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Abstract This paper presents DivClusFD, a new divisive hierarchical method for
the non-supervised classification of functional data. Data of this type present the
peculiarity that the differences among clusters may be caused by changes as well in
level as in shape. Different clusters can be separated in different subregion and there
may be no subregion in which all clusters are separated. In each step of division, the
DivClusFDmethod explores the functions and their derivatives at several fixed points,
seeking the subregion in which the highest number of clusters can be separated. The
number of clusters is estimated via the gap statistic. The functions are assigned to the
new clusters by combining the k-means algorithm with the use of functional boxplots
to identify functions that have been incorrectly classified because of their atypical local
behavior. The DivClusFD method provides the number of clusters, the classification
of the observed functions into the clusters and guidelines that may be for interpreting
the clusters. A simulation study using synthetic data and tests of the performance of

This work was supported by the Spanish Agencia Estatal de Investigación (AEI) and Fondo Europeo de
Desarrollo Regional (FEDER), Grant CTM2016-79741-R for MICROAIPOLAR project (to A. Justel and
M. Svarc) and Spanish Ministerio de Economía y Competitividad, Grant CTM2011-28736 (to A. Justel).

B Marcela Svarc
msvarc@udesa.edu.ar

Ana Justel
ana.justel@uam.es

1 Department of Mathematics, Universidad Autònoma de Madrid, Madrid, Spain

2 UC3M-BS Institute of Financial Big Data, Universidad Carlos III de Madrid, Madrid, Spain

3 Department of Mathematics and Sciences, Universidad de San Andrés, Victoria, Argentina

4 CONICET, Buenos Aires, Argentina

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-017-0290-1&domain=pdf


A. Justel, M. Svarc

the DivClusFD method on real data sets indicate that this method is able to classify
functions accurately.

Keywords Hierarchical clustering · Functional boxplot · Gap statistic

Mathematics Subject Classification 62H30

1 Introduction

Functional data analysis (FDA) is currently a very active area of research, mainly
because it has become very easy to collect and store data in continuous time. Although
generally each datum is recorded for only a finite number of time points, it is possible
to analyze the data as functions rather than as vectors (Ramsay and Silverman 2005).
The observations in this context are the entire curves.

Clustering methods attempt to classify similar objects into the same group and dis-
similar ones into different groups. The problem of unsupervised classification with
functional data is difficult to address because of the infinite dimensionality of the data
and the lack of a definition for the probability density of a functional random variable
(Jacques and Preda 2014b). Recently, a number of clustering methods based on differ-
ent strategies have been introduced.Under the assumption that the functions belong to a
Hilbert space, they can be represented by a series expansion using a convenient basis of
functions (themost common bases are the Fourier basis, Haar wavelets and other types
of wavelets); then, clustering can be performed on the finite vector of the first coeffi-
cients in the basis of functions in the series representation (Abraham et al. 2003; James
and Sugar 2003; Ray andMallick 2006). Functional principal component analysismay
also be useful to reduce the dimensionality of the data. In this case, clusters can be
found in the low-dimensional space of the first principal component scores (Bouveyron
and Jacques 2011; Chiou and Li 2011; Jacques and Preda 2013, 2014a). Some other
methods are based on the application of nonparametric clustering techniques with dis-
tances or dissimilarities specifically defined for functional data (Tarpey and Kinateder
2003; Tokushige et al. 2007; Ieva et al. 2013). Jacques and Preda (2014b) thoroughly
described the state of the art in this field, and more references may be found therein.

As in finite-dimensional clustering problems, there is no “one size fits all” method
for analyzing any data set, and the nature of the data should determine the procedure
to be used. In fact, there are clustering methods that show outstanding performance
on certain configurations of data but perform poorly for other data constellations.
Functional data sets present the peculiarity that the differences between clusters can
involve changes in level or shape. These changes may be maintained throughout the
domain of the functions or may affect only a given subregion. In functional data
classification problems, there is often no subregion in which all clusters are separated.

Considering the derivatives of observed functions can be very useful for highlight-
ing differences in shape that are not visible in trajectories. Keogh and Pazzani (2001)
used the first derivative to improve Dynamic Time Warping, and Alonso et al. (2012)
considered a distance based on derivatives in the supervised classification of func-
tional data. Moreover, the simultaneous exploration of trajectories and derivatives is
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of key importance because, in functional data, the different groups may differ in the
trajectories in some cases and in the derivatives of the observed functions in others.
The simple example with three groups that is shown in Fig. 1a illustrates this idea.
The functions of groups 1 and 2 are constant, although at different levels, whereas the
functions of group 3 have a constant positive slope. However, the levels of the func-
tions of group 3 are similar to those of the functions of group 1. In any region of the
domain of the functions, only two clusters can be identified, as shown in Fig. 1b (group
2 on one side and groups 1 and 3 on the other). Upon switching to first derivatives,
we observe that all derivative functions are constant. Groups 1 and 2 have null deriva-
tives, whereas the derivative of group 3 is positive. Upon analyzing any subregion of
the derivatives, we once again observe separation between only two clusters (groups
1 and 2 on one side and group 3 on the other). These clusters, which are shown in
Fig. 1c, are different from the clusters found using the original functions. In summary,
applying clustering methods to the trajectories allows the functions to be separated
by level, whereas when such methods are applied to the derivatives, the functions are
separated by shape. We will only succeed in identifying all three groups if we follow a
two-step clustering scheme. For instance, Fig. 1d illustrates a case in which two of the
groups are identified in the first step based on the difference in their trajectories, and
in the second step, the last of the groups is extracted based on the separation observed
between the derivatives.

Clusters of original func�ons

Clusters of first deriva�ve func�ons

(a)

(b)

(c)

Two-step hierarchical clusters
(d)

Fig. 1 a Set of artificial data: the light solid lines belong to group 1, the dark solid lines belong to group 2,
and the dashed lines belong to group 3; b clusters identified from the original functions; c clusters identified
from the first-derivative functions; and d two-step hierarchical clustering
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The aim of this paper is to introduce a new divisive hierarchical clustering method
designed specifically for FDA, named the DivClusFD method. The idea is to extend
the previously described two-step clustering scheme to include all steps of subdivision
that are necessary for identifying the complete cluster structure in a functional data
set. In each of these splitting steps, the DivClusFD method explores the functions
and their derivatives based on their discretizations into certain fixed points, seeking
the subregion in which the functions can be separated into the largest number of
clusters. A later review of all functions or derivatives in the same cluster enables the
reassignment of functions that have been incorrectly classified because of their atypical
local behavior. Such a global revision phase improves the cluster division, in the sense
of making it more resistant to outliers, and ends each splitting step. The output of the
DivClusFD method includes the number of clusters, the classification of the observed
functions and guidelines that may be for interpreting the clusters. The DivClusFD
method and some details of its practical implementation are introduced in Sect. 2. A
simulation study with synthetic data is presented in Sect. 3, and the performance of
the DivClusFD method on well-known real data sets is analyzed in Sect. 4; the results
reported in both sections indicate that our method is able to group functions accurately.
Conclusions are given in the last section.

2 The DivClusFD method of cluster construction

Let {X1, . . . , Xn} be a data set of n smooth real-valued functions defined on a compact
set [a, b], i.e., Xi : [a, b] → R. For i = 1, . . . , n, Xi can be seen as the realization
of a stochastic process, and for each t ∈ [a, b], Xi (t) can be seen as the realization
of a random variable X (t) of dimension one. Let Xl

i denote the l-th derivative of the
function Xi , and let{X1

1, . . . , X
1
n} and {X2

1, . . . , X
2
n} denote the sets of first and second

derivatives, respectively.
For functional data sets in which there might be a useful unknown grouping into

more than one cluster, two ideas motivate the appropriateness of a new hierarchical
procedure for cluster construction that considers both the observed functions and their
derivatives: (1) it may occur that no level differences are observed among functions
belonging to different clusters in any subregion, yet the functions may have different
shapes that can be recognized through differences in the levels of their derivatives,
and (2) there may be no subregion of the functions or their derivatives in which all
clusters are separated simultaneously.

The DivClusFD method begins by searching if the observed functions (or their
derivatives) differ in subregions of [a, b] and can provide a local clustering in such
subregions; in particular we look for the subregion where the number of induced
clusters (w.r. t. level or shape) is maximized. If the findings indicate a single group
throughout the subregions of the functions and their derivatives, the search ends. Oth-
erwise, there exist at least g clusters, where g is the largest number of clusters found.
The partition {C1, . . . ,Cg} of {1, . . . , n} identifies the indices of the functions that
belong to the same cluster. After assigning the functions to the clusters, the Div-
ClusFD method looks for possible divisions within each cluster. The same procedure
is repeated in each splitting step. That is, the DivClusFDmethod screens the functions
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and their derivatives within each identified cluster to divide them into groups based on
differences found in some subregion of the functions or their derivatives. This step is
repeated over each new cluster until no evidence of further cluster division is found.
This method of cluster construction can be considered to belong to the family of divi-
sive hierarchical methods, although it shows some small differences from traditional
hierarchical methods. In each splitting step of the DivClusFDmethod, each cluster can
be divided into more than two clusters. Moreover, the result of the last division step
does not provide as many clusters as there are data cases, as in traditional hierarchical
clustering.

The practical implementation of the DivClusFD method described above requires
specific criteria for the splitting of any cluster that includes functional data with indices
in a class that we denote as Cr = {i1, . . . , inr }. These criteria are necessary both for
finding the subregion with evidence of the largest number of clusters and for assigning
the functional data to the newly identified clusters.

For finding the subregion with evidence of the largest number of clusters, a grid of
N discrete points is defined in [a, b], a = t1 < t2 < · · · < tN−1 < tN = b. When we
evaluate all functions in the grid, the result is a univariate sample of size nr of X (t j ),
X j,0 = {Xi1(t j ), . . . , Xinr (t j )}.Wemight define twodifferent grids for the derivatives;
however, for simplicity, we evaluate the derivatives at the same points. Thus, X j,l =
{Xl

is
(t j ); s = 1, . . . , nr } is obtained as a univariate sample of Xl(t j ), for l = 1, 2 and

j = 1, . . . , N . The number of clusters in each X j,l is estimated using the gap statistic
(GS) (Tibshirani et al. 2001); the estimation procedure is summarized in Sect. 2.1. This
method of estimation also allows us to establish a criterion for choosing, in the case of a
tie, only one point tĵ and one feature l̂ (the functions or the first or second derivatives)
from among all those for which the estimated number of clusters is the largest. In
Sect. 2.3, we present an algorithm for subdividing any cluster using the DivClusFD
method,which includes the instructions thatmust be executed tomake these selections.

To assign the functions to the new clusters, we first apply the k-means algorithm to

the univariate sampleX
ĵ ,l̂ = {Xl̂

i1
(tĵ ), . . . , X

l̂
inr

(tĵ )} to find a partition {Cr1 , . . . ,Crk̂
}

of Cr , where k̂ is the largest estimated number of subclusters of Cr . Because this con-
struction is based only on the local information at tĵ , we next introduce a global revision

criterion that considers information obtained from the complete curves {Xl̂
i1
, . . . , Xl̂

inr
}

that are separated into the k̂ clusters by the partition {Cr1 , . . . ,Crk̂
}. Functional box-

plots (Sun and Genton 2011) are used to identify and reassign functions that have
been incorrectly classified because of their atypical behavior at tĵ . The definition and
construction of functional boxplots are summarized in Sect. 2.2, and the instructions
that must be executed by the division algorithm to perform the outlier diagnosis can
be found in Sect. 2.3.

2.1 Local estimation of the number of clusters with the gap statistic

Tibshirani et al. (2001) introduced the GS as a means of estimating the number of
clusters in a data set. This procedure has several advantages. It can be used to estimate
the number of groups based on any clustering strategy (we use the classical k-means
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algorithm). It is designed to be able to detect single class configurations; this represents
a major difference compared with most of the existing procedures for detecting the
number of clusters, which assume that there are at least two clusters. For the one-
dimensional case, the authors have proven some interesting theoretical properties.

In each splitting step of the DivClusFD method where a cluster Cr = {i1, . . . , inr }
is split into subclusters, we estimate the number of subclusters using the gap statistic
for the one-dimensional samples X j,l = {Xl

i1
(t j ), . . . , Xl

inr
(t j )}, for l = 0, 1, 2 and

j = 1, . . . , N . Hence, although it may be used for more general applications, we
describe the gap statistic only for one-dimensional samples and for the case in which
cluster partitions are obtained by using the k−means algorithm for Xl, j .

Fromnowon,we consider the estimation of the number of clusters in only one of the
X j,l samples; the procedure can be immediately extended to the remaining samples by
varying l and j . Let {Cr1, . . . ,Crk } denote the partition of Cr into k clusters obtained
using the k-means algorithm. Then, the pooled within-cluster sum of squares around
the cluster means is given by

Wk ≡ Wk( j, l) =
k∑

m=1

1

nrm − 1

∑

s∈Crm

(
Xl
s(t j ) − X̄ l

rm (t j )
)2

, (1)

where X̄rm is the mean of the the values Xl
s(t j ), with s ∈ Crm .

Tibshirani et al. (2001) based theirwork on the idea of assuming a single-component
null model and rejecting it in favor of a model with k > 1 clusters, where k is the
number of clusterswith the strongest evidence. Their proposalwas to compare log(Wk)

with its expected value under an appropriate null reference distribution of the data and
to estimate the number of clusters as the value k̃ for which log(Wk̃) falls farthest below
this expectation. They defined

Gapnr (k) = E∗
nr (log(Wk)) − log(Wk), (2)

where E∗
nr denotes the expectation value for a sample of size nr from the reference

distribution. This expected value is computed via bootstrap resampling. In the one-
dimensional case, Tibshirani et al. (2001) considered a uniform distribution as the
reference distribution since among all unimodal distributions, the uniform distribution
is the most likely to produce spurious clusters according to the gap test.

To estimate the number of clusters in X j,l = {Xl
i1
(t j ), . . . , Xl

inr
(t j )} with the gap

statistic defined in (2), we first compute for k = 1, . . . , K all partitions {Cr1 , . . . ,Crk }
of Cr using the k-means algorithm and calculate Wk as shown in (1), where the
boundary K must be fixed and is the maximally allowed number of clusters depending
on the computational effort for each set of data. Then, we estimate E∗

nr (log(Wk)) for
k = 1, . . . , K via bootstrap resampling as follows:

• Generate B random samples of size nr from a uniform distribution on the interval
[min(X j,l),max(X j,l)], i.e., Xl∗

i1,b
(t j ), . . . , Xl∗

inr ,b(t j ) for b = 1, . . . , B.
• For each sample, compute log(W ∗

k,b) for k = 1, . . . , K .

• Estimate E∗
nr (log(Wk)) as (1/B)

∑B
b=1 log(W

∗
k,b) for k = 1, . . . , K .
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The estimated gap statistic is given by

Gapnr (k) = 1

B

B∑

b=1

log(W ∗
k,b) − log(Wk), for k = 1, . . . , K .

The estimated number of clusters in X j,l = {Xl
i1
(t j ), . . . , Xl

inr
(t j )} according to the

gap statistic, k̃( j, l), is the smallest k such that

Gapnr (k) ≥ Gapnr (k + 1) − nsd

√
1 + 1

B
sd(k + 1), (3)

where sd(k + 1) is the standard deviation of the B replicates log(W ∗
k+1,b) and nsd is

a factor that measures the deviation (in terms of the standard deviation),which must
be prespecified. Tibshirani et al. (2001) suggested nsd = 1, but stronger rules can be
considered.

2.2 Functional boxplots for outlier detection in local clusters

Sun and Genton (2011) proposed the functional boxplot (FB) as an extension of the
classical one-dimensional boxplot for exploratory functional data analysis. For the
construction of a functional boxplot, they used the typical tools of descriptive statistics,
adapted to the particularities of functional data. A functional boxplot consists of an
envelope representing the central 50% of the functions, the median function and the
maximum non-outlying envelope. Finding the central region and the median function
requires a definition for the ordering of functions. Although there is no complete order
in any space of functions, depth measures are appropriate for ordering functions from
the center outward. Sun and Genton suggested using the band depth, which is a depth
measure for functional data that was introduced by Lopez-Pintado and Romo (2009).

As in the one-dimensional case, functional boxplotsmay highlight possible atypical
functions. This property is used in each splitting step of the DivClusFD method to

detect whether any function {Xl̂
i1
, . . . , Xl̂

inr
} from Cr is incorrectly classified with

regard to the k̂ clusters given by the partition {Cr1, . . . ,Crk̂
} of Cr . A function is

considered to be misclassified when it looks like the other functions in its own cluster
at t ĵ but ismore similar to the functions fromadifferent cluster in the rest of the domain.

To simplify the notation, we here describe the construction of a functional boxplot
for a generic sample of n functions {Y1, . . . ,Yn}. The detection of potential outliers
using functional boxplots proceeds as follows:

• Compute the band depths for the sample functional data Y1, . . . ,Yn and sort
the functions in decreasing order. Let Y[1], . . . ,Y[n] denote the functions ordered
according to decreasing band-depth, where Y[1] is the median (deepest) function
and Y[n] is the most outlying function (with the lowest band depth).

• Estimate the central 50% region for the functions as the band (in R
2) delimited

by the functions Y[1], . . . ,Y[M], where M = [ (n+1)
2 ] is the smaller integer not less

than n/2; this band is given by

C0.5 = {(t, y(t)) : t ∈ [a, b], min
r=1,...,M

Y[r ](t) ≤ y(t) ≤ max
r=1,...,M

Y[r ](t)}.
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This region is analogous to the inter-quantile range in the univariate case, and the
edges form the envelope of C0.5, which corresponds to the box in the functional
boxplot.

• Any function that, for at least one t , lies outside the inflated envelope obtained by
multiplying the range of C0.5 by 1.5 is usually considered a potential outlier. In
practice, the factor 1.5 can be adjusted to a higher value to be more conservative
with the non-outlying null hypothesis.

In each splitting step of theDivClusFDmethod,we consider any function Xl̂
u , where

u ∈ Crs ⊂ {Cr1 , . . . ,Crk̂
}, to be potentially incorrectly classified if it is identified as

a potential outlier in the functional boxplot computed for all functions with indices in
Crs , using an inflation factor of 3 for the envelope of C0.5, following the classical rule
to identify severe outliers with outer fences (Tukey 1977).

In the case that Xl̂
u is a potential outlier, we compute the k̂ different functional

boxplots for the functions with indices in {Cr1, . . . ,Crk̂
}, and we finally assign Xl̂

u
to the cluster for which it is most often inside the corresponding inflated envelope of
C0.5.

2.3 Algorithm for the division of clusters in the DivClusFD method

The DivClusFD method starts with a single group that includes all functions with
indices in C = {1, . . . , n}, and it iteratively looks for all possible divisions and sub-
divisions necessary for identifying the complete cluster structure in a functional data
set. The splitting process terminates when there is no evidence of any further cluster
structure within any group.

Each splitting step of theDivClusFDmethod is executed by the following algorithm,
which runs in two phases. In the first phase, a local search for clusters is performed
(local phase), and in the second phase, the functions are assigned to the clusters based
on the observed functions or their derivatives throughout the entire domain (global
phase). The algorithm can be applied for splitting the cluster Cr = {i1, . . . , inr }.
Local phase (cluster-structure search):

• Define a grid of discrete points in the interval [a, b], a = t1 < t2 < · · · < tN−1 <

tN = b.
• Evaluate all functions and first and second derivatives with indices in Cr at the
grid points to obtain Xl

is
(t j ) for s = 1, . . . , nr , j = 1, . . . , N and l = 0, 1, 2.

• For each possible univariate sample X j,l = {Xl
i1
(t j ), . . . , Xl

inr
(t j )}, where j =

1, . . . , N and l = 0, 1, 2, estimate the number of clusters k̃( j, l) using the gap
statistic as explained in Sect. 2.1.

• Estimate the number of clusters in {Xl
i1
, . . . , Xl

inr
} as k̂ = max j,l k̃( j, l).

• Find ĵ and l̂ such that k̃(ĵ , l̂) = k̂. In the case of a tie, choose the values of j and
l that maximize log(Wk̂( j, l)) − log(Wk̂+1( j, l)), where Wk̂( j, l) is given in (1).

• If k̂ = 1, then the group Cr = {i1, . . . , inr } is considered to form a single
cluster.
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• If k̂ ≥ 2, use the constructed k̂ subclusters for the following global phase that
builds the final clusters.

Global phase (assignment of functions to clusters):

• Let {Cr1, . . . ,Crk̂
} denote the partition of Cr into k̂ clusters obtained by applying

the k-means algorithm to the univariate sample X
ĵ ,l̂ = {Xl̂

i1
(tĵ ), . . . , Xl̂

inr
(tĵ )}.

Assign the functions {Xl̂
i1
, . . . , Xl̂

inr
} to the k̂ clusters based on their indices in the

partition {Cr1 , . . . ,Crk̂
}.

• Compute the k̂ functional boxplots, FBr1, . . . , FBrk̂ , for those functions among

{Xl̂
i1
, . . . , Xl̂

inr
}whose indices are inCr1 , . . . ,Crk̂

, respectively, following Sun and
Genton (2011) and as summarized in Sect. 2.2.

• For each s = 1, . . . , k̂, check for potential outliers among all functionswith indices
u ∈ Crs ⊂ {Cr1, . . . ,Crk̂

}.
• If Xl̂

u is a potential outlier in FBrs as explained in Sect. 2.2, let FBrs′ denote

the functional boxplot for which Xl̂
u most often lies inside the corresponding

inflated envelope of C0.5.
• If s′ 
= s, remove u from Crs and add it to the class Crs′ .• Otherwise, u remains in Crs .

• If Xl̂
u is not a potential outlier in FBrs , u remains in Crs .

The application of this algorithm to the functional data {Xi1, . . . Xnr } provides
estimates of the number of clusters k̂ and the partition {Cr1 , . . . ,Crk̂

} of {i1, . . . , inr }
with the indices for assigning the functions to the k̂ clusters.Additionally, the algorithm
also provides information that may be useful for interpreting the clusters: the point tĵ
and the feature l̂ (functions, first or second derivatives) for which the clusters are best
separated.

2.4 Issues regarding the practical implementation of the DivClusFD method

Considering again the example shown in Fig. 1, we find that the DivClusFD method
first separates the third group using the derivatives. In the second iteration, it separates
the first two groups using the trajectories, and it then ends the splitting process because
no further groups are found. The DivClusFD method succeeds in finding the cluster
structure of the three groups, and all functions are correctly classified. Ieva et al.
(2013) proposed a k-means clustering method for functional data that is also based
on information about the functions and their derivatives. Instead of using the classical
L2 norm, their method works in the Sobolev H1 space with the ordinary norm. Upon
applying the method of Ieva et al. (2013) to the same example and estimating the
number of clusters using either the gap statistic or the Calinski–Harabasz approach,
which are among the best-known procedures for estimating the number of clusters, it
is observed that neither of them detects the correct number of clusters.

In more realistic problems, the computation of the first two derivatives is not always
easy. This is the case when, in a set of functional data, the functions are observed at a
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number of consecutive points that are not equidistant or are separated with different
frequencies for each function. When the functions are observed without sampling
errors, they can be interpolated. Otherwise, it is necessary to use smoothing techniques
to transform the observations into functions that can be evaluated at any point t j .
Ramsay et al. (2009) discussed the properties of the main smoothing techniques for
functional data. Then the derivatives can be easily computed through differentiation
in both cases.

When the functions are observed without sampling errors, they can be interpolated.
Otherwise, it is necessary to use smoothing techniques to transform the observations
into functions that can be evaluated at any point tj. Ramsay et al. (2009) discussed the
properties of the main smoothing techniques for functional data. Then the derivatives
can be easily computed through differentiation in both cases.

The estimation of the number of clusters during the local phase of the algorithm
presented in Sect. 2.3 can be computationally expensive because for each discrete point
on the grid (t1, . . . , tN ) and each feature of the functions (l = 0, 1, 2), the limits of
the uniform distributions to be generated for calculating the gap statistics using (3) are
likely to be different. Thus, the finer the grid is, the more computationally expensive
the local phase will be. Without modifying the grid, we can make the algorithm faster
by generating the uniform samples more efficiently. For each univariate sampleX j,l =
{Xl

i1
(t j ), . . . , Xl

inr
(t j )}, we suggest rescaling the data to the interval [0, 1] as follows:

Zl
is (t j ) = Xl

is
(t j ) − min{X j,l}

max{X j,l} − min{X j,l} , for s = 1, . . . , nr .

Now, all uniform samples will be generated in the interval [0, 1]. This means that the
bootstrap resampling of Sect. 2.1 must be performed only once in each splitting step;
however, the same resampling cannot be used in all splitting steps because the size of
the uniform sample depends on nr , which changes with each new cluster subdivision.

3 Simulation study

To illustrate the performance of the DivClusFD method, we conducted a simulation
study using various artificial data sets that have been previously presented in the
literature for the clustering of functional data. In all cases, we report the number
of times that DivClusFD selects the correct number of groups. For these successful
examples, the correct classification rates (CCRs) are estimated with respect to the
known partitions.

Before applying the DivClusFD method, it is necessary to fix the values of some
parameters related to the gap statistic. In general, we followed the suggestions in
Tibshirani et al. (2001), except for nsd in (3). In each splitting step, we set nsd = 3
because we prefer to be more conservative, with a null hypothesis of a smaller number
of clusters. Because DivClusFD iteratively searches for the cluster structure, we prefer
to underestimate the number of clusters in each step because if a cluster division is
missed in one step, it will be found in future iterations. It is not necessary to use
more than 500 bootstrap samples to compute (3). The maximum number of partitions
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calculated using the k-means algorithm is K = 5. This default option can be increased
until (3) is satisfied.

In the global phase for the assignment of functions to clusters, a minimum of 10
functions is required to compute a functional boxplot. The minimum cluster size to
continue dividing a cluster was also set to 10 functions. We used the same values for
all simulations and real-data examples.

3.1 Sampling errors in the functions

Sangalli et al. (2010a) introduced threemodels for curve generation.We followed their
models for data generation with the aim of examining the performance of the Div-
ClusFD method on cluster structures with different amplitudes and curve registration
problems.

Model A: Two clusters of n/2 functions each, generated as follows:

Xi (t) = (1 + ε1i ) sin (ε3i + ε4i t)

+(1 + ε2i ) sin

(
(ε3i + ε4i t)2

2π

)

for i = 1, . . . , n/2, (4)

Xi (t) = (1 + ε1i ) sin (ε3i + ε4i t)

−(1 + ε2i ) sin

(
(ε3i + ε4i t)2

2π

)

for i = n/2 + 1, . . . , n. (5)

Model B: Two clusters of n/2 functions each, with the first group generated following
(4) and the second group generated as follows:

Xi (t) = (1 + ε1i ) sin

(
ε3i + ε4i

(
−1

3
+ 3

4
t

))

− (1 + ε2i ) sin

((
ε3i + ε4i

(− 1
3 + 3

4 t
))2

2π

)

for i = n/2 + 1, . . . , n. (6)

Model C:Three clusters of n/3 functions each, with the first group generated following
(4), the second group generated following (5) and the third group generated following
(6).

We simulated 200 data sets of size n = 90 for each model. All errors ε1i , . . . , ε4i
were independent and normally distributed with a mean of 0 and a standard deviation
of 0.05. Figure 2 shows three examples of sets of 90 curves generated using models
A, B and C.

For each model, Table 1 reports the percentage of data sets for which DivClusFD
finds the number of clusters indicated in the first column. In almost all cases, Div-
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Fig. 2 Examples of data sets consisting of functions simulated using models A, B and C

Table 1 Distributions of the
number of groups found by
DivClusFD and the
corresponding mean CCRs

Number of clusters Model A Model B Model C

2 88 99.5 0

3 12 0.05 75.5

4 0 0 23.5

5 0 0 1

Mean CCR 99.67 99.96 99.45

ClusFD finds the correct number of clusters. The result is poorer for model C, which
also presents the most challenging problem, with 75.5% of the identifications being
successful. When the number of clusters is not identified correctly, an additional clus-
ter is found in most cases. We observed that in these cases, one of the original clusters
is erroneously divided into two and the other clusters are identifiedwithout error. Table
1 also presents the mean CCRs, calculated using only data sets for which the number
of clusters is correctly identified. It is clear that DivClusFD demonstrates outstanding
performance in these cases.

Finally, we compare our procedure with other clustering methods for functional
data that are available in R, namely, funclust (Jacques and Preda 2013), multivariate
funclust (Jacques and Preda 2014a), funHDDC (Bouveyron and Jacques 2011) and
kmeans.fd, which is a k-means procedure for functional data that is included in the R
package fda.usc (Febrero-Bande et al. 2012). In all cases, the number of clusters must
be specified beforehand. Table 2 presents the mean CCRs for these four procedures.

Table 2 Mean CCRs for
funclust, multivariate funclust,
kmeans.fd and funHDDC

Model A Model B Model C

funclust 75.62 73.57 48.48

multivariate funclust 84.29 81.23 60.9

kmeans.fd 67 76.77 68.45

funHDDC 85.81 47.39 37.86
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It is clear that DivClusFD outperforms all four clustering strategies, as it has a higher
CCR for each model.

3.2 Sampling errors in the observations

We simulated 200 data sets, each consisting of four clusters that were generated using
a model similar to that introduced by Serban and Wasserman (2005) . Each cluster
contains 150 functions, generated by

Xi j (t) = f j (t) + εi (t),

for t ∈ [0, 1], i = 1, . . . , 150 and j = 1, . . . , 4,

where

f1(t) = min

(
2 − 5t

2
,

(
2 − 5t

2

2

sin

(
5π t

2

)))
,

f2(t) = − f1(t), f3(t) = cos(2π t) and f4(t) = − f4(t).

Serban andWasserman (2005) assume independent errors, while we assume corre-
lated errors from a Gaussian process. For all the functions, ε(t) is normally distributed
with mean of 0.4, a standard deviation of 0.9 and a covariance structure given by

ρ (s, t) = 0.3 exp

(
− (s − t)2

0.3

)
, for s, t ∈ [0, 1] .

Figure 3a, b show one of the generated data sets and the corresponding data set
obtained after smoothing with B-splines, respectively. Each color represents one the-
oretical cluster. Figure 3c, d display the first two derivatives of the functions. To avoid
boundary effects, we reflected one third of the observations at the beginning and end

0 0.5 1

(b)
0 0.5 1

(c)
0 0.5 1

(d)
0 10.5

(a)

Fig. 3 a A simulated data set with sampling errors in the observations; b the smoothed data set; c the first
derivatives; and d the second derivatives
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Table 3 Mean CCRs for
funclust, multivariate funclust,
kmeans.fd, funHDDC and
DivClusFD

Clustering procedure Mean CCR

funclust 40.05

multivariate funclust 43.74

kmeans.fd 60.12

funHDDC 63.21

DivClusFD 99.85

of each function. We again compare our method with other clustering procedures for
functional data: funclust, multivariate funclust, funHDDC and kmeans.fd. For these
other methods, the number of clusters was given as an input. Table 3 presents the
mean CCRs for the 200 data sets. It is important to emphasize that DivClusFD always
identifies four groups and has a much higher mean CCR than the other procedures,
achieving perfect classification for most of the replicates.

4 Real-data examples

4.1 Berkeley Growth Study data

The Berkeley Growth Study is one of the best-known long-term development investi-
gations ever conducted, and the height growth data set introduced by Tuddenham and
Snyder (1954) has been used as a reference to evaluate various methods of functional
data analysis. This data set, consisting of the heights of 54 girls and 39 boys measured
between 1 and 18 years of age at 31 unequally spaced time points, is considered to
be one of the most challenging data sets for clustering purposes. More measurements
were taken during the later years of childhood and adolescence, when growth was
more rapid, and fewer during the early years, when growth was more stable. Conse-
quently, to compute the first two derivatives, we needed to transform the observations
into functions that could be evaluated at any point in time. We employed a monotonic
cubic regression spline smoothing, as suggested by Ramsay et al. (2009). Figure 4a
shows all of the functions without gender identification to offer a clear idea of the
difficulties that any clustering method will face when confronted with this data set.
The derivatives, shown in Fig. 4b, do not present a more tractable scenario.

Our first objective was to test the effectiveness of the DivClusFD method in deter-
mining the number of groups in this data set without regard to gender information.
Second, we used the output of DivClusFD to classify the children. The information
obtained from the splitting steps provides guidance for understanding the differences
among the clusters.

Using the same parameters as in the simulation study, the DivClusFD method
identifies two clusters. In the local phase, the algorithm presented in Sect. 2.3 finds the
evidence in the first derivative (growth rate) at an age of 14, which is coincident with
the end of puberty in girls but not in boys. In the final classification of the data, one
cluster is coincident with boys (orange curves in Fig. 4c–f) and the other with girls
(green curves in Fig. 4c–f). Only the 10 functions highlighted with thicker lines are
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Fig. 4 a, b Height curves and their derivatives, respectively, of 54 girls and 39 boys measured between 1
and 18 years of age; c, d original and derivative functions, respectively, of the two clusters identified using
the DivClusFD method (the curves in the cluster of “mostly boys” are shown in orange, and the curves in
the cluster of “mostly girls” are shown in green); e, f original and derivative functions, respectively, of the
two clusters that include most of the boys (top) and most of the girls (bottom). The thicker lines represent
curves that are misclassified by DivClusFD (color figure online)

misclassified. They correspond to nine girls with late puberty and one boy with early
maturity. The CCR is 89.25%.

This data set has recently been used by Jacques and Preda (2014a) to compare
several clustering methods for functional data. All analyzed methods make use of the
prior information that the number of clusters is two, which could suggest that a priori,
DivClusFD should be less competitive. However, the CCRs for the other methods are
not always superior: funclust-CCR= 69.89% (Jacques and Preda 2014a), multivariate
funclust-CCR = 53.76% (Jacques and Preda 2014a), funHDDC-CCR = 96.77%
(Bouveyron and Jacques 2011), fclust-CCR = 69.89% (James and Sugar 2003), and
kCFC-CCR = 93.55% (Chiou and Li 2011). The results of DivClusFD are closer
to those of the most successful methods (funHDDC and kCFC) than to funclust and
fclust. In addition, the output of DivClusFD also includes an estimate of the number
of groups and provides assistance in interpreting the clusters.
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Sangalli et al. (2010b) also analyzed this data set. Although they found more evi-
dence for the existence of a single cluster, they analyzed the case of two clusters, for
which the best CCR obtained was 88.17%.

4.2 ECG200 data

The 200 electrocardiograms in the ECG200 data set can be found on the UCR Time
Series Classification and Clusteringwebsite (Chen et al. 2015). The data set consists of
two groups, one with 133 and the other with 67 electrocardiograms, each one recorded
at 96 equally spaced instants. The left side of Fig. 5 shows the electrocardiograms ( f )
and their first ( f ′) and second ( f ′′) derivatives for both clusters (orange and blue
functions). This data set has been analyzed by Jacques and Preda (2014a), among
others, using the same clustering procedures as in the previous example except for
kCFC. The results are funclust-CCR = 84%, multivariate funclust-CCR = 60%,
funHDDC-CCR = 75%, and fclust-CCR = 74.5%.

The tree structure in the central part of Fig. 5 shows the results of the splitting
steps followed by the DivClusFD method to find the cluster structure, using the same
parameters as in the simulation study. In the first splitting step, DivClusFD detects
two clusters using the information provided by the electrocardiograms at t = 43.
In the second splitting step, the maximum number of clusters estimated in the first
cluster is one; therefore, it is a terminal node. The majority (35) of the functions in
this cluster are blue, and 19 functions are orange. In the next splitting step, the other
cluster is divided into two clusters at t = 41, based on the information from the first
derivatives. One cluster is a terminal node with 99 orange functions and only 7 blue;
the latter may be misclassifications. In the last splitting step, the remaining functions

Fig. 5 On the left panel, the electrocardiograms ( f ) and their first ( f ′) and second ( f ′′) derivatives for the
two clusters (blue and orange) of the ECG200 data set; in the central panel, the results of the splitting steps
performed by the DivClusFD method; on the right panel, the final classification obtained by DivClusFD
(color figure online)
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are separated into two clusters at t = 24, based on the information from the second
derivatives. The green functions are a terminal cluster with 21 blue functions and 15
orange. Finally, the last four functions cannot be separated because of the small size
of the group (under 10). When we analyze these functions, we find that they can be
considered outliers. Some authors eliminate these electrocardiograms at the beginning
of the analysis; see, for instance, Jacques and Preda (2014a).

The right side of Fig. 5 shows f , f ′ and f ′′ for the final three clusters and the four
outliers. The four outliers appear in dark green. Although this data set contains only
two clusters and we identify three, it can be seen from the results that the cluster found
in the second splitting step can be considered the same as the original cluster of orange
curves, with 7 functions that are misclassified. Under the assumption that the original
cluster of blue electrocardiograms is the union of the other two (blue and green), the
CCR is 79.08%. For this calculation, we have excluded the four outliers to compare
the results of DivClusFD with those of Jacques and Preda (2014a).

The classification obtained by DivClusFD is very good in comparison with those
of the other methods. Although DivClusFD-CCR is not the highest CCR, note that the
other methods start from an advantageous position by assuming the known number of
clusters. DivClusFD is outperformed only by funclust.

It is important to remark that if the global phase is ignore, the clustering structure
changes as follows: (1) in the first splitting step the terminal node has one more
function; (2) in the second splitting step, the terminal node has 22 additional functions;
(3) the final clustering structure is different and the CCR of the procedure ignoring
the global phase decrease to 77.5%.

4.3 Italy Power Demand data

The Italy Power Demand data set can also be found on the UCR Time Series Classifi-
cation and Clustering website (Chen et al. 2015). This data set contains two clusters:
cluster 1, with 513 power demand functions (see Fig. 6a), and cluster 2, with 516
functions (see Fig. 6b). Note that there are two different patterns of consumption in
each cluster. All functions were observed at 24 equally spaced time points throughout
a day. The data were smoothed with six equally spaced knot splines (choosing more
knots led to similar results). To prevent boundary effects, we reflected one third of
the observations at the beginning and end of each function. DivClusFD was executed
with the same parameters as in the previous examples.

The DivClusFD method finds, through two splitting steps, the four clusters shown
in the tree in Fig. 7, identifying both the original clusters and the two different patterns
of consumption within them. All partitions are based on information provided by the
first derivatives, at t = 7, t = 23 and t = 9. The final classification is shown on
the right side of Fig. 7. The orange functions constitute cluster 1, whereas the green
functions make up cluster 2. The darker green and orange functions are misclassified
power demand functions. Upon collapsing the four clusters into only two, we can
calculate a CCR of 93.49%.

From the hours and the function feature bywhich the clusters are identified, it can be
observed that the clusters are characterized by the different rates at which consumption
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Fig. 6 Power demand functions throughout a day in Italy: a the 513 functions in cluster 1 and b the 516
functions in cluster 2

increases in the morning (7–9 h) and decreases at the end of the day (23 h). Similar
patterns are observed in data from home consumers of electric power in the City of
Buenos Aires, Argentina (see Fraiman et al. 2008).

Fig. 7 Results of the two splitting steps performed by DivClusFD to classify functions describing power
demand in Italy. The first derivatives are shown for all iterations

123

Author's personal copy



A divisive clustering method for functional data with...

Finally, we challenged our procedure with the same clustering procedures that we
considered in Sect. 3. The results are funclust-CCR = 51.02%, multivariate funclust-
CCR = 51.6%, funHDDC-CCR = 53.16%, and kmeans.fd-CCR = 55.2%.

5 Conclusion

In this paper, we propose the DivClusFD method, a new divisive hierarchical clus-
tering method for functional data. It simultaneously provides the number of clusters
and the classification of the observed functions. Because we are interested in identi-
fying cluster structures that are related to not only the levels of the functions but also
their shapes, the DivClusFD method also analyzes the first and second derivatives of
the functions. DivClusFD is a divisive procedure that iteratively splits a sample into
clusters by searching for the points on a grid, defined during the local phase of the
clustering algorithm for the functions and their derivatives, that offer the highest clus-
tering capability according to the gap statistic criterion. Functional boxplots for each
identified group are used for the reallocation of possibly misclassified data. Moreover,
DivClusFD provides helpful information regarding the group structure.

Although DivClusFD is based on the one-dimensional gap statistic, alternative
methods of estimating the number of groups could be considered. Similarly, the func-
tional boxplots could be adapted to consider different definitions of depth for functional
data. Several proposals can be found in Mosler (2013).

The algorithm could easily be extended to the multivariate case, in which each
datum is a vector of functions (see Berrendero et al. 2011). In the local phase, any
clusteringmethod could be considered, and in the global phase, the functional boxplots
could be designed using the band depth proposed by Lopez-Pintado et al. (2014) for
multivariate functional data. The efficiency of the method is expected to decrease with
increasing dimensionality of the data.

When we compare the results of DivClusFD with those of other methods on real
examples, we observe that DivClusFD obtains solutions of very similar quality for
different sets of data, whereas well-known methods such as funclust and funHDDC
exhibit somewhat irregular behavior. For instance, in the growth example FunHDDC
is the best algorithm, while in EGC200 is almost the worst, and the opposite happens
with funclust.

Finally, the output of the algorithm includes the number of groups and the clustering
allocation. In addition, it provides information about the key points t ∈ [a, b] and
whether the cluster divisions are based on functions or their derivatives (or both). This
information yields a better understanding of the cluster structure.
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