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Abstract

Metabolic syndrome is an array of closelymetabolic disorders that includes glucose intolerance/insulin resistance, central obesity, dyslipidemia, and hypertension.
Fructose, a highly lipogenic sugar, has profound metabolic effects in adipose tissue, and has been associated with the etiopathology of many components of the
metabolic syndrome. In adipocytes, the enzyme 11 β-HSD1 amplifies local glucocorticoid production, being a key player in the pathogenesis of central obesity and
metabolic syndrome. 11 β-HSD1 reductase activity is dependent on NADPH, a cofactor generated by H6PD inside the endoplasmic reticulum.

Our focus was to explore the effect of fructose overload on epididymal white adipose tissue (EWAT) machinery involved in glucocorticoid production and
NADPH and oxidants metabolism.

Male Sprague–Dawley rats fed with a fructose solution (10% (w/v) in tap water) during 9 weeks developed some characteristic features of metabolic
syndrome, such as hypertriglyceridemia, and hypertension. In addition, high levels of plasma and EWAT corticosterone were detected. Activities and expressions
of H6PD and 11 β-HSD1, NAPDH content, superoxide anion production, expression of NADPH oxidase 2 subunits, and indicators of oxidative metabolism were
measured. Fructose overloaded rats showed an increased potential in oxidant production respect to control rats. In parallel, in EWAT from fructose overloaded
rats we found higher expression/activity of H6PD and 11 β-HSD1, and NADPH/NADP+ ratio.

Our in vivo results support that fructose overload installs in EWAT conditions favoring glucocorticoid production through higher H6PD expression/activity supplying
NADPH for enhanced 11 β-HSD1 expression/activity, becoming this tissue a potential extra-adrenal source of corticosterone under these experimental conditions.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

First characterized by Reaven in the late 1980s [1], the metabolic
syndrome (MetS) is described as an array of closely associatedmetabolic
disorders, such as central obesity, hypertension, dyslipidemia, and
hyperglycemia/insulin resistance. MetS predisposes to type II diabetes
mellitus, atherosclerosis, and cardiovascular complications [2,3]. Inten-
sive research has proposed an important role for hexoses and fatty acids
in insulin resistance and β-cell dysfunction [4]. High consumption of
dietary fructose, primarily from sucrose and high-fructose corn syrup,
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has been implicated as a contributing factor to the development of MetS
[5,6] through deregulation of many molecular signaling pathways [7].

Glucocorticoids (GCs) are potent regulators of the energy metabo-
lism. The phenotype of the MetS is fairly similar to that of Cushing's
syndrome, such as central obesity, glucose intolerance, dyslipidemia
and hypertension, suggesting that enhanced GC action may be, at least
in part, responsible for the pathogenesis of the syndrome [8]. High intra
adipocyte cortisol levels have been proposed to be amajor determinant
of obesity and MetS in humans, promoting the differentiation of
preadipocytes, and decreasing insulin sensitivity [9,10]. Interestingly,
rodents under chronic GC exposure develop a phenotype similar to
MetS characterizedby impaired glucose tolerance, and alterations in the
adipose tissue lipid metabolism [11,12].

GC levels are regulated at the pre-receptor level by the enzyme 11
beta-hydroxysteroid dehydrogenase 1 (11 β-HSD1) located in the
endoplasmic reticulum(ER)membraneofmetabolic tissues suchas liver
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Table 1
General parameters and systolic blood pressure.

Parameter C-fed F-fed

Food intake (g/day) 23±3 16±4*
Liquid intake (ml/day) 14±2 50±5*
Caloric intake (KJ/day) 318±29 304±54
Body weight (g) 370±10 377±11
EWAT weight (g) 2.6±0.2 3.5±0.2*
EWAT weight/body weight (x103) 7.0±0.7 9.2±0.1*
Systolic blood pressure (mmHg) 114±1 129±1*

Rat general parameters were measured after 9 weeks of treatment in C-fed rats (chow
and tapwater) and F-fed rats (chow and 10% fructose (w/v) in the drinkingwater). Data
are presented as mean±S.E.M. (n=8 per group).
*pb0.05 F-fed vs. C-fed rats was considered statistically significant. EWAT, epididymal
white adipose tissue.

Table 2
Metabolic parameters.

Parameter C-fed F-fed

Fasting plasma glucose (mmol/l) 5.6±0.2 6.1±0.7
Plasma TG (mmol/l) 1.0±0.2 1.8±0.2*
Plasma corticosterone (nmol/l) 260±40 549±60*
EWAT TG (μmol/g) 92 ±12 173±22*

Parameters were measured after 9 weeks of treatment in C-fed rats (chow and tap
water) and F-fed rats (chow and 10% fructose (w/v) in the drinking water). Data are
presented as means±S.E.M. (n=8 per group).
*pb0.05 F-fed vs. C-fed rats was considered statistically significant. TG, triglycerides;
EWAT, epididymal white adipose tissue.
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and adipose tissue. In vivo, 11 β-HSD1 is a bidirectional and NADPH-
dependent enzyme. Predominantly, this enzymeacts as anoxoreductase
to regenerate the active GC receptor ligand cortisol (corticosterone in
rodents) from the inactive cortisone (11-dehydrocorticosterone in
rodents) [13–15]. As the ER membrane is relatively impermeable to
pyridine nucleotides, the co-localized enzyme hexose 6 phosphate
dehydrogenase (H6PD) plays a critical role in regulating the oxoreduc-
tase activity of 11 β-HSD1 by providing the cofactor NADPH within the
ER lumen [16,17].

The activity of 11 β-HSD1 is significantly increased in fat tissues from
obese humans and rodents [18,19], suggesting that chronically increased
11β-HSD1 activity inducesGC receptor activation and thereby promotes
obesity and its associated metabolic complications [20,21].

As was proposed, high nutrient (electron donor) intake of either
carbohydrates or lipids can lead to enhanced GC production, especially
in insulin-sensitive tissues that counter-regulate insulin action and
promotes nutrient storage, hence producing the most characteristic
features of the MetS [13,20]. In parallel, this high nutrient intake would
modify the oxidant/antioxidant balance considering that supplies
reducing equivalents for oxidant-producing systems, as NADPH
oxidases (NOX), and antioxidant systems, as glutathione (GSH) and
GSH-dependent detoxifying enzymes [22]. The final scenario of these
modifications in oxidativemetabolism is organ-specific and for adipose
tissue is still not completely understood [23,24].

Fructose overload has been proposed as a pathogenic cause of
MetS. However, it is not completely understood how fructose
predisposes to it. In line with this, the present study was designed to
evaluate if MetS developed in rats by fructose overload could be
related to an overproduction of GC and to explore the mechanisms
involved in terms of corticosterone, NADPH and oxidants metabolism.

2. Materials and methods

2.1. Animals and treatment

All procedures were in agreement with the “International Guiding Principles for
Biomedical Research Involving Animals 2012” performed by the International Council
for Laboratory Animal Science (CIOMS-ICLAS) and were approved by the local
Institutional Committee for the Care and Use of Experimental Animals, School of
Pharmacy and Biochemistry, University of Buenos Aires (Exp UBA 15097/2015).

Two months old Sprague Dawley rats weighing 150±20 g were housed under
conditions of controlled temperature (21–25°C) and humidity, with a 12 h light/dark
cycle. After one week of acclimatization, rats were divided into two groups (eight rats
per group): control group (C-fed) received tap water ad libitum and standard rat chow
diet in pellets with the following composition (w/w): 20% protein, 3% fat, 2% fiber, 6%
minerals and 69% starch and vitamins supplying 13.8 KJ/g (Asociación Cooperativas
Argentinas, Campana, Buenos Aires, Argentina) and fructose group (F-fed) received
fructose 10% (w/v) in the drinking water and standard rat chow diet during 9 weeks. At
the end of the treatment, food and liquid intakes were measured and caloric intake for
C-fed rats was calculated as energy ingested as food [foodweight (g) × 13.8 KJ/g], while
caloric intake for F-fed ratswas calculated as the addition of energy ingested as food and
fructose solution [food weight (g) × 13.8 KJ/g + fructose intake (ml) × 1.67 KJ/ml].

2.2. Blood pressure determination

Rats were trained to the procedure of indirect systolic blood pressure measurement
by the tail cuff method during 2 weeks prior to the sacrifice. The day before the sacrifice,
systolic bloodpressurewasmeasured using amicrophone connected to aGrassD.C. driver
amplifier (model 7DAC, Grass Instruments, Quincy, MA, USA) in series with a Grass
polygraph (model 79D, Grass Instruments, Quincy, MA, USA). The mean of three to four
consecutive readingswasusedas the reportedvalue of systolic bloodpressure for each rat.

2.3. Plasma and tissue collection

At the end of the treatment and after overnight fast, the rats were weighed,
anesthetizedwith ketamine (50mg/kg) and xylazine (1mg/kg), and bloodwas collected
by cardiac puncturewith a heparinized syringe before euthanasia by decapitation. Plasma
obtained by blood centrifugation (3,500xg at 4°C for 10 min) was frozen at −80°C for
further analysis. Plasma glucose and triglyceride (TG) levels were measured by means of
spectrophotometry (Metrolab 325 bd, spectrophotometer UV-Vis, Argentina) with
commercial kits for glycaemia (GOD/POD, enzymatic method) and triglyceridemia
(Color GPO/PAP AA), fromWiener Labs (Rosario, Santa Fe, Argentina). Epididymal white
adipose tissue (EWAT) was excised, weighed and immediately frozen at−80°C for later
determinations of enzymatic activities, TG content and Western blot analysis.

2.4. EWAT TG content

EWAT was homogenized in 5 % (v/v) of Triton-X100 in distilled water (0.1 g/ml)
and boiled three times before centrifugation at 10,000xg for 2min. The supernatant was
diluted 1:5 in the homogenization buffer and TG levels were measured [25].

2.5. Adipose tissue corticosterone detection

EWAT was homogenized in 1 vol (w/v) of PBS buffer (7.6 mM KH2PO4, 42.4 mM
K2HPO4, 150 mM NaCl, pH 7.4) using a manual homogenizer (PRO Scientific Inc., CT,
USA) and centrifuged at 600×g for 15 min at 4°C. 400 μl of the homogenate containing
internal standard (5 nM cortisone) were shaken for 30 s with 2 ml of ethyl acetate and
centrifuged at 2,000×g for 10 min at 4°C. The organic phase was transferred to a glass
tube and 1 ml of hexane and 1 ml of methanol:H2O (7:2) were added, shaken for 30 s
and centrifuged at 2,000×g for 10 min at 4°C. The hexane phase was aspirated to waste
and the aqueous methanol phase was evaporated under nitrogen at 40°C to dryness
[26]. The residuewas dissolved in 200 μl ofmobile phase [acetonitrile:H2O (30:70)] and
separated by HPLC-UV (Waters 515 HPLC Pump coupled to an UV detector 250 nm,
UVIS 204 from Linear Instruments, Reno, NV, USA) using a Phenomenex Luna 5 μm, C18,
150 mm × 4.60 mm column (Phenomenex, Torrance, CA, USA). Analytes identification
was done by using corticosterone standards (Sigma Aldrich Chemical Co., St. Louis, MO,
USA). The quantification limit of endogenous corticosterone was 20 ng/ml and the
method was linear in the range of 20–500 ng/ml [27].

2.6. Plasma corticosterone determination

Plasma concentrations of corticosterone were quantified by means of HPLC-UV
detection. Plasma corticosterone was extracted from 1 ml of sample with 100 μl of
internal standard (cortisone 1 μg/ml) and 4 ml ethyl ether:dichloromethane (60:40).
Themixture was shaken for 30 s and centrifuged at 2,000×g for 5min. The organic layer
was transferred into a conical tube and evaporated under nitrogen gas. The dry extract
was reconstituted with mobile phase [acetonitrile:H2O (30:70)] and separated by
HPLC-UV as depicted above.

2.7. Indicators of oxidative metabolism

Butylhydroxytoluene (BHT, 1% (w/v) final concentration) was added to plasma
aliquots to fluorometrically determine thiobarbituric acid reactive species (TBARS)
content using butanol to extract the complex formed according to Fraga et al. (1987) [28].
1,1,3,3-Tetramethoxypropane was used to prepare the standard of malondialdehyde
(MDA). The results were expressed as content ofMDA (μM). Plasmaα-tocopherol (α-TP)
was extractedwithhexaneandquantifiedby reverse phaseHPLC-ED(ColoumchemII, ESA
Inc., Bedford, MA, USA) at an applied oxidation potential of +0.6 V [29]. The oxidation of



Table 3
Oxidative metabolism.

Parameter C-fed F-fed

Plasma
TBARS (μmol MDA/l) 1.31±0.05 1.37±0.03
Carbonyl groups (nmol/mg protein) 6.1±0.6 6.0±0.3
α-TP/TG (nmol/mmol TG) 23±3 12±2*

EWAT
TBARS (nmol MDA/mg protein) 0.6±0.2 0.6±0.1
GSH content (μmol/mg protein) 68±7 37.1±1.0*
SOD activity (Units/mg protein) 7±2 7±1
CAT activity (nmol/mg protein.min) 15±5 15±3
GR activity (nmol/mg protein.min) 20±2 18±1
GPx activity (nmol NADPH ox/mg protein.min) 87±10 52±5*

Oxidativemetabolism-related parameters weremeasured after 9weeks of treatment in
C-fed rats (chow and tap water) and F-fed rats (chow and 10% fructose (w/v) in the
drinking water). Data are presented as means±S.E.M. (n=8 per group).
*pb0.05 F-fed vs. C-fed rats was considered statistically significant. TBARS, thiobarbituric
acid reactive species;MDA,malondialdehyde;α-TP,α-tocopherol; TG, triglycerides; GSH,
reduced glutathione; SOD, superoxide dismutase; CAT, catalase; GR, glutathione
reductase; GPx, glutathione peroxidase.
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Fig. 1. Fructose diet increases NADPH-dependent superoxide anion production and the expre
production was measured as the SOD-inhibitable chemiluminescence (CL) of lucigenin in the
subunits (B) p22phox, (C) p47phox and (D) gp91phoxwere analyzed byWestern blot in EWAT hom
representations of protein expressions normalized to the amount of β-actin or GAPDH estim
animals per group). *pb0.05 F-fed vs. C-fed rats was considered statistically significant.
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plasma proteins was determined spectrophotometrically through the reaction with 2,4-
dinitrophenylhydrazine, to detect carbonyl groups [30].

EWATwas homogenized in 154mMKCl, pH7.4 containing 3mMEDTA and sonicated
for 30s at4°C. Sampleswere centrifugedat600×g for 10minat4°C andsupernatantswere
delipidated and used to measure TBARS, total glutathione content, and enzymatic
activities. TBARS content was measured as detailed above and expressed as MDA content
(nmol/mg prot). Total glutathione content [reduced (GSH) and oxidized (GSSG)] was
determined spectrophotometrically after precipitation with 2% (v/v) perchloric acid. The
reaction was carried out using yeast-glutathione reductase (GR), 5,5′ dithio-bis-(2-
nitrobenzoic acid) and NADPH, reading the absorbance at 340 nm. GSSGwas determined
in the presence of 2-vinylpyridine, and GSH was calculated from the difference between
total glutathione and GSSG [31]. Superoxide dismutase (SOD) activity was spectropho-
tometrically determined, following the inhibition of adrenochrome [32]. Catalase (CAT)
activity was determined spectrophotometrically following the consumption of H2O2 at
240 nm [33]. GR activitywasmeasured according to Carlberg andMannervik (1985) [34],
with modifications: samples were incubated in 10 mM Tris–HCl buffer pH 7.0 in the
presence of 0.5mMGSSG and 0.15mMNADPH and the oxidation of NADPHwas followed
spectrophotometrically at 340 nm. Glutathione peroxidase (GPx) activitywas determined
spectrophotometrically following the enzymatic oxidation of NADPH at 340 nm in the
presence of 1 mM GSH, 1 mM NaN3, 0.15 mM NADPH and 0.25 U/ml GR [35].
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2.8. Determination of NADPH-dependent superoxide anion production

EWAT was homogenized in PBS buffer (7.6 mM KH2PO4, 42.4 mM K2HPO4, 150 mM
NaCl, pH 7.4) and centrifuged at 600×g for 20 min at 4°C. Supernatants were delipidated
and centrifuged at 10,000×g for 20 min at 4°C to obtain mitochondria-free homogenates,
used to measure lucigenin-enhanced chemiluminescence [36]. Briefly, samples were
added to vials containing 1ml of warm (37°C) 50mM potassium phosphate buffer pH 7.4
containing 5 μM lucigenin and 40 μMNADPH in the absence and the presence of 200 U/ml
SOD. Light emissionwasmeasured each 10 s for 10min using a LKBWallac 1209 Rackbeta
Liquid Scintillation Counter (Turku, Finland) in the chemiluminescencemode, and the area
under the curve was calculated. The results were expressed as arbitrary units (A.U./μg
protein.10 min).
A

2.9. Analysis of NADPH oxidase 2 (NOX2) subunits expressions

EWAT was homogenized in 1 vol (w/v) of ice-cold homogenization buffer (150 mM
NaCl, 50 mM, Trizma–HCl pH 8.0 containing 1% (v/v) sodium deoxycholate, 1 mM EGTA,
1 mMNaF, 1 mMphenylmethanesulfonylfluoride and 1 mM sodium pervanadate), and a
protease inhibitor cocktail 4% (Roche, Hertfordshire, UK). Samples were centrifuged at
10,000×g for 20 min at 4°C to discard cellular debris and nucleus. Supernatants were
delipidated and resuspended in 2X solution of SDS-sample buffer (62.5 mM Tris–HCl
buffer pH 6.8 containing 2% (w/v) SDS, 25% (w/v) glycerol, 5% (v/v) β-mercaptoethanol
and 0.01% (w/v) bromophenol blue) and heated at 95°C for 5 min. Protein extracts were
quantified by the Lowry method and equal amount of proteins (60 μg) was loaded onto
10% SDS-PAGE and transferred to PVDF membranes. After blocking for 1 h in 5% (w/v)
nonfatmilk,membraneswere incubated overnight at 4°Cwith the corresponding primary
antibodies (gp91phox (#5827), p47phox (#7660), p22phox (#11712), GAPDH (#25778), and
β-actin (#47778) from Santa Cruz Biotech Inc., Dallas, TX, USA) (1:1,000 in PBS buffer).
After incubation for 90min at room temperaturewith the correspondingHRP-conjugated
secondary antibodies (rabbit anti-goat IgG-HRP (#2768), mouse anti-rabbit IgG-HRP
(#2357), and goat anti-mouse IgG-HRP (#2005) from Santa Cruz Biotech Inc., Dallas, TX,
USA) (1:5,000 in PBS buffer), complexeswere visualized by chemiluminescence detection
(Pierce ECL Western blotting Substrate). Densitometry analysis of the bands was
performed using Image J (National Institute of Health, Bethesda, MD, USA). Protein
band densities were normalized to the β-actin or GAPDH content.
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Fig. 2. Fructose diet increases microsomal NADPH content in EWAT. Endogenous (A)
NADPH and (B) NADP+ contents were measured spectrophotometrically in microsomal
fractions of EWAT. Results are expressed asmean±S.E.M. (n=8per group). *pb0.05 F-fed
vs. C-fed rats was considered statistically significant.
2.10. Determination of cytosolic G6PD activity and microsomal NADPH and NADP+ contents

For the subcellular fractions isolation, 0.5 g of frozen EWATwas homogenized in 1ml
of homogenization buffer (30 mM Tris–HCl pH 7.4 containing 0.9 mM EDTA, 300 mM
sucrose, and 1mMGSH) [37]. The homogenates were centrifuged at 16,000×g for 15min
at 4°C. Pellets were discarded and the supernatants were delipidated and centrifuged at
65,000×g for 1 h at 4°C to obtain the cytosolic and the microsomal fractions [38].

Glucose 6 phosphate dehydrogenase (G6PD) activity was measured spectropho-
tometrically in the cytosolic fraction by detection of NADPH formation at 340 nm from
aliquots with 50 μg of protein in reaction buffer [100 mM glycylglycine pH 7.6
containing 10 mM MgCl2, 0.2 mM NADP+ and 2 mM glucose 6 phosphate (G6P)] [37].
NADPH andNADP+contents were determined in themicrosomal fractions as described
previously [39,40].

2.11. Determination of H6PD and 11 β-HSD1 activities and expressions

Theenzymatic activitiesweremeasured in themicrosomal fraction according to Tian et
al. by measuring the increase in the absorbance at 340 nm due to the conversion of NADP+

to NADPH in a Beckman Coulter TM DU 7400 spectrophotometer (Canton, MA, USA).
Considering that in the pentose phosphate pathway both H6PD and 6 phosphogluconate
dehydrogenase (6PGD) produce NADPH, the 6PGD activity alone and the total
dehydrogenase activity (H6PD plus 6PGD) were measured separately. Thus, the activity
of H6PD was calculated by subtracting the activity of 6PGD to the total dehydrogenase
activity [39]. To assay the enzymatic activities, 20 μl ofmicrosomes (1 μg/μl)were added to a
cuvette containing 50 mM Tris buffer pH 8.1, 1 mM MgCl2 and 0.1 mM NADP+ in the
presence of 0.2 mM glucose 6-phosphate and 0.2 mM 6-phosphogluconate to obtain total
dehydrogenase activity, or in the presence of 0.2 mM 6-phosphogluconate to assess the
activity of 6PGD [41].

11 β-HSD1 activity was measured spectrophotometrically according to Tian et al.
following NADPH consumption at 340 nm [41]. Briefly, 20 μl of microsomes (1 μg/μl)
C          F       C         F        C          F

H6PD

ββ-actin

B

C
-f
e
d

F
-f
e
d

0.0

0.5

1.0

1.5

2.0

H
6
P

D
/

-
a
c
t
i
n

 
(
A

U
)

*

β

Fig. 3. H6PD activity and expression are increased in EWATof F-fed rats. (A)H6PD activity
wasmeasured spectrophotometrically inmicrosomal fractions of EWAT. (B) Expression of
H6PD was measured by Western blot in EWAT microsomal fractions. Representative
immunoblots of three experiments in triplicate and graphical representations of protein
expressions normalized to the amount of β-actin estimated by densitometric analysis are
shown. Data are presented as means±S.E.M. (n=8 animals per group). *pb0.05 F-fed vs.
C-fed rats was considered statistically significant.



A

B

C

11ββ-HSD1

β-actin

C        F        C         F         C        F

Fig. 4. 11 β-HSD1 oxo-reductase activity and expression, and corticosterone levels are
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significant.
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were added to a cuvette containing 50mMTris buffer pH 8.1, 1 mMMgCl2, 2 mMNADPH
in the presence of 100 μM cortisone because cortisone is also a good substrate for the rat
11 β-HSD1 enzyme [15].

For thedeterminationofH6PDand 11β-HSD1 expressions inmicrosomes, EWATwas
homogenized as indicated in 2.10 and themicrosomal fractionwas isolated and processed
for Western blot analysis as described previously in 2.9. The primary antibodies were
11β-HSD1 (#20175),H6PD (#67394), andβ-actin (#47778) fromSanta CruzBiotech Inc.,
Dallas, TX, USA (1:1,000 in PBS buffer).

2.12. Statistical analysis

All data are expressed asmeans±S.E.M. Differences between groupswere analyzed
by Student's t test using Graph Pad Prism 6 software. Differences were considered
statistically significant at pb0.05 or less (C-fed vs. F-fed).

3. Results

3.1. Food intake, body weight and metabolic parameters in C-fed and
F-fed animals

At the end of the treatment, total body mass was similar between
C-fed rats and F-fed rats. However, EWATweight and its relative ratio to
total bodyweightwere significantly higher in F-fed rats, suggesting that
fructose overload induces adipogenesis and/or adipocyte hypertrophy.
In F-fed rats compared to C-fed rats, the food intake was significantly
lower meanwhile the fluid intake was significantly higher. The total
energy intake was unchanged between groups, suggesting a balance
between fructose consumption and solid diet intake. In addition,
systolic blood pressure was significantly higher in F-fed rats compared
to C-fed rats (Table 1).

Table 2 shows the metabolic parameters studied in plasma after
9weeksof treatment. Plasma fastingglucose remainedunchanged,while
TG showed a significant increase in plasma from F-fed rats compared to
C-fed rats. Interestingly, fructose overload led to significantly higher
levels of plasma corticosterone. EWAT TG levels in F-fed group were
significantly higher respect to C-fed rats, suggesting that fructose diet
increases energy accumulation in EWAT (Table 2).

3.2. Oxidative metabolism

We found no significant differences either in TBARS or in carbonyl
levels measured in plasma between the groups. Plasma ratio α-TP/TG
levels were significantly lower in F-fed rats compared to control rats
suggesting that plasma from F-fed rats were less protected against
lipid peroxidation.

In terms of markers of oxidative damage, although TBARS in EWAT
showed no differences, total GSH content was significantly lower in
F-fed rats compared to C-fed rats. Activities of the antioxidant enzymes
SOD, CAT and GR measured in EWAT were not affected by the
treatment; meanwhile GPx activity was significantly lower. These
results suggest a decreased capacity of EWAT to eliminate a potential
excess in hydrogen/organic peroxides production (Table 3).

NADPH-dependent superoxide anion production and the expres-
sions of NOX2 subunits p22phox, p47phox and gp91phoxwere significantly
higher in EWAT of F-fed rats compared to C-fed rats. These results
indicate a potential up-regulation of NOX2 activity by fructose overload
in EWAT (Fig. 1). G6PD activity, the most important regulator of the
cytosolic NADPH level, was significantly higher in F-fed rats respect to
the control group (C-fed: 3.0±0.2; F-fed: 4.7±0.5 nmol NADPH/mg
prot.min, pb0.05), suggesting a higher supply of this substrate for all the
enzymes requiring NADPH as electron donor in vivo.

3.3. Corticosterone metabolism in adipose tissue

In adipocytes, it was proposed that a hexokinase catalyzes the
phosphorylation of fructose to fructose 6 phosphate (F6P) [42], which
is transported into the microsomes, where it is isomerized to G6P for
H6PD activity [43]. We measured H6PD activity/expression and
NADPH content in microsomes isolated from EWAT of both experi-
mental groups. Respect to C-fed animals, NADPH microsomal content
was higher in F-fed rats, suggesting a higher H6PD activity within the
ER of adipose tissue in F-fed rats (Fig. 2). In line with this, the activity
and expression of H6PDwere significantly higher in microsomes from
F-fed rats respect to C-fed animals (Fig. 3).

It has been demonstrated that active GCs are generated by the
oxoreductase activity of the 11 β-HSD1 in the ER from adipocytes
incubatedwith F6P [43].Wemeasured the activity and expression of 11
β-HSD1 in EWATmicrosomes obtained fromboth experimental groups.
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The results showedhigher activity and expressionof 11β-HSD1 in F-fed
rats respect to C-fed group. In accordance, EWAT corticosterone content
was significantly increased in EWAT fromF-fed animals respect to C-fed
animals (Fig. 4).

4. Discussion

Our focus was to explore the effect of fructose overload on EWAT
machinery involved in GC production. We observed higher concen-
trations of corticosterone in EWAT from animals under fructose
overload, concomitantly with an increase of microsomal H6PD and 11
β-HSD1 activities and expressions, subtending the hypothesis that
fructose overload increases GC production in EWAT.

In this experimental model, the increased fructose consumption
was accompanied by a compensatory decrease in chow intake,
inducing no change in total energy intake. Although fructose overload
did not induce obesity, we reported an increased EWAT mass and TG
accumulation, which is consistent with hypertrophic adipose tissue
induced by fructose overload reported elsewhere [44]. A key aspect of
fructose metabolism is that its entry into the cell via fructokinase
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ex vivo superoxide anion production and NOX2 subunits expressions
in EWAT from fructose fed rats suggest a potential in vivo capacity for a
substantially increased oxidants production under the adequate
substrates/cofactors supply. However, in addition to the lack of
manifestation of systemic oxidative stress, EWAT did not show
increased lipid peroxidation, probably at the expense of GSH
consumption, suggesting a situation of controlled oxidants production
compatible with increased lipogenesis.

As fructokinase is not expressed in adipocyte cytosol, fructose is
metabolized by a hexokinase to F6P, which is transported to the ER
lumen. There, a luminal hexose-phosphate isomerase converts F6P into
G6P, substrate of the H6PD that generates NADPH necessary for the 11
β-HSD1 oxoreductase activity [43]. The switch from dehydrogenase to
oxoreductase activity of 11 β-HSD1 is associated to the microsomal
redox potential due to changes in the NADPH/NADP+ ratio [52]. It has
been proposed that the up-regulation of H6PD to generate NADPH
stimulates the local production of GC by 11 β-HSD1 [53] (Fig. 5).

Since 11 β-HSD1 is co-located with GC receptors in many cells, it is
ideally positioned to amplify the local GC effects [21]. Increased 11 β-
HSD1 activity/expression in the adipose tissue may be one of the key
events in the development of theMetS subtending the pathogenic role
of GC in insulin resistance [20]. Recently, fructose was found to be
superior to glucose in promoting the differentiation of 3T3-adipocytes
and in enhancing 11 β-HSD1 activity [54]. Moreover, transgenic mice
overexpressing 11 β-HSD1 selectively in adipose tissue had increased
adipose levels of corticosterone and visceral obesity, insulin resistant
diabetes, hyperlipidemia and hyperphagia [9]. As was previously
reported, fructose consumption increased 11 β-HSD1 and H6PD
expressions and elevated corticosterone level within the adipose
tissue [55–57].

In summary, we showed that fructose overload led to the
expansion of EWAT, concomitantly with the development of a
controlled increment in oxidant production and with alterations in
NADPH metabolism associated with increased GC production. In the
context of the hypothesis established by Senesi et al. (2010) [43] using
in vitro experiments, our results support that fructose overload in vivo
installs in EWAT conditions favoring GC production through higher
H6PD expression/activity, supplying NADPH for enhanced 11 β-HSD1
expression/activity. Under these experimental conditions, fructose
could be a potential reducing equivalent donor for conversion to
corticosterone in EWAT pointing it as one of the possible factors in the
pathogenesis of the MetS.
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