly in terms of money, time and labor. The use
of the fuzzy-logic based model developed in this work as prior for
ecological models may improve this situation, as a useful cost-
effective assessment tools for making exploratory predictions
about the effect of multiple drivers on the risk of herbicide resis-
tance evolution.
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