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Overlapping and Distinct Roles of PRR7
and PRR9 in the Arabidopsis Circadian Clock

not shown). This is also true of the prr9-1mutant [9],
indicating that both PRR9 and PRR7 function in the
transmission of light signals to the circadian clock.
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the prr7-3 and prr9-1 mutants under several differentUniversity of California, Davis
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lengthens the free-running period under a wide rangeDavis, California 95616
of red and blue light fluences (Figures 1B and 1C). In
constant blue light, the fluence response curve for prr9-1
resembles that of the blue light photoreceptor double-
mutant cyrtochrome1 cryptochrome2 (cry1 cry2 [12]).Summary
Unlike cry mutants [12], prr9-1 maintains a long period
phenotype under high fluences of red light, suggestingThe core mechanism of the circadian oscillators de-

scribed to date rely on transcriptional negative feed- that PRR9 might act downstream of both blue and red
light photoreceptors. The prr7-3 mutant has a strongerback loops with a delay between the negative and

the positive components [1–3]. In plants, the first phenotype under red light than under blue light (Figures
1B and 1C). The period length fluence response curvesuggested regulatory loop involves the transcription

factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) for prr7-3 in red light resembles that of phytochromeB
(phyB) mutants [11]. However, prr7-3 but not the phyBand LATE ELONGATED HYPOCOTYL (LHY) and the

pseudo-response regulator TIMING OF CAB EXPRES- null mutant retains a period lengthening effect under
red light fluences lower than 10 �mol m�2 s�1, sug-SION 1 (TOC1/PRR1)[4]. TOC1 is a member of the

Arabidopsis circadian-regulated PRR gene family gesting that PRR7 is not exclusively involved in the
PHYB signaling pathway. In agreement with these re-[5,6]. Analysis of single and double mutants in PRR7

and PRR9 indicates that these morning-expressed sults, prr7 mutants display a long hypocotyl phenotype
under constant red light [8, 13]. Nevertheless, since hy-genes play a dual role in the circadian clock, being

involved in the transmission of light signals to the clock pocotyl growth is partly regulated by the circadian clock
[14], it remains unclear whether the hypocotyl lengthand in the regulation of the central oscillator. Further-

more, CCA1 and LHY had a positive effect on PRR7 phenotypes observed in prr7 mutants are caused by the
circadian defect or by a direct involvement of PRR7 inand PRR9 expression levels, indicating that they might

form part of an additional regulatory feedback loop. light-regulated hypocotyl elongation. In summary, these
results show that PRR7 and PRR9 play distinct rolesWe propose that the Arabidopsis circadian oscillator

is composed of several interlocking positive and nega- in the light input pathway to the circadian clock. The
biochemical activity of PRR7 and PRR9 is still unknown.tive feedback loops, a feature of clock regulation that

appears broadly conserved between plants, fungi, and Although no interactions with photoreceptors have been
reported for these proteins, PRR9 has been shown toanimals.
interact with TOC1 in a yeast two-hybrid assay [15]. In
turn, TOC1 interacts in vitro with both PHYTOCHROMEResults and Discussion
INTERACTING FACTOR 3 (PIF3), which has been impli-
cated in phytochrome signaling [16–18], and other PIF3-Loss of PRR7 and PRR9 Function Affects

Free-Running Circadian Period like proteins [19]. However, the in vivo significance of
such interactions remains to be investigated in detail.The effect of the mutations prr7-3 ([7]; also known as

prr7-11, [8]) and prr9-1 [9] on the circadian clock were
analyzed using the circadian reporter CCR2::LUC [5].

Loss of both PRR7 and PRR9 Dramatically AffectsWe confirmed that these mutations lengthen the period
Circadian Rhythms under Constant Light1–2 hr under constant white light (Figure 1A [7–9]). This
and Constant Darknessperiod defect of prr7 mutants has been observed for
To investigate the genetic interaction between theseveral other T-DNA insertion lines (E.M.F. and S.A.K.,
prr7-3 and prr9-1 mutations, we analyzed the circadianunpublished data; [7]). In constant darkness, no change
rhythms of the double mutant prr7-3 prr9-1. Leaf move-in period length of CCR2::LUC rhythms was observed
ment rhythms of prr7-3 prr9-1 plants had a period lengthin the prr7-3 mutant (25.8 � 0.7 hr [SEM], n � 15), as
of 36.2 � 1.7 hr in constant white light (Figure 1D, wild-compared to the wild-type (25.7 � 0.5 hr, n � 11; data
type plants had a period of 24.3 � 0.1 hr, prr7-3 of 25.0 �
0.2 hr, and prr9-1 of 24.8 � 0.2 hr). In agreement with the*Correspondence: stevek@scripps.edu
leaf movement analysis, CCR2::LUC rhythms in prr7-33 Present address: Ifeva, Facultad de Agronomia, UBA, Av. San Mar-

tin 4453, 1417, Buenos Aires, Argentina. prr9-1 displayed a period length of up to 35 hr under
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Figure 1. Period Length Effects of the prr7-3, prr9-1, and prr7-3 prr9-1

Seedlings were entrained in white light/dark cycles (12 hr, 70 �mol m�2 s�1) for 5–7 days before being transferred to continuous light at CT
0. For bioluminescence assays, single seedlings were imaged every 2.5 hr for 5 days and data (� SEM) were normalized to the mean
luminescence value of the respected genotype over the length of the time course. Period length (� SEM) and relative amplitude errors were
estimated using fast Fourier transform-nonlinear least-squares analysis (FFT-NLLS) [36, 37].

(A) CCR2:: LUC bioluminescence rhythms in wild-type (Col-WT, n � 7), prr7-3 (n �16), and prr9-1 (n � 15) under continuous white light (70
�mol m�2 s�1, LL). This experiment has been repeated 3 times with similar results.
(B) Period length of CCR2:: LUC in Col-WT (n � 5–10), prr7-3 (n �11–12), and prr9-1 (n � 10–14) under different fluences of red light.
Representative of three independent trials. *, P � 0.01 (Student’s two-tail t test).
(C) Period length of CCR2:: LUC in Col-WT (n � 6–12), prr7-3 (n �8–12), and prr9-1 (n � 6–15) under different fluences of blue light.
Representative of three independent trials. *, P � 0.01 (Student’s two-tail t test).
(D) Cotyledon movement rhythms under continuous white light (50 �mol m�2 s�1, LL). The data represents the mean position of 19 cotyledons
for wild-type (Col-WT), 17 for prr7-3, 9 for prr9-1, and 5 for prr7-3 prr9-1. This experiment has been repeated three times with similar results.
(E) CCR2::LUC bioluminescence rhythms in Col-WT (n � 7) and prr7-3 prr9-1 (n � 25) under continuous white light (70 �mol m�2 s�1, LL).
This experiment has been repeated three times with similar results.
(F) Period and relative amplitude error estimates of the CCR2::LUC bioluminescence rhythms shown in (A) and (E).

constant white light conditions (Figure 1E). Despite this tude errors were similar to wild-type and the single mu-
tants (Figures 2C and 2D); however, under constant redstrong period defect, the bioluminescence rhythms re-

mained robust in the double mutant, as observed by the light, prr7-3 prr9-1 showed higher variability in period
length and relative amplitude error (Figures 2A and 2B).low relative amplitude error values (Figure 1F). These

results indicate that PRR7 and PRR9 play a partially Similar results were observed under low fluences of
constant red or blue light (Figure S1 in the Supplementalredundant role in the Arabidopsis circadian clock.

The prr7-3 prr9-1 mutant also displayed a long period Data available with this article online). Thus, in prr7-3
prr9-1, the circadian clock is more compromised underphenotype under intermediate fluences of blue and red

light (Figures 2A–2D). Under blue light, the relative ampli- red than under blue light. This finding is in agreement
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with the observed light dependencies of the single mu- sion in the dark and a slight increase in the amplitude
of CCA1 and LHY expression in constant light conditionstants (Figures 1B and 1C).

In the wild-type, CCR2::LUC rhythms remained robust (Figures 3A and 3C). It has been reported that the prr7-1
and prr7-2 mutations display an earlier rise in the secondin the dark for at least three days (Figures 2E and 2F). In

contrast, in prr7-3 prr9-1, CCR2 expression dampened peak of CCA1 and LHY expression in etiolated seedlings
after transfer to red light [13]. Taken together, theseafter 1 day in constant darkness, although a weak

rhythm with a free-running period of about 3 hr longer results suggest that PRR7 plays an inhibitory role on the
regulation of CCA1 and LHY expression levels. Althoughthan in the wild-type could still be detected by FFT-NLLS

analysis (Figures 2E and 2F). Rhythmic CCA1 expression the prr9-1 mutant showed no significant increase in
CCA1 and LHY RNA levels (Figures 3A and 3C), thecould be detected in the wild-type for the first 2 days

after transfer to constant dark conditions (Figures 2G double mutant prr7-3 prr9-1 displayed a second peak
of expression before dusk and a further enhancementand 2H). However, loss of function of both PRR7 and

PRR9 caused a rapid dampening of CCA1::LUC� biolu- of CCA1 and LHY expression in constant light (Figures
3B and 3D). This increase in CCA1 and LHY RNA levelsminescence rhythms under constant darkness (Figures

2G and 2H). No damping of CCA1::LUC� luminescence may be the cause of the long period phenotype in the
double mutant. CCA1 and LHY mutants display a shortwas observed under constant white, red, or blue light

conditions in prr7-3 prr9-1 (Figure S2). These results period phenotype of about 3 hr [26, 27]. Strong overex-
pression of CCA1 or LHY causes arrythmicity in constantsuggest that PRR7 and PRR9 play a dual role in the

circadian clock, being involved in both light input and conditions and a lagging phase of gene expression un-
der light/dark cycles [21, 28, 29]. However, it is stillthe central oscillator. The expression of PRR9 is very

low in the dark [20]; therefore, it is difficult to understand unclear whether a small increase in CCA1 or LHY could
lengthen the period under constant conditions. PRR7a robust role of PRR9 in this condition. A similar situation

has been observed for CCA1 and LHY. Although these and PRR9 RNA levels peak when CCA1 and LHY expres-
sion decreases, thus PRR7 and PRR9 might be directlygenes are expressed at very low levels in constant dark

conditions [21], loss of function of both CCA1 and LHY involved in the inhibition of CCA1 and LHY expression.
severely disrupts circadian rhythms in constant dark-
ness [22]. ZEITLUPE (ZTL) and TOC1 also play a dual role CCA1 and LHY Act Positively on PRR7

and PRR9 Expressionin the circadian clock. In addition to showing circadian
defects in constant darkness, ztl and toc1 mutants dis- We investigated the role of the transcription factors

CCA1 and LHY in the expression of PRR7 and PRR9.play light quantity and quality circadian defects, respec-
tively [23–25]. This supports the notion that perception Expression levels were measured in the cca1-1 mutant

[26], the line cca1-1 lhy-R (50) [22, 25], in which LHYand transmission of ambient light conditions are closely
tied with the generation and maintenance of rhythms in expression level is also reduced, and in the lines cca1-

ox (34) [29], and lhy-1 [21], which overexpress eitherArabidopsis.
CCA1 or LHY under the strong CaMV 35S promoter. The
peak of PRR9 expression is dramatically reduced in

Expression Level of Clock Regulated Genes cca-1 lhy-R (Figure 4A), and light induction of PRR9
in the Double Mutant prr7-3 prr9-1 expression in dark-adapted plants is also greatly re-
To study how PRR7 and PRR9 affect the circadian clock duced, but still detectable, in this line (Figure S4). This
at the molecular level, we analyzed the expression levels last result suggests the existence of two mechanisms for
of the putative core clock components (CCA1, LHY, and the light induction of PRR9 expression, one dependent
TOC1) and the other two members of the circadian con- upon and one independent of CCA1 and LHY. Mutation
trolled PRRs (PRR3 and PRR5) in prr7-3, prr9-1, and the of both CCA1 and LHY did not influence PRR7 expres-
double mutant prr7-3 prr9-1. The expression level of sion as strongly as it affected PRR9 expression (Figure
these genes was measured in light/dark cycles and for 4D). Since the cca1-1 lhy-R mutant displayed only a
3 days after release into constant white light conditions minor reduction in PRR7 levels, other factors must be
(Figures 3A–3F and Figure S3). After the third day in involved in the activation of PRR7. Presumably these
constant light, the peaks of expression had shifted about factors also generate the delay in the peak of expression
4 hr in prr7-3 and prr9-1 and 12–15 hr in prr7-3 prr9-1. of PRR7 relative to PRR9. Supporting the role of CCA1
This corresponds to a period length difference of about and LHY as positive factors, the average expression of
1 hr for the single mutants and 4–5 hr for the double PRR7 and PRR9 was significantly increased in both the
mutant, demonstrating the pervasiveness of the circa- CCA1 and LHY overexpressing lines (Figures 4B–4C and
dian defects caused by the loss of function of both PRR7 4E–4F). However, there were differences in the ampli-
and PRR9. tude and phase of PRR7 and PRR9 expression between

The prr9-1 mutation caused a slight increase in the lhy-1 and cca1-ox. Although the phase delay in lhy-1
maximum level of expression of TOC1, in both light/dark has also been observed for other genes [28], there are
and constant light conditions. However, neither loss of no significant differences in phase or amplitude of gene
function of PRR7 nor loss of both PRR7 and PRR9 expression observed in the single loss of function mu-
caused significant changes in mean TOC1 expression tants [27]. Different degrees of overexpression, protein
levels (Figures 3E and 3F). No major change in the ex- levels, activation states, and/or functions might explain
pression level of PRR3 or PRR5 was observed under the observations. For example, it has been shown that
constant light conditions (Figure S3). Loss of function LHY but not CCA1 protein levels cycle in the overex-

pressing lines [28, 29].of PRR7 caused an earlier rise in CCA1 and LHY expres-
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Figure 2. Period Length Effects of prr7-3 prr9-1 on Bioluminescence Rhythms under Constant Red and Blue Light and Constant Darkness

Seedling entrainment and constant light bioluminescence assays (A–D) were performed as in Figure 1. For the constant darkness experiments
(E–H) seedlings were transferred to constant conditions at CT 12 and were imaged every 2 hr in clusters of 6–9 seedlings. Period length and
relative amplitude errors were estimated as in Figure 1.
(A) CCR2::LUC bioluminescence rhythms in wild-type (Col-WT, n � 6), and prr7-3 prr9-1 (n � 11) plants in continuous red light (44 �mol m�2

s�1, LL).
(B) Period and relative amplitude error estimates of the CCR2::LUC bioluminescence rhythms shown in (A) in addition to prr7-3 (n � 6) and
prr9-1 (n � 6).
(C) CCR2::LUC bioluminescence rhythms in Col-WT (n � 7) and prr7-3 prr9-1 (n � 8) under constant blue light (41 �mol m�2 s�1, LL).
(D) Period and relative amplitude error estimates of the CCR2::LUC bioluminescence rhythms shown in (C) in addition to prr7-3 (n � 10), and
prr9-1 (n � 9).
(E) CCR2::LUC bioluminescence rhythms under constant darkness (DD). Wild-type (Col-WT, 12 clusters of 6 seedlings) and prr7-3 prr9-1
seedlings (7 clusters of 9 seedlings).
(F) Period and relative amplitude error estimates of the CCR2::LUC bioluminescence rhythms shown in (E).
(G) CCA1::LUC� bioluminescence rhythms under constant darkness. Wild-type (Col-WT, 9 clusters of 6 seedlings) and prr7-3 prr9-1 seedlings
(8 clusters of 9 seedlings).
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Figure 3. Mutations in PRR7 and PRR9 Alter the Cycling of Circadian-Regulated Genes

Seedlings were grown for 15 days in white light/dark cycles (12 hr, 70�mol m�2 s�1) and sampled every 4 hr during one light/dark cycle and
for 3 days after release into constant white light (70 �mol m�2 s�1). The cycling of CCA1 (A, B), LHY (C, D), and TOC1 (E, F) was analyzed by
real-time PCR after reverse transcription as described in the Experimental Procedures section. Values are expressed relative to IPP2 loading
control and normalized to the mean expression level of the wild-type for each gene. Data represents the average � SEM of two completely
independent experiments. Col-WT, prr7-3, prr9-1, and prr7-3 prr9-1 were analyzed in parallel. For clarity, the traces were plotted in different
graphs: (A), (C), and (E) for Col-WT, prr7-3, and prr9-1; (B), (D), and (F) for Col-WT and prr7-3 prr9-1.

PRR7 and PRR9 contain promoter elements that may sion by CCA1 and LHY [4]. We investigated whether
CCA1 was able to bind these elements in the contextconfer direct regulation by CCA1 and LHY. PRR7 has

three CCA1 binding sites (CBS), which are also found of the PRR7 and PRR9 promoters by performing electro-
phoretic mobility shift assays. Addition of extracts fromin the promoters of the chlorophyll a/b binding protein

genes [30], in the region �918/�816 bases from the Escherichia coli expressing glutathione S-transferase
(GST)-CCA1 to a probe corresponding to the �918/transcription start site. The PRR9 promoter contains an

evening element (EE) 223 bases before the transcrip- �816 region of the PRR7 promoter produced DNA spe-
cies with retarded mobility (Figure 4G). DNA fragmentstional start site. This element has been found in several

circadian regulated genes with evening expression, and, containing 2 (�871/�816, �918/�841) or 3 (�918/�816)
CBS were able to compete for binding. However, a frag-in the case of TOC1, has been shown to mediate repres-

(H) Period and relative amplitude error estimates of the CCA1::LUC� bioluminescence rhythms shown in (G). The FFT-NLLS program failed
to detect a rhythm with a period ranging between 15 and 45 hr for 8 of the 10 seedling clusters of prr7-3 prr9-1.
These experiments have been repeated twice with similar results. In (A) and (C), prr7-3 and prr9-1 were analyzed in parallel with Col-WT and
prr7-3 prr9-1, but for clarity the bioluminescence traces of prr7-3 CCR2::LUC and prr9-1 CCR2::LUC were omitted.
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Figure 4. CCA1 and LHY Regulate PRR7 and PRR9 Expression

(A–F) Wild-type (Col-WT, Ws-WT, Ler-WT), cca1-1, cca1-1 lhy-R (50), cca1-ox (34), and lhy-1 were grown for 15 days in white light/dark cycles
(12 hr, 70 �mol m�2 s�1) and sampled every 4 hr during one light/dark cycle. PRR9 (A–C) and PRR7 (D–F) RNA levels were analyzed via
semiquantitative RT-PCR as described in the Experimental Procedures section. Values are expressed relative to the ubiquitin (UBQ) loading
control and normalized to the average expression level of the wild-type in each experiment. Data represents the average � SEM of two
completely independent experiments.
(G-H) Cell extracts from bacteria expressing either GST-CCA1 or GST were incubated with a radiolabeled fragment of the PRR7 promoter (G)
or PRR9 promoter (H). 5�, 10�, 50�, 100�, or 500� M excess of unlabeled competitor DNA was added to each reaction as indicated. Protein/
DNA complexes were separated by nondenaturing gel electrophoresis and visualized using a phosphorimager. Specificity of binding is shown
by the ability of fragments with wild-type CBS (G) or EE (H) sequences, but not fragments in which these sequences are altered, to compete
for binding to GST-CCA1. These experiments have been repeated three times with similar results.

ment corresponding to the �871/�816 region with both in animal circadian systems, it has been shown that
members of the nuclear orphan receptor gene family inCBS mutated (CBSmt) failed to compete, indicating that

CCA1 binding to this region was specific for the CBS. mammals [31, 32], and basic leucine zipper transcription
factors [33] in flies act as either positive or negativeSimilarly, GST-CCA1, but not GST alone, was able to

bind to the �279/�169 region of PRR9 (Figure 4H). This elements in circadian interlocking feedback loops.
The results presented here show that PRR7 and PRR9binding was effectively competed by two different frag-

ments of the PRR9 promoter containing the EE (�279/ play overlapping and distinct roles in the circadian clock,
being not only involved in the light input pathway but�169 and �244/�113). Mutation of the EE (EEmt) abro-

gated the ability of the �279/�169 fragment to compete, also in the central oscillator. In addition, as is seen for
TOC1, their expression is regulated by CCA1 and LHY,demonstrating that CCA1 bound specifically to the EE.

This ability of CCA1 to specifically bind PRR7 and PRR9 indicating that PRR7 and PRR9 might form additional
regulatory feedback loops.promoter elements, and the fact that CCA1 and LHY

protein levels peak a few hours before PRR7 and PRR9
Experimental ProceduresRNA levels, suggest that CCA1 and LHY directly regulate

PRR7 and PRR9 transcription. These transcription fac-
Plant Materials and Growth Conditions

tors are able to activate (this study; [26, 30]) or repress The Arabidopsis thaliana aprr7-3 and prr9-1 T-DNA insertion lines
transcription of target genes [4]. Although no transcrip- in the Colombia-0 (Col) background were isolated from the Salk

Collection (http://signal.salk.edu; aprr7-3 is SALK_030430, prr9-1 istion factor with such dual function has been described
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SALK_07551). Homozygous T-DNA insertion mutants were identified inhibitor cocktail [Roche]) and the cells disrupted using a probe
sonicator. After a high-speed spin, the supernatants were collected,from segregating F3 by PCR amplification of the T-DNA flanking

regions. We did not detect full-length RNA of the corresponding aliquoted, frozen in liquid nitrogen, and stored at �80�C. The probes
and competitor DNA fragments used in the assay were generatedgene in either mutant by Northern blot analysis (data not shown),

and therefore, prr7-3 and prr9-1 are loss of function mutations. by PCR using cloned promoter fragments as templates. For gel shift
assays, cell extract containing approximately 1 fmol of GST-CCA1The double mutant prr7-3 prr9-1 was generated using the prr9-1

homozygous mutant as pollen donor. Seedlings were grown on (or GST) was incubated with 8 fmol of the appropriate radiolabeled
probe in reaction buffer (20 mM HEPES [pH 7.2], 80 mM KCl, 0.1 mMMurashige and Skoog medium [34] with 0.8% agar and 3% sucrose

(MS). EDTA, 10% glycerol, 2.5 mM DTT, 0.07 �g �l�1 BSA, 8 ng �l�1 poly
dI-dC) and the appropriate unlabeled competitor DNA (competitor
DNA was added at 5, 10, 50, 100, and 500 M excess over labeledAnalysis of Circadian Rhythms
probe, as indicated). Reactions were incubated for 15 min at roomArabidopsis plants homozygous for the prr7-3, prr9-1, and prr7-3
temperature and then resolved by electrophoresis on 5% nondena-prr9-1 mutation were transformed with the CCR2::LUC reporter [5]
turing polyacrylamide gels. After drying, gels were imaged using aby Agrobacterium tumefaciens-mediated DNA transfer [35]. Wild-
PhosphorImager (Storm, Molecular Dynamics). Generation of con-type (Col) and prr7-3 prr9-1 were also transformed with the
structs and probes are described in Supplemental Data.CCA1::LUC� reporter (�319/�848, where �1 denotes the transla-

tional start site; see Supplemental Material). T2 seedlings for prr7-3
and prr9-1 and T1 seedlings for prr7-3 prr9-1 were grown for 6 days Supplemental Data

Supplemental data are presented in four figures and an extendedin light/dark cycles (12 hr light, 12 hr dark; 70 �mol m�2 s�1) on
gentamycin (75 �g ml�1) MS agar plates. Data on prr7-3 and prr9-1 Experimental Procedures section available with this article online

at http://www.current-biology.com/cgi/content/full/15/1/47/DC1.represent the average of seedlings from 2–3 independent trans-
formed lines. Resistant seedlings were transferred to MS plates
without selection for analysis. Bioluminescence rhythms of single Acknowledgments
seedlings under constant light conditions were analyzed as pre-
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