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Review

The S phase checkpoint: When the crowd meets at the fork
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Abstract

Accumulation of unrepaired DNA lesions is the biggest threat to genomic stability. DNA damage checkpoints create windows of time
that allow the cell to repair assaults on DNA in each phase of the cell cycle. When DNA lesions arise in S phase, however, the checkpoint
machinery must work to coordinate DNA replication and repair processes. In fact some upstream components of the DNA damage checkpoint
play parallel roles in maintaining the continuity of DNA replication and signaling to downstream components.
© 2005 Elsevier Ltd. All rights reserved.

Keywords:S phase checkpoint; DNA replication; DNA damage; ATM/ATR; Chk1/Chk2

C

1

p
d

ble to
re-
ase
t ma-

1
d

ontents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
2. When do cells activate an S phase checkpoint?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
3. What is sensed by the DNA damage checkpoint?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
4. What are the factors involved in S phase checkpoint?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

4.1. The sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
4.1.1. ATR/ATRIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
4.1.2. Rad17/9-1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
4.1.3. ATM and the MRN complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

4.2. The mediators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
4.2.1. Claspin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
4.2.2. Foci formation during the S phase checkpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

4.3. The effectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
5. Signaling to CDC25 and p53 during the S phase checkpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
6. Concluding remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

. Introduction

DNA lesions arise from many different sources and can

cells passing though S phase are the most suscepti
genotoxic stress[1]. Thus, in some cases cells have to
pair DNA lesions in S phase before the DNA polymer
encounters the damage, while in others the checkpoin
rovoke a broad spectrum of repair intermediates. While

amage to DNA can occur in all phases of the cell cycle,

∗ Corresponding author. Tel. +1 212 854 2557; fax: +1 212 865 8246.
E-mail address:clp3@columbia.edu (C. Prives).

chinery may have to allow bypass of lesions and repair the
damage later. This represents the most substantial difference
between the S phase checkpoint and the G1 and G2 check-
points. While in the latter the arrest of the cell cycle will
allow DNA repair, in the former DNA replication will slow

084-9521/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
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Table 1
Checkpoint homologs in different eukaryotes

Class of
checkpoint
protein

S. cerevisiae S. pombe Xenopus Mammalian

Sensors Rad24 Rad17 Rad17 Rad17
Dcd1 Rad9 Rad9 Rad9
Mec3 Hus1 Hus1 Hus1
Rad17 Rad1 Rad1 Rad1

Mec1 Rad3 ATR ATR
Dcd2/Pie1/Lcd1 Rad26 ???? ATRIP

Tel1 Tel1 ATM ATM

Mediators Rad9 Rhp1/Crb2 ???? BRCA1, 53BP1
Mrc1 Mrc1 Claspin Claspin

Effectors Rad53 Cds1 Cds1 Chk2
Chk1 Chk1 Chk1 Chk1

down as a consequence of repair processes. Nevertheless, the
S phase checkpoint shares components with the G1/S and
G2/M checkpoints. Many sensors, mediators and effector ki-
nases (summarized inTable 1) are common components of
checkpoints in all phases of the cell cycle.

DNA damage-checkpoint proteins are generally well con-
served and many of these proteins were initially identified in
yeast. Some of these proteins (e.g. Rads) were well charac-
terized before their cloning, thus the homonym of a certain
Rad is not necessary its homologue. Melo and Toczyski[2]
proposed a way to simplify nomenclature that we will follow
with slight modifications: when homologs are referred to col-
lectively we use the human name for a gene without prefix
(e.g. ATR); when we refer to a specific homologue the name
is preceded with a species-indicating prefix (h, human; sc,
S. cerevisiae; sp,S. pombe; and x, Xenopus) and the human
protein name for the same function will be given afterwards,
in parentheses (e.g. scRad17 (Rad1)).

2. When do cells activate an S phase checkpoint?

The deleterious effects on DNA integrity in S phase of
chemotherapeutic agents, UV light exposure, smoke and a
plethora of mutagenic stimuli have been described[3]. Per-
haps more relevantly, and unique to the S phase, not only ex-
t ducts
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m eaks
( as
f ir or
r te of
D

age
r shold
f e of
l te a
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of single stranded DNA (ssDNA) intermediates before the
intra-S phase checkpoint response is initiated. This may
relate to the fact that unperturbed replication accumulates
ssDNA. For example, inS. cerevisiae, while around 300 bp
of ssDNA accumulate during a normal S phase, 500 bp
of ssDNA will activate a checkpoint[8]. During the S
phase checkpoint the DNA repair machinery requires DNA
replication to continue[9,10]. In fact the replication-related
functions of DNA polymerase� (Pol �) and its interacting
partners are required for efficient checkpoint activation in
budding yeast[11]. DNA polymerase� (Pol �) primase
activity is also required for the S phase checkpoint[12,13].
All of the above suggest that the main function of the S phase
checkpoint is to maintain fork integrity. Cell viability results
as an indirect effect of prevention of DNA replication fork
catastrophe[14].

Another trigger of an S phase checkpoint is the direct
inhibition of essential components of the replication ma-
chinery. Compounds such as hydroxyurea (HU) and aphidi-
colin (APH) trigger the replication checkpoint. HU is a
ribonucleotide reductase inhibitor that leads to depletion
of the small pool of cellular deoxyribonucleotide triphos-
phates while the latter directly inhibits the activity of Pol
�. Treatment with these inhibitors leads to the accumula-
tion of stalled replication forks. It is important to high-
light that in this scenario the arrest is imposed on the cell
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ernal sources of mutagenic agents but reactive by-pro
f cellular metabolism can damage DNA. Indeed, perhap
ost dangerous type of DNA lesions, double strand br

DSBs), can arise during unperturbed DNA replication
orks pass though nicked DNA or through certain repa
ecombination intermediates, or when forks stall at a si
NA damage[4].
We can first ask what is the extent of DNA dam

equired to activate a checkpoint? It seems that the thre
or activation depends on both the number and typ
esions. While only a few DSBs can eventually activa
heckpoint[5–7], cells can handle a substantial accumula
nd the main function of the checkpoint is to protect
eplication fork from collapsing while DNA synthesis
talled [15]. It is likely that DNA strand breaks resultin
rom stalled replication contribute to the activation of

phase checkpoint. A more puzzling inducer of S p
heckpoint is hypoxia. The reasons for S phase accum
ion when oxygen levels are low are not yet clearly un
tood. Intriguingly, hypoxia does not cause detectable D
amage as measured by comet assays[16]. However, it ha
ot yet been determined if there are any hypoxia-re
NA repair intermediates that could trigger the checkp

esponse.

. What is sensed by the DNA damage checkpoint?

DNA lesions induced by different agents trigger the
ruitment of the repair and checkpoint machinery. Im
antly, checkpoint pathways respond to a broad varie
NA lesions with the result that different sets of repair pro
ind preferentially to particular classes of lesions ([17,18]and
eferences therein).

It is also well established that the sensor kinases o
NA damage-checkpoint pathway (ATM/ATR, discus
ellow) interact with DNA[4]. They likely recognize feature
f DNA such as topology or structure that are common t
NA lesions such as a repair-intermediate. Single stra
NA is one such a candidate for recognition and rec
ent of checkpoint molecules and in fact ATR can inte
ith ssDNA [19,20]. Interestingly, different types of repa
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processes such as nucleotide excision repair (NER) of UV in-
duced lesions[21] and the high fidelity homologous recombi-
nation (HR) repair of double strand breaks[22] among others
produce ssDNA intermediates. Stalled replication forks also
expose extended regions of ssDNA[8]. Consistent with this,
short patch base excision repair (BER) does not generate sig-
nificant levels of ssDNA and does not activate the DNA dam-
age checkpoint[23]. In cells ssDNA is always coated with
the essential protein RPA. Interestingly, mutated RPA causes
a defective checkpoint[6]. Furthermore, a link between RPA
and the activation of ATR has been established while the abil-
ity of ATR to bind purified ssDNA is greatly reduced when
the DNA is not coated with RPA[24]. Are there exceptions in
which checkpoint kinases are activated independently of ss-
DNA/RPA intermediates? DSB could represent an exception
since direct recognition of DSB by the checkpoint machinery
has been reported[25]. However, the DSB activated sensor
kinase, ataxia telangiectasia mutated (ATM)[26] is normally
bound to the Mre11–Rad50–Nbs1 (MRN) nuclease complex
[27]. In studies in which HR is inhibited, ssDNA accumulates
as a consequence of 5′–3′ exonuclease activities[6] thus sug-
gesting that the nuclease activity of MRN[28] plays a role in
the generation of ssDNA during DSB repair. Finally, it has
been proposed that DNA distortions can also activate ATM
[7] and the apparently damage-free hypoxia induced S phase
arrest could also represent a potential exception to this rule.
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the initiation, amplification and carrying through of the
checkpoint through phosphorylation of many different
targets. As an example, while ATR binding to the fork could
fairly be considered a very “upstream” event of this pathway,
its kinase activity is directly required for the activation of me-
diators, effector kinases and also molecules “downstream”
of the effector such as CDC25 and p53. Although the main
players of this network are introduced herein based on their
presumed timing of loading onto chromatin, the concept of
continuous and elaborate cross-talk between molecules must
always be kept in mind for a better understanding of this
process. The following are the main sensors of damage in
S phase.

4.1.1. ATR/ATRIP
ATM and ATR are required for DNA damage responsive

checkpoints in yeast and mammals. While hATM seems to
play a key role in responding to DSBs after ionizing radia-
tion (IR), hATR is activated after a wider variety of insults
including UV light, HU-dependent replication inhibition and
DNA methylation by methyl methane sulfonate (MMS)[26].
ATR, the primary S phase checkpoint kinase, plays roles in
both damage sensing and DNA replication. This is in con-
trast to ATM which may only sense damaged DNA. In fact,
the broader spectrum of ATR activating signals correlates
with the much higher lethality of ATR loss[4]. ATR binds to
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owever, it might be speculated that ssDNA could be
osed as a consequence of chromatin tension during

reatments.

. What are the factors involved in S phase
heckpoint?

Studies with yeast, invertebrates, frogs, and mam
ave revealed sets of proteins that play roles in the sign
athways involved in responding to extrinsic and intrin
amage during S phase. To a significant extent the rel
ene products are conserved both structurally and func
lly although differences and complexities exist. Follow

he same organization as inTable 1, we discuss below rece
ndings on the factors involved in sensing, mediating
ffecting the S phase checkpoint.

.1. The sensors

It is important to highlight that the S phase checkpoin
articular and the damage checkpoint in general cann
isualized as a linear pathway. In fact, the simple “upstre
ownstream” organization generally envisioned for m
ignaling mechanisms is not applicable to this intric
nd complex network. For example, the phosphoinos
-phosphate kinases (PI3Ks) ATM and ATR cannot
onsidered exclusively as upstream components of the
amage-signaling pathway. Instead they can be visua
s a functional core that directly coordinates and con
TRIP which works as a regulatory subunit[29–32]. Dele-
ion of ATRIP renders the cell effectively ATR-null[30].
TR can phosphorylate both ATRIP and RPA although
elevance of such phosphorylation is not known curre
33]. The ATR/ATRIP complex associates with RPA-coa
NA independently of any checkpoint proteins, which s
ests that this complex directly recognizes damaged D

n fact, direct binding of the ATR/ATRIP complex to sites
amaged has been shown in yeast. Further, in mamma

ocalization of ATR and ATRIP into nuclear foci suggest th
oint recruitment to sites of damage[30]. Although binding
f isolated scLcd1/Ddc2/Pie1 (ATRIP) to DNA has been
orted[25], this protein does not efficiently bind to DNA

he absence of scMec1 (ATR) suggesting that stable as
tion between these molecules is required for DNA bin

n vivo [34]. ATR not only binds to damaged DNA but h
lso been shown to interact with replicating DNA[35,36].
o associate with unperturbed DNA replication forks,
TR/ATRIP complex requires the previous loading of R
n replicating ssDNA[33]. This event does not require P
suggesting that ATR appearance in replicating forks t

lace even before Pol� recruitment (Fig. 1A). The early as
ociation of ATR with replication forks is consistent w
ts newly identified role in the modulation of the timing
rigin firing during unperturbed replication[37]. Other ATR

unctions in the absence of stress could include scannin
hanges in the speed and processivity of polymerases or
xtent of ssDNA accumulation at the fork. In all cases,
ctivation of ATR/ATRIP requires the independent load
f a second complex, Rad17/9-1-1, onto DNA.
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Fig. 1. Signal propagation at the stalled fork. (A) During the initiation phase of DNA replication the pre-RC MCM complex and CDC45 load onto origins of
replication. RPA binds to regions of single stranded DNA. ATR/ATRIP complexes are then loaded onto chromatin by direct binding to RPA. After Pol� primase
loading, Rad17/9-1-1 complexes are recruited to the newly unwound fork. It is not clear if the ATR/ATRIP complexes are actively signaling at this stage. (B)
During the elongation phase of DNA replication the RFC/PCNA clamp loading complex is loaded onto DNA. The DNA Pol� complex extends the leading
strand and Pol� synthesizes the lagging strand. Claspin is bound to the fork and Chk1 has a role in the maintenance of fork stability. (C) As a consequence of
blocked replication or repair of lesions on DNA, the S phase checkpoint is activated and the signal finally arrives to the replicating fork (see text) resulting in
slowing down of DNA replication. Fork asymmetry results from different rates of synthesis in the leading and lagging strands. Here Rad17/9-1-1 complexes
are more efficiently phosphorylated by ATR/ATRIP complexes. Phosphorylation is indicated by red dots. (D) Mediators and Chk kinases 1 and 2 are recruited
to sites of damage and are phosphorylated within nuclear foci. While mediators can contribute to the effectiveness of the S phase checkpoint in an effector
kinase-independent manner, activated Chks are released from foci and phosphorylate their targets CDC25 and perhaps p53. p53 transcriptional activity might
be modulated to ensure the reversibility of the arrest.

4.1.2. Rad17/9-1-1
A second complex required for effective checkpoint ac-

tivation in yeast and humans is the replication factor C
(RFC)/PCNA-like 9-1-1 complex. The 9-1-1 complex is
formed by three proteins: Rad9, Rad1 and Hus1 which cre-
ate a ring-shaped structure and thereby share structural and
functional similarity with the DNA polymerase processiv-
ity clamp PCNA[38–40]. Rad17 is similar in sequence to
the large subunit of replicating factor C (RFC) which opens
the PCNA clamp complex and loads it onto DNA and in
fact Rad17 forms a complex with the four small subunits
of RFC. Further, Rad17 binds to and is required for the lo-
calization of 9-1-1 clamp-like complex on DNA[34,41,42].
Accordingly, siRNA-mediated downregulation of hRad17 re-
sults in a strong reduction in hRad9 loading onto damaged

chromatin[43]. Similarly to ATR/ATRIP, the Rad17/9-1-1
complex associates with chromatin in a manner that requires
Rad17 interaction with RPA[43]. Rad17/9-1-1 also binds
to DNA during unperturbed replication although its recruit-
ment to the replication fork takes place later than the ar-
rival of ATR/ATRIP. This has been shown in extracts from
Xenopus laeviswhere xATR (ATR) associates with chromatin
before DNA polymerase� while xHus1 (Hus1) association
with DNA requires previous recruitment of DNA polymerase
� [44,45] (seeFig. 1A). Although binding of Rad17/9-1-1
and ATR/ATRIP to DNA are independent processes[43,46]
both complexes are required for a successful activation of
the checkpoint when DNA damage arises[43,47]. Both ATR
and ATM can phosphorylate Rad17 and Rad9 ([26] and ref-
erences therein). Rad17 phosphorylation by ATR requires
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both Rad17 loading onto chromatin and Rad17/Hus1 inter-
action which can take place during unperturbed DNA syn-
thesis[43]. After damage, the phosphorylation of Rad17 and
Rad9 by ATR is significantly enhanced as a consequence
of increased interaction between the 9-1-1 and DNA after
damage[43,48–50](Fig. 1C). hRad17 and hRad9 phospho-
rylation by ATM has also been documented (see[26] and
references therein). Disruption of hRad1 primarily affects
hATR-dependent activation of the effector kinase hChk1, but
does not affect hATM-dependent activation of the second ef-
fector kinase hChk2[51], thus providing further evidence
for a tighter functional interaction between Rad17/9-1-1 and
ATR. Relevantly, during unstressed replication Rad9 partic-
ipates in ATR signal to Chk1[52]. Although Rad17/9-1-1
association with DNA is essential for the activation of the
checkpoint, this complex is not required for the phosphory-
lation of all ATR substrates (see below). For example, ATRIP
is phosphorylated by ATR in the absence of the 9-1-1 com-
plex [29,31]and phosphorylation of the core histone H2AX
(see details in sections below) was observed in the absence
of this complex[53].

4.1.3. ATM and the MRN complex
As mentioned previously, DSBs can take place during un-

perturbed DNA replication as a consequence of stalled forks
or oxidative stress. Moreover, DSBs are necessary in cellular
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arrival of the checkpoint and repair machinery to DNA breaks
since the MRN foci strikingly disassembles at the time of re-
cruitment of the HR machinery to damaged DNA[55]. MRN
might also participate in the surveillance of unperturbed S
phase since it is retained in an insoluble chromatin bound
fraction during S phase independently of ATM or ATR[57].

While strong evidence demonstrates that ATR and ATM
are activated by different type of DNA damage they might
coordinately contribute to the resolution of the same DNA
lesions. In fact, the initial response to DSBs is strictly ATM-
dependent, but the ssDNA resulting from the processing of
DSBs promotes a slower activation of ATR which cooperates
with ATM in the maintenance of the intra-S phase checkpoint
and in the inhibition of late origin firing[37,59]. Confirming
the above, temporal analysis performed in living cells has
shown the initial recruitment of scMre11 and scTel1 (ATM)
to DSBs followed by the association of RPA with processed
ssDNA several minutes after Mre11[55]. Reciprocally, ATM
and MRN also cooperate with ATR in unperturbed cell cycle
progression. ATM is transiently activated during cell cycle
progression probably as a consequence of sporadic formation
of DSBs. A related finding is that xATM and xATR inhibition
by caffeine accelerates the initiation of DNA replication in
Xenopus probably by promoting the firing of adjacent origins
by S phase promoting kinase[37].
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rocesses such as VDJ recombination and meiosis. ATM
major role in sensing this particular type of damage[26] and
complex of three proteins Mre11, Rad50 and Nbs1 (Xr
east) termed the MRN complex contributes to recruitm
f active ATM to sites of DSBs[54,55]. Mre11 has an exon
lease activity[28] while Rad50 and Nbs1 stimulate Mre
nzymatic activity. Nbs1 has also a BRCA1 C-terminal
ain (BRCT) that is responsible for protein–protein in
ctions between checkpoint-related molecules (see als
ediators section of this review). In agreement with a ce

ole of the MRN complex in the processing of DSBs, the
f each component of this complex results in cancer p
iseases and their disruption in mice results in embry

ethality ([54] and references therein). In undamaged c
TM kinases are kept together as soluble inactive dim

7]. The exact mechanism of ATM activation by DSBs
ot been revealed but it involves ATM auto-phosphoryla
nd dissociation of ATM multimers[7] (reviewed in[56]).
ctivated ATM monomers phosphorylate soluble substr

see their section bellow) or are recruited to chromatin w
hey phosphorylate the MRN components which are alr
ocalized at the site of damage[57]. Reciprocally, the ke
unction of the MRN complex is likely ATM recruitment
SBs [26,58]. In keeping with a central role of the MR
omplex in ATM signaling, downregulation of both the AT
arget effector kinase Chk2 and MRN are necessary for
lete recovery of radioresistant DNA synthesis (RDS),
uggesting that two parallel pathways (ATM-Chk2 and AT
RN) cooperate during the intra-S checkpoint[46]. Further-
ore, this heterotrimeric complex might also coordinate
.2. The mediators

After ATM/ATR activation and phosphorylation of th
bove-mentioned sensors, a number of proteins are rec

o the damaged DNA. Once activated, many such protein
ain at the site of damage while others (Chk1 and Chk2

eleased to activate soluble targets[60]. Many of them ar
esponsible for the activation of self-amplifying rounds
ignals that ensure a sustained Chk1 and Chk2 respons
ng DNA damage and depletion of these proteins by siR
esults in RDS[61–64]. The following summarizes what
nown about their participation in signal propagation du
he S checkpoint. As with other S phase checkpoint fac
utations in genes encoding many of these proteins r

n genetic disorders associated with predisposition to m
ypes of cancers (see[26] and references therein).

.2.1. Claspin
The function of this highly conserved mediator relate

he activation of Chk kinases in S phase[65–67]. In yeasts
cMrc1 (Claspin) and spMrc1 (Claspin) are required
cRad53 (Chk2) and spCds1 (Chk2) activation respect
uring S phase[66,67]. In Xenopus, xClaspin is essential

he xATR-dependent activation of xChk1 after UV irradiat
r aphidicolin[68]. In mammals, Claspin phosphorylation
esponse to DNA damage and replication stress resu
ecruitment and phosphorylation of BRCA1 (see below)
ubsequent activation of Chk1[69]. Intriguingly, while xRPA
s required for xRad17 and xATR recruitment to chroma
Claspin loading onto DNA is independent of xRPA. T
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suggests that Claspin loads onto DNA just after its initial
unwinding[70] and is in keeping with its recently reported
ring shaped structure and high affinity for branched DNA
[71]. In fact, Claspin participates in unperturbed DNA repli-
cation in Xenopus and mammals[69,70]. Downregulation
of Claspin results in both slower cell proliferation[69] and
CDC25A upregulation[52]. Surprisingly, overexpression of
Claspin also leads to increased cell proliferation which may
suggest a dual role both as a tumor suppressor and as an onco-
gene[69]. Claspin also participates in adaptation processes
during long-term replication blockage. In fact, experiments
performed in Xenopus egg extracts have shown that during
long exposure to aphidicolin Claspin gets phosphorylated by
the Xenopus-Polo-like kinase (PLX1) which promotes both
Claspin removal from DNA, Chk1 inactivation and termina-
tion of the checkpoint[72]. Thus, through the modulation of
Chk1 activity, Claspin plays an essential role in DNA repli-
cation as well as the initiation and the termination of the
checkpoint response to damaged DNA.

4.2.2. Foci formation during the S phase checkpoint
A second group of mediators shares the capacity to

create multimeric complex (foci) at sites of damage[73].
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motif of H2AX [81,83,84]which might directly influence
the rate of exchange of mediators proteins onto DNA thus
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role in the checkpoint response, impaired H2AX contributes
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pparently promotes the local concentration of ATM/A
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nd downstream mingle”[26]. Although current microscop

echniques do not allow distinguishing which protein is
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hey participate together in checkpoint, replication and
air pathways. Importantly, many of them can inhibit R
nd promote cell survival after DNA damage independe
f Chk1 activation[46,74]. Thus, some of these mediat
uring the S phase checkpoint might work in a parallel
eparate pathway branch, which functions independen
hk kinases. Here too defective expression of many of

esults in genetic disorders with predisposition to many t
f cancers (see[26] and references therein).

.2.2.1. H2AX.Histone H2AX cannot be defined as
ediator protein but participates in the early steps of

ormation around damaged DNA. A critical function
2AX is related to holding broken chromosomal end
roximity [75]. While H2AX does not have a role in DN

esion recognition and is apparently randomly incorpor
nto nucleosomes[76], formation of multiprotein structure
round DNA lesions has often been monitored by d
ining the localization of the phosphorylated fraction
2AX. H2AX phosphorylation by ATM/ATR and take
lace rapidly after DNA damage or replicative stress[77,78].
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nitial ATM/ATR phosphorylation scRad9 (BRCT)-boun
cRad53 (Chk2) is fully activated by auto-phosphoryla
nd it is then released from scRad9 multiprotein compl
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ermed BRCA1-associated genome surveillance com
BASC) containing the tumor suppressor BRCA1
ther repair proteins have been reported[73]. BRCA1 is
hosphorylated by ATM or ATR[94,95]. ATR not only
hosphorylates but also colocalizes with BRCA1 in nuc

oci during stalled replication[95]. BRCA1 facilitates th
bility of ATM or ATR to phosphorylate some downstre

argets including Chk2, the tumor suppressor p53 and
ut does not affect ATM/ATR-dependent phosphoryla
f Claspin, Rad9, Hus1 and Rad17[69,96]. ATM positively
egulates BRCA1 in at least two ways: direct phospho
ion of BRCA1 at S1387 and phosphorylation of the BRC
nhibitor CtBP interacting protein (CtIP), thus resulting
timulation of BRCA1[97]. The interaction of BRCA1 wit
TM/ATR targets such as Chk2 may require remodelin
RCA1 by chaperone activities as demonstrated for sc

BRCA1) [98]. BRCA1/Chk2 interaction is transient[60]
nd complex dissociation is promoted by Chk2-depen
hosphorylation of BRCA1 at sites different than th
odified by sensor kinases[99]. BRCA1 is also required fo

he activation of the second effector kinase, Chk1, and
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Other activities of BRCA1, such as ubiquitin conjugat
re increased in BRCA1 foci during S phase and in resp
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to replication stress and DNA damage although the contri-
bution of this BRCA1 activity to the checkpoint awaits to be
tested[101]. It is also interesting to highlight that defects in
BRCA2, a tumor suppressor closely related to BRCA1, re-
veal that this protein participates in the maintenance of the
Y-shaped structure of stalled replication forks, and thus pro-
tects the genome from double strand breaks[102]. Taken
together, these data indicate a clear role of these mediators in
the maintenance of genomic stability during unperturbed or
stressed S phase progression.

4.2.2.3. MDC1.Mediator of DNA damage-checkpoint
protein 1 (MDC1) is another BRCT containing protein
with a central role in the S phase checkpoint. MDC1
binds to phosphorylated H2AX[103] and is required for
the recruitment of NSB1, one of the components of the
MRN complex to broken DNA[28,104]. Consistent with
this, downregulation of MDC1 results in defective ATM
activation [105]. MDC1 also promotes the assembly of
53BP1, BRCA1 into foci and facilitates the phosphorylation
of SMC1 (see bellow) by ATR[63,74,81,106,107]. Although
downregulation of MDC1 with siRNA does not completely
abolish Nbs1, Chk2, or other checkpoint responses, it causes
RDS[61].
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response[111].

4.2.2.6. FANCD2 (Fanconi Anemia complementation group
D2). Eight Fanconi Anemia proteins are essential for
sensing interstrand crosslinks in DNA. Several of these
proteins including FANCA, FANCC, FANCE, FANCF
and FANCG form a multimeric complex that promote the
mono-ubiquitination of FANCD2 after DNA damage ([112]
and references therein). FANCD2 is also a recently identi-
fied target of ATM[113,114]. These two post-translational
modifications, phosphorylation and mono-ubiquitination,
modulate different biological functions of FANDC2. While
the ATM-dependent phosphorylation of FANCD2 is required
for S phase arrest and thus might function as an amplifier of
the checkpoint signal[112], the ATM-independent mono-
ubiquitination of FANCD2 is ATM independent, is required
for localization of FANCD2 into BRCA1 foci which is
relevant for the crosslink repair functions of FANC2[115].
While foci recruitment of FANCD2 depends on BRCA1,
FANCDL, a novel E3 ligase component of the Fanconi
Anemia complex is responsible for FANCD2 ubiquitination
[116]. Ubiquitinated FANCD2 promotes recruitment of
FANCD1 (BRCA2) to chromatin, an event that appears to be
necessary for HR[117]. As with other mediators, FANCD2
interacts with MRN, and this interaction contributes to the
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ontaining protein important both for the intra-S and
heckpoint after IR[62,82,108]. 53BP1 regulates the pho
horylation of Chk2, BRCA1 and SMC1 (see below) at s
f damage after IR[62,82,108,109]. Moreover, defective lo
alization of BRCA1 to foci has been observed in 53B
utant cells[62] suggesting that there is sequential recr
ent of MDC1, 53BP1 and BRCA1 to foci.

.2.2.5. SMC1.Structural maintenance of chromosome
SMC1) is a component of the cohesin complex that is
uired for sister chromatid cohesion during S phase. S

s phosphorylated by ATM in an Nbs1[63,74] and BRCA1
106] dependent manner. In line with its reported phosp
ylation after exposure to a broad range of stimuli includ
R, HU and UV light[63], SMC1 is also phosphorylated
TR. Supporting the importance of the clustering activi
f Nbs1, SMC1 phosphorylation does not require prev
hosphorylation of Nbs1[110]. Downregulation of 53BP
as also been shown to impair phosphorylation of SM
y ATM [108] and interference with SMC1 phosphorylat
y ATM abrogates the S phase checkpoint[63,74]. Lack of
MC1 phosphorylation also results increased chromos
berrations after DNA damage[106] but the mechanism b
hich phosphorylated SMC1 prevents RDS is currently
nown. Recent evidence also suggests that both the ups
ignaling pathway required for SMC1 phosphorylation
vents downstream of SMC1 are not totally overlapping
he Chk1 pathway[111]. Consistently, while Chk1 activ
ion is mandatory for checkpoint activation, phosphoryla
f SMC1 is required for cell survival, thus suggesting
heckpoint in a pathway that does not apparently involve
ctivation of the effector kinases[114].

.2.2.7. BLM and WRN helicases.The formation and m
ration of reversed forks might be also required durin
hase checkpoint for successful repair of some DNA br

4]. Interestingly, the Bloom’s syndrome helicase (BL
nd the Werner’s syndrome helicase (WRN) which have
bility to catalyze the resolution of Holliday junctions
itro [118,119]are phosphorylated during replication blo
ge[120]. Phosphorylation of xBLM by xATR is also r
uired during unperturbed DNA replication and it depe
n xRad17 but not xClaspin[121]. In line with this, Bloom’s
yndrome (BS) cells display abnormalities in the timing
ormal replication and are hypersensitive to HU[122]. BLM
ssociates with and is phosphorylated by ATM[123]and ATR

124], colocalizes with H2AX, BRCA1 and Nbs1[123,125]
nd is required for correct relocalization of the MRN co
lex after replication blockage or IR[120]. Defective phos
horylation of BLM by ATR impairs recovery from blocke
phase suggesting indeed that the accumulation of dam
NA is dependent on fork instability[125,121]. Moreover
RCA1 and Nbs1 foci formation is defective in cells fro
looms syndrome patients[124].
A role of WRN in the S phase checkpoint has also b

emonstrated. In fact, alterations of the normal topolog
orks have been reported in Werner’s syndrome (WS)
126]. WRN is phosphorylated in an ATR/ATM-depend
anner during S phase and DNA damage checkpoints[127]
nd relocates into nuclear foci in response to DNA dam
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ing agents and colocalizes with RPA and Rad51[128,129].
The recruitment of BLM to DNA damage-induced foci de-
pends on a functional interaction with 53BP1[130]. WRN
also interacts with Pol� and may facilitate Pol�-dependent
replication and/or repair[131]. Importantly, WRN may also
be required for re-start of DNA replication and it could be
involved in the correct resolution of recombination interme-
diates that arise from replication arrest due to either DNA
damage or replication fork collapse[127].

4.3. The effectors

Two key effector kinases Chk1 and Chk2 play critical roles
in causing cell cycle arrest resulting from phosphorylation
of their substrates. Although these kinases are very differ-
ent in terms of their domain organization, upon activation
after the checkpoint initiation, they phosphorylate a number
of common targets[132] and have similar consensus phos-
phorylation sequences. While scRad53 (Chk2) is central for
the S phase checkpoint inS. cerevisiae, in higher eukary-
otes Chk1 is activated by ATR after a broad range of stimuli
while Chk2 is activated mainly by ATM[2]. Activation of
ATR/ATM and recruitment of BRCT proteins to DNA trig-
gers the subsequent re-localization of Chk1 and Chk2 pro-
teins to those multiprotein structures described above. After
IR, phosphorylation of Chk2 by ATM apparently takes place
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although Chk1 siRNA does not alter the cell cycle profile or
induce apoptosis in human cancer cell lines[141], dominant
negative Chk1 has been reported to affect genomic stability
under certain conditions[142,143]. Remarkably, an impor-
tant role of Chk1 in the maintenance of fork integrity has
been revealed. Both scMEC1 (ATR) and scRad53 (Chk1)
mutants cannot complete replication after release from repli-
cation block[144,145]. scRad53 (Chk1) is required to com-
plete replication after HU treatment by preventing collapse
of the fork when replication is paused[15]. Electron mi-
croscopy revealed that a scRad53 (Chk1) mutant accumu-
lates longer ssDNA and Holliday junctions caused by fork
reversal[8]. Importantly, while scRad53 (Chk1) promotes the
maintenance of replication “competence”, replication slow-
down takes place both in the presence and in the absence of
scMec1 (ATR) or scRad53 (Chk1). In the latter case how-
ever, replication will stop before completion. Thus, Chk1
“adapts” the replication machinery to a slower rate of pro-
cessivity preventing in that way its dissociation from DNA.
This suggests a central role of Chk1 in the re-start of DNA
synthesis[4]. Moreover, the Chk1 inhibitor, UCN-01, dis-
turbs both origin firing and fork viability when DNA syn-
thesis is stalled[146]. Based on these observations it is thus
surprising that ATR knockout mouse cell lines generated us-
ing the cre-lox system reveal that the replication checkpoint
is intact in the absence of both ATR and activated Chk1. The
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ut the nucleoplasm (Fig. 1D). Active Chk2 dimers can the
hosphorylate soluble substrates such as CDC25 protein
erhaps p53 although once activated Chk2 monomers
lso been shown to have activity[133]. Forced retention o
hk2 at sites of damage reduces the activation of one

argets, the tumor suppressor p53[60]. Other factors involve
n Chk2 activation are 53BP1[62], MDC1 [61,134], and the
uclease MRN complex[27].

The other effector kinase, Chk1, is targeted by both A
nd ATR after a broad range of stimuli such as UV lig
talled replication and some other drugs. In contrast to C
hk1 does not require dimerization or transphospho

ion for full activation[132]. However, optimal phosphoryl
ion of Chk1 requires interaction with BRCA1, Claspin a
ad17/9-1-1 complex formation[43,47,100,135].
Important differences in cell cycle-dependent expres

f Chk1 and Chk2 have been reported. While Chk1 is pre
n significant quantities only in S and G2 phases of the
ycle and is expressed at very low levels in quiescent
ifferentiated cells[136], Chk2 is present throughout t
hole cell cycle[137]. Similarly, mice which are null fo
oth ATR and Chk1 are not viable and fibroblasts der

rom their embryos die in culture in a manner resemb
itotic catastrophe[138,139]. More recently, Chk1 deficie

umor cell lines have been identified but, in line with a c
ral role of Chk1 during replication and stress, they exh
ultiple checkpoint and survival defects[140]. Furthermore
ecent identification of MAPKAP kinase-2 as a “Chk3” co
onent of the S phase checkpoint after UV irradiation
orts the likelihood of further complexity that might expl

hese observations[147]. Further, similar results were o
ained in an ATR−/−ATM−/− background thus supportin
he existence of an ATR/ATM-independent mechanism
revents mitotic entry[148] that could possibly depend
iffusible inhibitors described elsewhere[149]. Importantly,
espite the active ATR/Chk1-independent checkpoint,
nockout cells enter mitosis with chromosome breaks w
uggests that the DNA stabilizing functions of ATR/Ch
athway are not dispensable.

Despite their similar biochemical functions, the con
utions of Chk1 and Chk2 to development and surviva
trikingly different [139,150]. Biochemical data supports
arrower role of Chk2 that is time and species dependen

s more limited to DSB-induced checkpoint signals[46,151].
mportantly, human cells expressing functionally impa
hk2 manifest RDS thus suggesting a central role of C

n the intra-S phase checkpoint[151]. However, this is no
he case for Chk2 deficient mouse cells in which Chk1 c
ave compensated for that function[152]. In fact, Chk1 is
ow viewed as the “workhorse” kinase while Chk2 se
s an important amplifier whose contribution is particul

mportant for response to DSBs[132]. For example, th
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ty [153]. Consistent with a central role of Chk1 in the
hase checkpoint, its inactivation might be crucial for ch
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point reversibility. In fact, Claspin inactivation by Polo-like
kinase[72] and Chk1 dephosphorylation by PP1 ([154] and
references therein) are required for checkpoint recovery.

Finally, it is important to highlight that the original delin-
eation of ATM-Chk2 and ATR-Chk1 as parallel-independent
signals has been recently complicated somewhat by the
identification of cross talk between these pathways. In one
case ATM-independent activation of Chk2 has been reported
[150]. ATM-dependent activation of Chk1 has been docu-
mented as well after IR[153,155]and ATR regulates a late
IR response in mouse cells[148].

The most well studied targets of Chk1 and Chk2 are
CDC25 and p53 and the biological relevance of their phos-
phorylation for the S phase checkpoint is discussed exten-
sively in the next section. Other ATM-Chk2 targets identified
recently are TLK, which links chromatin remodeling to the
DNA damage checkpoint[156], PML [157], PLK3[158]and
E2F[159]. The implication of modulations in these proteins’
activity by the DNA damage checkpoint during S phase waits
to be unraveled.

5. Signaling to CDC25 and p53 during the S phase
checkpoint

The current view of the S phase checkpoint envisions
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consensus sequence in p53[165,167], Chks-independent
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the ATR/ATM/Chk1-independent DNA damage-signaling
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lines with particularly defective accumulation of the cyclin
kinase inhibitor p21[170–172]. Intriguingly as well, after
initiation or the hypoxic S phase checkpoint, p53 fails to
upregulate some of its targets including p21[168]. After IR,
although cells arrested in every phase of the cell cycle show
elevated levels of p21, p21 accumulation is not observed
in S phase arrested cells[173]. Moreover, a p53-dependent
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[182]. Moreover, p53 has been reported to prevent mitotic
entry when DNA synthesis is blocked[183]. The selective
regulation of p53 downstream signaling may serve to ensure
the effectiveness of the arrest-free checkpoint (Fig. 1E).

6. Concluding remarks

Of cellular checkpoints, the S phase checkpoint is the most
complex and elaborate. This is because it needs to respond
to endogenous and exogenous signals in a manner that en-
sures stability and fidelity of replication. It is clear that the
viability of organisms is highly unlikely in the absence of
many components of the S phase damage-checkpoint path-
way. Indeed increasing evidence demonstrates that the tasks
of these “DNA sentinels” are not relegated only to situations
of damage. They also participate in normal replication by
protecting the stability of replicating forks and the timing the
firing of origins of replication[37]. Furthermore, in some sce-
narios a group of checkpoint proteins is mainly in charge of
survival while in others they are primarily in charge of reduc-
tion in the rate of DNA synthesis (e.g.[111]). While substan-
tial progress in the understanding of this pathway has been
achieved, some interesting topics require further exploration.
There is still a great deal to learn about the roles of some of
the factors, in particular how RPA coordinates checkpoints,
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