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Intercellular communication is crucial in multiple aspects of cell biology. This interaction can be medi-
ated by several mechanisms including extracellular vesicle (EV) transfer. EV secretion by parasites has
been reported in protozoans, trematodes and nematodes. Here we report that this mechanism is present
in three different species of cestodes, Taenia crassiceps,Mesocestoides corti and Echinococcus multilocularis.
To confirm this we determined, in vitro, the presence of EVs in culture supernatants by transmission elec-
tron microscopy. Interestingly, while T. crassiceps and M. corti metacestodes secrete membranous struc-
tures into the culture media, similar vesicles were observed in the interface of the germinal and
laminated layers of E. multilocularis metacestodes and were hardly detected in culture supernatants.
We then determined the protein cargo in the EV-enriched secreted fractions of T. crassiceps and M. corti
conditioned media by LC-MS/MS. Among the identified proteins, eukaryotic vesicle-enriched proteins
were identified as expected, but also proteins used for cestode disease diagnosis, proteins related to neu-
rotransmission, lipid binding proteins as well as host immunoglobulins and complement factors. Finally,
we confirmed by capillary electrophoresis the presence of intravesicular RNA for both parasites and
detected microRNAs by reverse transcription-PCR. This is the first report of EV secretion in cestode par-
asites and of an RNA secretion mechanism. These findings will provide valuable data not only for basic
cestode biology but also for the rational search for new diagnostic targets.

� 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Intercellular communication is crucial in multiple aspects of cell
biology, from the proper development, growth and maintenance of
single cell organism populations to the correct morphogenesis of
multicellular organisms. This interaction is mediated by different
mechanisms that may involve cell–cell contact, secreted soluble
factors or extracellular vesicle (EV) transfer. The latter has been
only recently acknowledged as an active intercellular transfer
mechanism of proteins, nucleic acids and lipids instead of only
being a process for disposal of unnecessary cell contents
(Colombo et al., 2014). Interaction mechanisms are also important
in cross-species communication, e.g. host-parasite interplay. In
such a case, signalling between organisms is fundamental for the
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establishment, persistence and outcome of the corresponding par-
asitic disease. Hence, the identification and characterisation of
these mechanisms provide valuable information to counteract
such processes.

Among infectious diseases, the zoonoses produced by cestode
parasite infections are associated with poverty and poor hygiene
practices, particularly in livestock-raising communities, and cause
debilitating chronic diseases which affect humans as well as
domestic and wild mammals worldwide. In particular, echinococ-
cosis and cysticercosis, caused by the metacestode stages of
Echinococcus spp. and Taenia solium, respectively, are among the
17 most severe neglected tropical diseases in humans prioritized
by the World Health Organization (http://www.who.int/ne-
glected_diseases/diseases/en/).

Recently, it has been reported that protozoan as well as trema-
tode and nematode parasites secrete EVs in vitro (Geiger et al.,
2010; Silverman et al., 2010; Marcilla et al., 2012; Regev-Rudzki
protein

http://www.who.int/neglected_diseases/diseases/en/
http://www.who.int/neglected_diseases/diseases/en/
http://dx.doi.org/10.1016/j.ijpara.2017.05.003
mailto:marcecucher@gmail.com
http://dx.doi.org/10.1016/j.ijpara.2017.05.003
http://www.sciencedirect.com/science/journal/00207519
http://www.elsevier.com/locate/ijpara
http://dx.doi.org/10.1016/j.ijpara.2017.05.003
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et al., 2013; Bernal et al., 2014; Buck et al., 2014; Chaiyadet et al.,
2015; Hansen et al., 2015; Nowacki et al., 2015; Wang et al., 2015;
Zamanian et al., 2015; Tzelos et al., 2016). The term EV groups sev-
eral types of vesicles among which microvesicles and exosomes are
the most thoroughly characterised. They can be distinguished by
size and morphology, as well as protein and lipid composition
(Colombo et al., 2014). The protein content of EVs may reflect their
biogenesis since, for instance, exosomes have an endocytic origin
and hence display proteins involved in endocytosis and endosome
formation, while microvesicles bud from the plasma membrane
(Colombo et al., 2014).

Regarding the RNA content of EVs, they were found to carry
both mRNAs and small RNAs (Valadi et al., 2007; Crescitelli et al.,
2013). Among the latter, the presence of microRNAs (miRNAs)
was confirmed in helminth EVs (Bernal et al., 2014; Buck et al.,
2014; Fromm et al., 2015; Hansen et al., 2015; Nowacki et al.,
2015; Zamanian et al., 2015). miRNAs are small non-coding RNAs
that down-regulate their target gene products and have been
shown to be actively secreted not only within EVs but also bound
to proteins in mammalian models (Valadi et al., 2007; Vickers
et al., 2011; Arroyo et al., 2011). Interestingly, the in vitro down-
regulation of target host genes after the internalization of EVs from
nematode parasites has been recently reported (Buck et al., 2014).

To date, information on EV secretion in cestode parasites is
scarce and limited to ultrastructural studies (Ingold et al., 2000;
Galán-Puchades et al., 2016). In the current study, we proposed
to establish whether cestodes release EVs and, if so, to characterise
their contents by analysing the metacestode stages of the model
cestodes Taenia crassiceps and Mesocestoides corti, and the zoonotic
species Echinococcus multilocularis.
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2. Materials and methods

2.1. Parasite material

Taenia crassiceps and M. corti metacestodes were obtained from
experimental infections maintained at the animal facilities of
Instituto de Investigaciones en Microbiología y Parasitología
Médica (IMPaM), Argentina. Taenia crassiceps cysticerci were main-
tained by serial i.p. passage in adult (6-week-old) CF1 female mice
by inoculating 50 cysticerci. Mesocestoides corti tetrathiridia were
maintained by serial i.p. passages in adult (3-month-old) BALB/c
mice alternating every three passages with one in an adult
(3-month-old) Wistar female rat by inoculation of 200 ml or
500 ml of tetrathiridia, respectively. Experiments involving the
use of experimental animals were carried out according to
approved protocols by the Institutional Committee for the Care
and Correct Treatment of Laboratory Animals from the School of
Medicine of University of Buenos Aires, Argentina, (protocols num-
ber CD N� 1127/2015 and 1229/2015).

Echinococcus multilocularis metacestodes from isolates H95,
J2012, Ingrid, GH09 and MS10 were maintained by serial i.p. pas-
sage inMeriones unguiculatus at the animal facilities of the Institute
of Hygiene and Microbiology, University of Würzburg, Germany, as
previously described (Spiliotis and Brehm, 2009). Animal experi-
ments were carried out in accordance with European and German
regulations on the protection of animals (Tierschutzgesetz) and
were approved by the government of Lower Franconia under per-
mit no. 55.2-2531.01-61/13.
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2.2. In vitro parasite culture

After recovery of T. crassiceps cysticerci andM. corti tetrathiridia
from experimental animals, parasites were washed 3–5 times with
sterile PBS andwere then filtered through a 150 mmporemesh, add-
Please cite this article in press as: Ancarola, M.E., et al. Cestode parasites rele
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ing sterile PBS to remove murine cells or debris. Parasite viability
was assessed before and after in vitro culture by Trypan blue stain-
ing at 0.002% final concentration. Only 100% viable parasites were
used. Ten to 15 ml of T. crassiceps cysticerci were cultured in T75
flasks in an upright position with 125 ml of medium while
20–40 ml of M. corti tetrathiridia were incubated per well in
12-well plates. The medium used was DMEM with gentamicin
(50 lg/ml) and levofloxacin (20 lg/ml) without serum. Parasites
were incubated at 37 �C, 5% CO2 for 1–4 days without medium
change.

Axenic E. multilocularis metacestodes were obtained as previ-
ously described (Spiliotis and Brehm, 2009). Briefly, metacestodes
were washed at least three times with sterile PBS. Collapsed and/
or phenol red-stained metacestodes were removed. Approximately
30 ml of viable parasites were then transferred to a T175 culture
flask with DMEM conditioned with rat Reuber hepatoma cells
supplemented with 10% FBS, penicillin (100 U/ml), streptomycin
(0.1 g/l) and reducing agents, and were incubated at 37 �C in a
nitrogen atmosphere (Spiliotis and Brehm, 2009). After 3 days,
parasites were washed 3–5 times with sterile PBS, transferred to
a new T175 flask with 120 ml of DMEM and reducing agents
(without serum). Parasites were incubated at 37 �C in a nitrogen
atmosphere for 4 days without medium change.

2.3. EV isolation

Culture media were collected and centrifuged according to
Théry et al. (2006) but with modifications. Briefly, to obtain one
EV sample, at least 55 ml of culture media from T. crassiceps and
M. corti cultures were centrifuged for 20 min at 2,000g at 10 �C,
and 30 min at 10,000g at 10 �C. The obtained supernatants were
ultracentrifuged for 70 min at 100,000g at 4 �C in a Beckman
Coulter Optima L-100 XP centrifuge using a fixed angle rotor,
washed with PBS and ultracentrifuged again. In the case of E. mul-
tilocularis supernatants, to obtain one EV sample, 110–120 ml of
culture medium were used and the ultracentrifugation step was
performed in a Sorvall WX+ Ultracentrifuge (Thermo Scientific,
Germany) with a TH-641 rotor. Pellets were resuspended in sterile
PBS and used for transmission electron microscopy (TEM), pro-
teomics or RNA content characterization.

2.4. Transmission electron microscopy (TEM)

The pellets obtained after the ultracentrifugation step were
resuspended in PBS, fixed in Karnovsky’s fixative (0.5% glutaralde-
hyde, 2.5% paraformaldehyde) and processed according to
Marcilla et al. (2012) at the Service of Microscopy, Servicios Cen-
trales de Soporte a la Investigación Experimental (SCSIE), Universi-
tat de València, Spain. Parasites from each species were also fixed
and analysed by TEM. In addition, ultracentrifugation pellets from
T. crassiceps supernatants were negatively stainedwith 0.1% ammo-
niummolybdate on a membrane acrylic–coated grid at Laboratorio
Nacional de Investigación y Servicios de Microscopía Electrónica
(LANAIS-MIE), School of Medicine, University of Buenos Aires.

2.5. Proteomic analysis

LC-MS/MS was performed on ultracentrifugation pellets accord-
ing to Marcilla et al. (2012). The proteomic analysis was performed
in the Proteomics facility of SCSIE, Universitat de València, which
belongs to ProteoRed (PRB2- Instituto de Salud Carlos III, and sup-
ported by grant PT13/0001 of the PE I+D+i 2013-2016, funded by
Instituto de Salud Carlos III and Fondo Europeo de Desarrollo
Regional). The Paragon algorithm of ProteinPilot v 4.5 was used
to search the National Center for Biotechnology Information (NCBI)
complete Protein database with the following parameters: trypsin
ase extracellular vesicles with microRNAs and immunodiagnostic protein
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specificity, cys-alkylation, no taxonomy restriction, and the search
effort set to ‘through’ (Shilov et al., 2007). Reported results corre-
spond to those proteins showing an unused score �1.3 (identified
with confidence �96%), �2 distinct peptides having at least 95%
confidence and cestode, rat or mouse protein sequence annotation.

2.6. Protein sequence analysis

After retrieval of the ProteinPilot results, assigned protein
sequences were manually curated using BLASTp against the NCBI
non-redundant protein sequences (nr) database. NCBI contains
the complete genomes from model cestodes such as those from
the genus Echinococcus and allows orthology analyses with the
most characterised protein sequences uploaded in the database
by using the SMART BLAST tool. Those proteins for which the
reported sequence did not fully correspond to the annotated name
in the database, e.g. due to lacking one or more relevant domains,
were named only after the domain they display. Gene Ontology
(GO) terms corresponding to the component category were
assigned to the identified proteins. For this, Uniprot and GO iden-
tification terms (IDs) were retrieved from the Protein Information
Resource site (http://pir.georgetown.edu/pirwww/search/idmap-
ping.shtml). GO term descriptions were then downloaded from
The European Bioinformatics Institute site (https://www.ebi.ac.
uk/QuickGO/).

Proteins annotated under the terms ‘‘hypothetical protein”, ‘‘ex-
pressed protein” or ‘‘conserved protein” were searched for domains
in the domains database CDART (Geer et al., 2002) at the NCBI site,
and re-annotated if necessary. Also, the same sort of sequences
reported for EVs of trematodes (Marcilla et al., 2012; Bernal et al.,
2014; Chaiyadet et al., 2015; Cwiklinski et al., 2015; Nowacki
et al., 2015; Sotillo et al., 2016) were retrieved and likewise anal-
ysed for comparative purposes. When more than one protein
sequence was reported for the same gene, the longest sequence
was used for the analysis.

The signal peptide search was conducted on selected sequences
with SignalP 4.1 using a sensitive d cut-off value (Petersen et al.,
2011).

Phylogenetic analyses of selected sequences were conducted in
MEGA7 (Kumar et al., 2016) by using the Maximum Likelihood
method based on the JTT matrix-based model (Jones et al., 1992).
A bootstrap consensus tree was inferred from 100 replicates.
Branches corresponding to partitions reproduced in less than 50%
of bootstrap replicates were collapsed. Sequences were retrieved
from NCBI, Wormbase (ftp://ftp.wormbase.org/), Ensembl
(ftp://ftp.ensembl.org/), Flybase (ftp://ftp.flybase.net/), GeneDB
(ftp://ftp.sanger.ac.uk/), The Gyrodactylus salaris Genome Project
(http://invitro.titan.uio.no/) and The Taenia solium Genome Project
databases (ftp://bioinformatica.biomedicas.unam.mx/) (Maldonado
et al., 2017).

2.7. RNA isolation

RNA from EVs and parasites was isolated with Trizol LS (Life
Technologies, U.S.A.) and TriPure (Roche, Germany), respectively.
The obtained aqueous phases were precipitated with 0.1 volumes
of 3 M sodium acetate pH 5.2, 2.5 volumes of 100% (v/v) ethanol
and 2 ll of glycogen (10 mg/ml) at �80 �C overnight followed by
-20 �C for 1 day. RNA was centrifuged at 14,000g for 1 h at 10 �C.
Pellets were air dried at 37 �C and resuspended in nuclease-free
water. Cellular RNA integrity was analysed by gel electrophoresis.
RNA concentration was determined using a Qubit Fluorometer
(Invitrogen, U.S.A.).

To confirm the intravesicular location of the isolated RNA from
the ultracentrifugation pellets, samples were treated prior to RNA
isolation with proteinase K, RNAse A and/or SDS as previously
Please cite this article in press as: Ancarola, M.E., et al. Cestode parasites rele
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reported (Montecalvo et al., 2012; Shelke et al., 2014) with modi-
fications. Briefly, EVs were treated as follows: (i) control, (ii) pro-
teinase K (0.5 lg/ll) 10 min at 37 �C, 10 min at 65 �C followed by
incubation with RNAse A (0.04 lg/ll) 10 min at 37 �C and (iii)
0.5% SDS + proteinase K (0.5 lg/ll) 10 min at 37 �C, 10 min at
65 �C followed by incubation with RNAse A (0.04 lg/ll) 10 min
at 37 �C. The corresponding RNA profiles were analysed by capil-
lary electrophoresis in a Fragment Analyzer (Advanced Analytical
Technologies, U.S.A.).

EV-depleted fractions (EV-free) were concentrated with 3 kDa
Amicon Centrifuge Filter devices followed by two washes with
PBS. RNA was isolated as described above. Two and three indepen-
dent samples from M. corti and T. crassiceps, respectively, were
analysed.

2.8. miRNA poly-A reverse transcription (RT)-PCR

miRNA cDNA synthesis was performed according to Macchiaroli
et al. (2015) using 5 ng of input RNA. PCR was performed in a Ste-
pOne Plus cycler (Applied Biosystems, U.S.A.). The PCR mix con-
sisted of 2.28 ll of 5X Hemo KlenTaq Buffer, 0.2 mM dNTPs,
0.1 lM of each primer, 0.32 ll of Hemo KlenTaq DNA Polymerase,
2X EVA Green, distilled water up to 18 ll and 2 ll of diluted cDNA.
The cycling conditions were: 3 min at 95 �C, followed by 40 x (15 s
at 95 �C, 32 s at 60 �C). For primer design, sequences of M. corti
miRNAs were obtained from Basika et al. (2016). For T. crassiceps
miRNAs, the sequences reported for Taenia multiceps were used
(Wu et al., 2013). Primer sequences are shown in Supplementary
Table S1. Two biological replicates from EVs from T. crassiceps
and M. corti were used. Amplification products were assessed by
gel electrophoresis.

2.9. Cestode miRNA binding site prediction on host genes

The Ensembl database (v.84) (Yates et al., 2016) was used to
retrieve 30 untranslated region (UTR) sequences for the protein
coding genes from the Mus musculus GRCm38.p4 assembly. When
more than one transcript was available for the same gene, only the
longest isoform was considered. The miRanda algorithm (v3.3a)
(Enright et al., 2003) was used to predict cestode miRNA target
sites in Mus musculus 30UTRs with the following parameters:
(i) strict 50 seed pairing; (ii) score threshold: 140; (iii) energy
threshold: �20 kcal/mol; (iv) gap open penalty: �9; (v) gap extend
penalty: �4; vi) scaling parameter: 4. Echinococcus miRNAs were
used as input since they represent the most characterised dataset
published to date for cestodes (Cucher et al., 2015; Macchiaroli
et al., 2015). In addition, cestode miRNAs have a high degree of
sequence identity (Basika et al., 2016).

Finally, functional annotation of the predicted targets was per-
formed with the Panther classification system (http://pantherdb.
org/) using the pathway classification (Mi et al., 2016).
3. Results

3.1. The metacestode stages of T. crassiceps, M. corti and E.
multilocularis produce EVs

Currently, a generally accepted ‘‘gold standard’’ method to iso-
late and/or purify EVs is lacking (Lötvall et al., 2014). In order to
determine whether cestode parasites secrete EVs, a methodology
was chosen that allowed collection of a wide range of sizes of
EVs. Hence, we performed the purification by differential centrifu-
gation followed by ultracentrifugation; methodology that is chosen
by more than 80% of the scientific community working in this field,
mostly when large volumes from non-complex samples such as
ase extracellular vesicles with microRNAs and immunodiagnostic protein
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cell culture media have to be processed (Gardiner et al., 2016).
However, it is worth mentioning that other purification methods
have been proposed in order to obtain purer samples, minimising
the presence of contaminants such as soluble proteins (Gardiner
et al., 2016).

In this way, the secretion of EV-like structures was confirmed
by TEM for the metacestode stages of T. crassiceps (Fig. 1A and B)
and M. corti (Fig. 2A and B) since round-shaped membrane-
bound structures were isolated by ultracentrifugation from the
axenic culture media of each parasite. Also, EVs with the same
characteristics were detected in transit in the tegument of both
parasites within structures compatible with multivesicular bodies,
which are intermediate forms of the endocytic biogenesis pathway
of exosomes (Figs. 1C–F, 2C–F). No vesicles budding from the tegu-
ment of these parasites were observed.

Interestingly, when analysing tissue sections of E. multilocularis
metacestodes by TEM, EVs were observed in the interface between
the laminated layer and the germinal layer (Fig. 3A–D). Few vesi-
cles were observed in transit towards the exterior through the lam-
inated layer and they were hardly detected in the supernatants of
culture medium (data not shown). Structures compatible with
multivesicular bodies and vesicles budding from the tegument
were also observed (Fig. 3).
Fig. 1. Taenia crassiceps secretes extracellular vesicles (EVs). Transmission electron mic
Arrowheads indicate EVs. BM, basal membrane; D, dense secretory body; MI, microthrix

Please cite this article in press as: Ancarola, M.E., et al. Cestode parasites rele
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With respect to the diameters of the observed vesicles, sizes in
the range of those reported for exosomes (<100 nm) and
microvesicles (>100 nm) were detected for the three cestodes
(Fig. 4). The most abundant population of EVs was not determined
from these data since the sampling was quite different in T. crassi-
ceps and M. corti with respect to E. multilocularis. As stated before,
E. multilocularis EVs seem to be retained by the laminated layer
while the other two parasites lack this structure. Hence, it is possi-
ble that T. crassiceps and M. corti secrete larger vesicles which were
not detected by only analysing the ultracentrifugation pellets.

Since only T. crassiceps andM. corti secreted EVs outwardly, sug-
gesting those represent an interaction mechanism with the host or
other metacestodes, we proceeded with the characterisation of the
protein and RNA content of these parasite EVs.

3.2. The EVs from T. crassiceps and M. corti contain typical EV-
enriched proteins and immunodiagnostic antigens

Even though the protein content of the EVs depends on the cell
of origin, there are some proteins which are regularly found. An
exploratory analysis by liquid chromatography and tandem mass
spectrometry, performed to identify the proteins associated with
the EV-enriched fraction of T. crassiceps- and M. corti-conditioned
roscopy of culture supernatant (A, B), tegument surface (C, D) and tegument (E, F).
; MU, muscle; MVB, multivesicular body; PI, pinosome; SL, surface layer.

ase extracellular vesicles with microRNAs and immunodiagnostic protein
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media, showed the presence of proteins typically found in platy-
helminth parasite EVs in both datasets (Marcilla et al., 2012;
Bernal et al., 2014; Chaiyadet et al., 2015; Cwiklinski et al., 2015;
Nowacki et al., 2015; Sotillo et al., 2016) and also in human and
mouse EVs such as heat shock proteins, annexin, enolase, phospho-
glycerate kinase, actin, tubulin, elongation factors and BROX.
Table 1 summarizes the proteins identified in both parasites data-
sets. The main GO terms corresponding to the component category
and associated with the detected proteins were ‘‘intracellular”,
‘‘membrane” and ‘‘cytoplasm” (Supplementary Fig. S1), which
group the EV-enriched proteins (Supplementary Tables S2 and S3).

Clathrin was identified in T. crassiceps EVs, which is in agree-
ment with previous ultrastructural observations where clathrin-
coated-like vesicles were detected in the tegument of cysticerci
(Threadgold and Dunn, 1983). Also in the T. crassiceps dataset, pro-
teins related to synaptic vesicle formation or neurotransmitter
exocytosis (Munson, 2015) were detected, such as a BAR-domain
containing protein (endophilin/p29), synaptic vesicle membrane
protein VAT1, syntaxin-binding protein, synaptotagmin and syn-
taxin (Supplementary Table S2). In the M. corti dataset, two such
proteins named synaptobrevin YKT6 and N-ethylmaleimide sensi-
tive factor attachment were detected (Supplementary Table S3). It
Please cite this article in press as: Ancarola, M.E., et al. Cestode parasites rele
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is worth mentioning that except for endophilin and N ethyl-
maleimide sensitive factor attachment, the remaining proteins
were actually found in both datasets, however outside the cut-off
values selected for protein identification. Endophilin has been also
reported in Fasciola hepatica and Opisthorchis viverrini EVs
(Chaiyadet et al., 2015; Cwiklinski et al., 2015), while synaptotag-
min and syntaxin-binding protein have been detected in F. hepatica
and Schistosoma mansoni vesicles, respectively (Cwiklinski et al.,
2015; Nowacki et al., 2015).

Among distinctive proteins found in T. crassiceps and M. corti
EVs, peptides belonging to proteins without formal annotation,
i.e. annotated under the terms ‘‘expressed protein”, ‘‘hypothetical
protein” or ‘‘conserved protein”, were identified (Supplementary
Tables S2 and S3). One of these proteins was present in vesicles
of both parasites, its amino acid sequence is highly conserved
among cestodes (Supplementary Fig. 2A), has a UPF0047 domain
with unknown function, no signal peptide sequence was predicted
by SignalP 4.1 analysis and it has orthologs in other platyhelminths
(both parasitic and free-living) such as S. mansoni and Schmidtea
mediterranea, as well as in Drosophila melanogaster and the
amphioxus Branchiostoma floridae (Supplementary Fig. 2A)
(Maldonado et al., 2017). However, to date it was not found in
ase extracellular vesicles with microRNAs and immunodiagnostic protein
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other platyhelminth vesicles according to our domain search anal-
ysis performed on hypothetical or uncharacterised protein
sequences (Marcilla et al., 2012; Bernal et al., 2014; Chaiyadet
et al., 2015; Cwiklinski et al., 2015; Nowacki et al., 2015; Sotillo
et al., 2016) (Supplementary Table S4).

Fatty acid binding proteins (FABPs) and ferlin domain-
containing proteins were identified in datasets of both parasites.
FABPs have been also identified in EVs from the trematodes F. hep-
atica (Marcilla et al., 2012) and S. mansoni (Nowacki et al., 2015).
Regarding ferlin domain containing proteins, they act in vesicle
trafficking and fusion (Lek et al., 2012) and have been detected in
F. hepatica vesicles (Cwiklinski et al., 2015).

In addition, antigens highly conserved between Echinococcus
and Taenia and used or tested for echinococcosis and/or cysticerco-
sis immunodiagnosis were detected. Among others, antigen p29
(González et al., 2000) (also annotated under the name endophilin
– Supplementary Fig. 2B), FABP (Yang et al., 2013), 14-3-3 (Siles-
Lucas et al., 2000), Em18/H17g (here named FERM ezrin/radixin/
moesin) (Ito et al., 1993; Deckers and Dorny, 2010) and Ts8B1
(immunodiagnostic antigen) were identified.

Finally, as reported in trematode parasite EVs (Marcilla et al.,
2012; Bernal et al., 2014; Cwiklinski et al., 2015), host proteins
Please cite this article in press as: Ancarola, M.E., et al. Cestode parasites rele
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were detected in the EV-enriched fraction of cestode secreted
products. Such proteins corresponded to immunoglobulins and
complement factors both in T. crassiceps and M. corti datasets, as
well as albumin and ferritin in T. crassiceps (Supplementary Tables
S2 and S3).

3.3. Cestode EVs contain small RNAs including miRNAs

The EVs from T. crassiceps and M. corti contain RNA which is
almost exclusively composed of small RNA (<200 nucleotides
(nt)) (Fig. 5A). To determine whether the RNA that co-
sedimented with the EV fraction in the ultracentrifugation step
was actually located intravesicularly, the isolated vesicles were
exposed to different treatments. In this way, when the EVs from
both parasites were treated with proteinase K followed by RNAse
A, the RNA showed the same pattern as the control samples, how-
ever, when the samples were exposed also to SDS, the RNA was
completely degraded, demonstrating that it was encapsulated,
and hence protected, within membranous compartments
(Fig. 5A). Additionally, the EV-free fraction from the culture media
was concentrated and analysed, and no RNA could be detected
(Fig. 5B).
ase extracellular vesicles with microRNAs and immunodiagnostic protein
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Table 1
Proteins found in extracellular vesicles of both Taenia crassiceps and Mesocestoides corti.

Proteins present in eukaryotic extracellular vesicles

Vesicle trafficking
Annexin
Myoferlin
Otoferlin
Vacuolar protein sorting associated protein 4A
Rab
ADP-ribosylation factor
Transforming protein RhoA
BRO1 domain containing protein BROX
Clathrina

Cytoskeleton
Actin
Tubulin
Dynein

Chaperones
Heat shock 70 kDa
Carrier proteins
Ferritin
Fatty acid binding protein

Metabolism
Gyceraldehyde-3-phosphate dehydrogenase
Phosphoenolpyruvate carboxykinase
Cytosolic malate dehydrogenase
6-phosphogluconate dehydrogenase
Phosphoglycerate kinase
Enolase
RNA binding
Elongation factor
Eukaryotic translation initiation factor
Proteinase
Calpain
Synaptic vesicles formation / neurotransmitters exocytosis
BAR-domain containing proteina

Synaptic vesicle membrane protein VAT 1a

Syntaxina

Syntaxin-binding proteina

Synaptotagmina

Synaptobrevin YKT6b

N-ethylmaleimide sensitive factor attachmenta

Signal transduction
Ras protein Rap
Calcium binding protein

a Only found in the Taenia crassiceps dataset.
b Only found in the Mesocestoides corti dataset.

Fig. 4. Cestode extracellular vesicles (EVs) display diameters compatible with those
of exosomes and microvesicles. Shown results belong to four biological replicates
for Taenia crassiceps, three for Mesocestoides corti and four for Echinococcus
multilocularis. Measures correspond to 32, 20 and 21 pictures for T. crassiceps, M.
corti and E. multilocularis, respectively. The total numbers of counted EVs were 136,
122 and 131 for T. crassiceps, M. corti and E. multilocularis, respectively.
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To investigate the RNA contained in cestode EVs, we searched
for the presence of miRNAs. For this, we performed RT-PCR of
selected miRNAs which (i) have already been described to be
secreted in EVs from trematode and nematode helminth parasites
(Bernal et al., 2014; Buck et al., 2014; Fromm et al., 2015), (ii) have
been detected in plasma/serum samples of infected hosts (Hoy
et al., 2014; Tritten et al., 2014) or (iii) were highly divergent to
host miRNAs. The seven selected miRNAs (let-7-5p, miR-61-3p,
miR-190-5p, miR-219-5p, miR-4989-3p, miR-71-5p and
miR-277-3p) were detected in T. crassiceps vesicles, but only let-
7-5p was detected within M. corti EVs (Fig. 6). Although there
was a difference in size between the amplification products from
EVs and tetrathyridia, the products in both cases were �75 bp
which corresponded to the expected size.

Finally, an in silico miRNA target search was conducted to
predict those mouse transcripts that could be down-regulated by
cestode miRNAs upon internalization of the EVs. The candidate
targets were functionally annotated with GO terms. Initially, an
overall target search was performed taking into consideration the
complete repertoire of cestode miRNAs. By doing this, it can be
observed that the most putatively regulated pathways in the host
Other proteins present in cestode extracellular vesicles

Antigen/Immunodiagnosis marker
H17g protein, tegumental antigen (FERM ezrin/radixin/moesin)
p29 (endophilin B1/BAR-domain containing protein)a

Ts8B1a

14-3-3a

Vesicle trafficking
Receptor Mediated Endocytosis family member

Cytoskeleton
Alpha actinin sarcomeric
Actin modulator protein

Signal transduction
Ras gtpase
Ras protein
Ras-related protein O-RAL
Guanine nucleotide binding protein G(q) subunit
Other
UPF0047 domain containing protein
cGMP dependent protein kinase
Thioredoxin fold
Host proteins
Immunoglobulins
Complement factors

ase extracellular vesicles with microRNAs and immunodiagnostic protein
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are those related to Wnt signalling, cadherin signalling,
gonadotropin-releasing hormone receptor, inflammation mediated
by chemokine and cytokine signalling and angiogenesis (Fig. 7A).
With respect to the subset of transcripts that (i) may be regulated
by the secreted miRNAs which share 100% sequence identity
among Echinococcus spp., Taenia spp. and M. corti (Supplementary
Fig. S3), and (ii) display more than one miRNA binding site, thus
enhancing the stringency of the prediction, it could be observed
Please cite this article in press as: Ancarola, M.E., et al. Cestode parasites rele
cargo. Int. J. Parasitol. (2017), http://dx.doi.org/10.1016/j.ijpara.2017.05.003
that the main regulated pathways again involve Wnt and cadherin
signalling but also transcripts sorted in six other pathways mainly
related to the immune response (Fig. 7B; Supplementary Table S5).
4. Discussion

In this work we describe for the first time, the in vitro secretion
of EVs in cestode parasites based on (i) the detection of secreted
ase extracellular vesicles with microRNAs and immunodiagnostic protein

http://dx.doi.org/10.1016/j.ijpara.2017.05.003


491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

Fig. 6. Taenia crassiceps and Mesocestoides corti extracellular vesicles (EVs) carry microRNAs (miRNAs). Reverse transcription (RT)-PCR detection of miRNA expression in EVs
and cysticerci (positive control) of T. crassiceps (A). RT-PCR detection of M. corti miRNAs in EVs and tetrathyridia samples (positive control) (B). RT+, cDNA samples; RT�, no
reverse transcriptase control. Negative control, PCR mix.

Fig. 7. Functional annotation of mouse transcripts putatively targeted by cestode microRNAs (miRNAs). Annotation was performed using Pantherdb Pathway classification.

M.E. Ancarola et al. / International Journal for Parasitology xxx (2017) xxx–xxx 9

PARA 3967 No. of Pages 12, Model 5G

1 July 2017
membrane-bound structures, of which the morphology and size
are in accordance with those reported for exosomes and microvesi-
cles; (ii) the presence of multivesicular body-like complexes in par-
asite tissue; (iii) the identification of proteins reported to be
present in EVs from model organisms (mouse and human); (iv)
the detection of a specific class of RNA (small RNAs) carried within
these subcellular particles and (iv) the conserved ultrastructural
detection of these vesicles in three species of cestodes which
belong to two different families (Taeniidae and Mesocestoididae).
Furthermore, this work constitutes the first report on a nucleic acid
secretion mechanism in this class of platyhelminths.

It is highly remarkable that even though the metacestode stages
of the three species produce and secrete EVs, only those secreted
by T. crassiceps andM. cortiwould be in direct contact with the host
since the laminated layer of E. multilocularis, when intact, seems to
act as a barrier for such large structures, at least under the studied
conditions. The laminated layer is a specialized extracellular
matrix found only in the genus Echinococcus. It confers physical
integrity to the metacestodes and protects the germinal layer cells
from the host immune response (Díaz et al., 2011). Our findings are
in agreement with previous ultrastructural observations in
Echinococcus spp. (Lascano et al., 1975; Ingold et al., 2000, 2001),
where membrane-bound structures can be observed only in the
proximity of the germinal layer. This result suggests that the EVs
Please cite this article in press as: Ancarola, M.E., et al. Cestode parasites rele
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may be in contact with the host in the early stages of development,
when the laminated layer is still not formed or incipient, and/or
when the laminated layer undergoes rupture due to metacestode
ageing or chemotherapy treatment. In line with the first, in an
ultrastructural study of the development of the tegument of E.
granulosus sensu lato in the protoscolex-metacestode transition
(Rogan and Richards, 1989), the presence of EV-like structures in
the outer layers of the laminated layer of early forming cysts could
be observed. On the other hand, these vesicles may contain the
components needed for the laminated layer formation, in addition
to the exocytic vesicles already described by Rogan and Richards
(1989). Our results suggest that even though the secretion of EVs
seems to be a conserved mechanism in cestode parasites from dif-
ferent genera or families, the particular traits of each parasite may
confer specific roles to these subcellular particles.

It is worth mentioning that not only conventional EVs may have
been isolated using the differential centrifugation approach. The
possibility that other components are present in our preparations
cannot be totally discarded. However, there are reports on other
non-conventional membrane secreted particles such as in sperm
(Höög and Lotvall, 2015), which reflects the fact that we are begin-
ning to understand the great diversity found among EVs.

With respect to the proteins present in the EV-enriched
secreted fractions of cestode-conditioned media, most of the
ase extracellular vesicles with microRNAs and immunodiagnostic protein
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identified proteins have been reported in mouse and/or human
EVs, regardless of whether those were exosomes or microvesicles.
Since a gradient separation technique was not used for the EV
purification, we might therefore be dealing with multiple popula-
tions, which is reflected in both the TEM and proteomics results.
Furthermore, we cannot disregard the presence of contaminating
soluble proteins secreted by the parasites.

In particular, clathrin was detected in T. crassiceps EVs, which is
in agreement with a previous ultrastructural report that describes
the presence of clathrin-coated pit-like structures in T. crassiceps
cysticerci (Threadgold and Dunn, 1983) that are formed during
clathrin-dependent endocytosis (Gould and Lippincott-Schwartz,
2009). Since exosomes are formed by inward budding of the early
endosomal membrane, thus yielding multivesicular bodies
(Colombo et al., 2014), the presence of this protein gives further
support to the obtained results.

Remarkably, antigens tested for echinococcosis and/or cysticer-
cosis immunodiagnosis were identified in cestode EVs. According
to the obtained results, the identification of antigenic proteins in
EVs may aid in developing a more rational approach for selecting
diagnostic candidates according to the infecting species. In the case
of confirming that Echinococcus spp. secrete these antigens in EVs,
which is likely since both T. crassiceps and M. corti do, these anti-
gens would be released in the initial stages of establishment of
the parasite or in the case of fissure of the laminated layer. Here
we also provide experimental evidence for the actual expression
and secretion of proteins previously annotated as ‘‘hypothetical”,
which may represent new diagnostic targets.

Previous reports showed the presence of FABPs in cysticercal
excretion/secretion products (Victor et al., 2012), hydatid fluid
(Aziz et al., 2011) and excretion/secretion products of protoscole-
ces of E. granulosus sensu lato (Virginio et al., 2012). In this work
we determined that T. crassiceps and M. corti secrete FABPs in
EVs. Members of the FABPs family have been identified in exo-
somes from mouse adipocytes and macrophages in vitro
(Hotamisligil and Bernlohr, 2015). Interestingly, secreted FABPs
have been reported to enhance hepatic glucose production
(Hotamisligil and Bernlohr, 2015). Since cestode parasites are
unable to synthesize lipids de novo (Tsai et al., 2013), it would
be interesting to analyse whether the secretion of FABPs in EVs is
a means of scavenging host fatty acids and cholesterol or if their
role is to induce glucose production.

Host proteins were also detected in both parasites samples. In
this early study we cannot confidently confirm that these proteins
are actively packaged into cestode EVs. However, it would be
highly interesting to determine whether the presence of
immunoglobulins in the cestode EV-enriched fractions represent
a mechanism of the parasites to remove, by endocytosis, host dam-
aging molecules attached to the tegument according to the
nutritional-protective role proposed for cestode tegument
(Bereiter-Hahn et al., 1984). Another host protein present in the
T. crassiceps dataset was albumin. It has been reported that albu-
min is a strong inductor of endocytosis in the metacestode stage
of this parasite (Threadgold and Dunn, 1984), thus it is likely there
will be albumin in the exosomes secreted by cysticerci. In addition,
it has been reported that host albumin is not only actively internal-
ized but also secreted by T. crassiceps (Aldridge et al., 2006). How-
ever, as mentioned before, further assays are needed to confirm its
presence within T. crassiceps EVs.

With respect to the nucleic acid content of the EVs, we demon-
strated the presence of vesicular RNA. In this case, as in those
reported for protozoan and helminth parasites (Twu et al., 2013;
Buck et al., 2014; Lambertz et al., 2015), the detected RNA corre-
sponded to small RNAs <200 nt according to their size distribution
pattern, while in mammalian EVs RNA >200 nt has been also
detected (Valadi et al., 2007; Crescitelli et al., 2013). However,
Please cite this article in press as: Ancarola, M.E., et al. Cestode parasites rele
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more sensitive assays should be performed to conclusively discard
the intravesicular presence of mRNA. Among the small RNA species
present intravesicularly, we detected miRNAs. Although we cannot
establish whether miRNAs represent the main secreted RNA popu-
lation since a global analysis by high-throughput small RNA-
sequencing should be performed to reach this conclusion, we can
confirm the extracellular nature of the detected miRNAs. In this
respect, we observed that the profile of the identified miRNAs var-
ied between T. crassiceps and M. corti, which suggests a differential
secretion pattern between species. Since most of the miRNAs
detected were chosen according to current data on miRNA secre-
tion in nematodes and trematodes, it seems that there is at least
a set of these small RNAs which are commonly secreted by hel-
minth parasites. This may reflect a common role in, for instance,
host immune response regulation since the internalization of hel-
minth parasitic vesicles by host cells was shown in vitro
(Marcilla et al., 2012; Buck et al., 2014; Chaiyadet et al., 2015;
Zamanian et al., 2015), as well as the down-regulation of host
genes involved in the pro-inflammatory response (Buck et al.,
2014). In this respect, a miRNA target prediction on mice tran-
scripts yielded that transcripts related to signalling processes and
inflammation would be likely regulated by cestode-secreted
miRNAs.

In conclusion, here we report the existence of an intercellular
communication mechanism in cestode parasites which provides
valuable data not only for basic cestode biology but also for the
rational search for new diagnostic targets.
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