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ABSTRACT

Spices are a globally traded commodity which has been found to be adulterated with forbidden Sudan
dyes. This work proposes a screening method for determining the adulteration of paprika varieties (mild,
hot and smoked) with Sudan I dye, based on constant-wavelength synchronous fluorescence spectros-
copy with multivariate classification. Different wavelength-intervals (AX) were evaluated. Classification
models were built with Partial Least Squares-Discriminant Analysis (PLS-DA) at two Sudan I dye con-
centration levels (1 and 5 mg L~!) and they were tested with samples at a lower level (0.5 mg L™1).
Classification results were quite satisfactory when a strategy based on first-derivative spectra was used
for improving classification results. AA = 60 nm was chosen as the optimum wavelength interval giving a
100% of sensitivity and specificity. These results are promising because the risk of assigning adulterated
samples as safe to be consumed is highly minimized. The proposed method is feasible, rapid and simple
taking advantage of Sudan I fluorescence phenomena in a direct way.

Screening methods
Food quality control

© 2015 Published by Elsevier Ltd.

1. Introduction

Sudan dyes are synthetic azo-dyes mainly used as colorants in
industrial applications. Sudan dyes are forbidden to be used in
foods as they are proved to be potential carcinogens for humans.
These dyes are degraded to aromatic amines which can act directly
in liver cells causing toxic liver disease but also may induce cell
gene mutation (Fonovich, 2013; Stiborova et al., 2009; Xu, Heinze,
Paine, Cerniglia, & Chen, 2010). The bright color of Sudan dyes
enhances the appearance of commercial products, so unfortunately
these dyes were found in foodstuffs. Culinary spices are a globally
traded commodity which has been found to be adulterated with
forbidden Sudan dyes. In the last decade these dyes were found in
Europe in many imported products, so as consequence the Euro-
pean Union has adopted regulatory measurements against the use
of such dyes in foods (European Commission Decision 2004/92/EC).
The continuing illicit use of Sudan dyes as food colorants has
received increasing attention all over the world. Therefore there is a
need for developing rapid, simple and accurate analytical methods
to be used as monitoring tools for determining Sudan dyes in food
products.
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Several methods have been developed for determining the
presence of Sudan dyes in foodstuffs, and the most common
methods are based on high-performance liquid chromatography
(HPLC) with different detection systems (Rebane, Leito, Yurchenko,
& Herodes, 2010) as well as novel sample clean-up (Enriquez-
Gabeiras, Gallego, Garcinuno, Ferndndez-Hernando, & Durand,
2012; Yan, Gao, & Qiao, 2012; Zhang et al., 2012). Recently other
methods have been developed such as electroanalytical techniques
(Wuetal.,, 2013; Yin et al., 2011), immunoassays (Liu, Zhang, Zhang,
Gao, & Wang, 2012; Xiao et al., 2011), and spectroscopic methods
such as UV—Visible (Di Anibal, Rodriguez, & Albertengo, 2014), 'H-
NMR (Di Anibal, Ruisdnchez, & Callao, 2011), Raman (Di Anibal,
Marsal, Callao, & Ruisanchez, 2012) and NIR (Haughey, Galvin-
King, Ho, Bell, & Elliott, 2015). Fluorescence has also been re-
ported for determining Sudan dyes including the use of metal
nanoclusters (Chen et al., 2014), fluorescence quenching of serum
albumin (Zhang, Dai, Zhang, Yang, & Liu, 2008) and hemoglobin
(Zhang, Wang, & Jiang, 2009), fluorescence combined with artificial
neural networks (Chen et al., 2011) and a method based on ligand-
exchange using calcein as fluorescent indicator (Huang, Yang, Li, &
Luo, 2013). These methods determine Sudan dyes in an indirect
way and some of them have not been applied to foods. Further-
more, spectrometric methods have the advantage of providing a
rapid analytical response but to obtain useful information when
working with complex matrices such as foods, they must be com-
bined with proper multivariate analysis.
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Fluorescence spectroscopy is a rapid, sensitive, and non-
destructive analytical technique. The application of fluorescence
spectroscopy for direct analysis of foods has increased during the
last decade, probably due to the wide-spread use of multivariate
analysis (Christensen, Nérgaard, Bro, & Engelsen, 2006). Sometimes
conventional fluorescence is not suitable for the analysis of com-
plex multi-component samples such as foods due to severe spectral
overlap. This could be overcome by using synchronous fluorescence
(SyF) where both, excitation and emission monochromators, are
scanned simultaneously in such a manner that a constant wave-
length interval is kept between emission and excitation wave-
lengths (A)). Using suitable AA, synchronous fluorescence reduces
spectral overlaps by narrowing spectral bands and simplifies
spectra (Patra & Mishra, 2002). Its potential can be appreciated by
the increasing number of studies in the literature, for example beer
analysis (Insinska-Rak et al., 2007), edible vegetable and olive oils
characterization (Kunz, Ottaway, Kalivas, Georgiou, & Mousdis,
2011; Sikorska, Gliszczyna-Swiglo, Wiglo, Khmeliskii, & Sikorki,
2005), cooking meat time study (Sahar, Boubellouta, Portanguen,
Kondjoyan, & Dufour, 2009), determination of phytic acid in food-
stuffs (Cao, Dong, & Chen, 2011), cheese characterization (Khaled,
Romdhane, & Abderrahmane, 2012) and determination of antibi-
otics in milk (Kaur, Saini, Singh, & Malik, 2012).

Classification methods are designed to find mathematical
models able to recognize the membership of each object to its
proper class on the basis of a set of measurements. Once a classi-
fication model has been obtained, the membership of unknown
objects to one of the defined classes can be predicted. Multivariate
classification was performed with Partial Least Squares-
Discriminant Analysis (PLS-DA). This technique is a multivariate
projection method that has been widely used in food adulteration
issues (Marini, 2013).

The aim of this study is to evaluate the use of synchronous
fluorescence (SyF) combined with multivariate classification tech-
niques as a screening tool for determining Sudan I dye in culinary
spices, specifically in mild, hot and smoked paprika. Taking into
account the advantages fluorescence spectroscopy provides such as
high sensitivity and selectivity, we attempt to determine adulter-
ations at low Sudan I dye concentration levels with a direct, rapid
and inexpensive method that does not require hard experimental
work.

2. Material and methods
2.1. Samples and reagents

A total of 30 paprika samples distributed among 12 mild, 10 hot
and 8 smoked paprika were purchased from local markets. Iso-
propyl alcohol (analytical grade) was obtained from Anedra (Bs. As.,
Argentina). Sudan I [1-(phenylazo)-2-naphtol] (dye content >95%)
was obtained from Sigma Aldrich (United Kingdom). A 100 mg L'
stock solution of Sudan I was prepared in isopropyl alcohol and
stored at 4 °C until use.

2.2. Sample preparation

For the extraction process, 200 mg of each paprika sample was
weighed in analytical balance, 10 mL of isopropyl alcohol was added
and then samples were shaken in an automatic shaker (Shaker Pro
Vicking) during 15 min at 150 rpm. Each extract was obtained by
filtering twice, first with glass microfiber filters and then with
nylon syringe filters of 0.45 um (Microclar Argentina). The obtained
extracts were used to prepare both original (non-adulterated) and
adulterated samples with Sudan I dye. For original samples, an
aliquot of each extract (200 pL) was taken and diluted to 10 mL in

isopropyl alcohol in volumetric flasks, and for adulterated samples
an appropriate amount of Sudan I dye solution was added to get a
final concentration of 0.5,1 and 5 ppm (mg L™ 1).

2.3. Instrument

Fluorescence spectra were acquired on a Jasco spectrofluorom-
eter (model FP6500), equipped with a xenon discharge light source
(150 W). Operational parameters were excitation and emission slit
widths set at 2 nm, data pitch of 1 nm, scanning speed of
1000 nm s, time response of 0.2 s. All measurements were done at
high sensitivity. A quartz cell 10 x 4 x 45 mm was used. In con-
ventional fluorescence the excitation wavelength was 420 nm.
Synchronous spectra were recorded in the region of 400—690 nm
varying the wavelength interval from 20 to 60 nm in steps of 10 nm.

2.4. Data analysis

Partial Least Squares-Discriminant Analysis (PLS-DA) was used
as multivariate classification technique. In PLS-DA, both indepen-
dent variables (X) and dependent variables (Y) are simultaneously
modeled to find the latent variables (LVs) in X that will predict
latent variables in Y, like a classical PLS model. PLS maximizes the
covariance between X and Y. This classification method is aimed at
finding the variables and directions in the multivariate space which
discriminate the established classes in the calibration set. An
optimal number of LVs can be estimated by the minimum value of
root mean squared error of cross-validation (RMSECV). PLS-DA
develops a model for each class. The closer an element of a
certain column in Y is to 1 and the elements of the other columns to
0, the more likely an object is a member of the particular class
(Brereton, 2009). In our case, class 1 is defined by unadulterated
samples and class 2 by adulterated samples with Sudan I dye.

Receiver Operator Characteristic (ROC) curves (Brown & Davis,
2006; Fawcett, 2006) are useful to evaluate the sensitivity and
specificity of a classification model. ROC curves can be defined by
plotting the sensitivity against specificity for different PLS-DA
threshold values.

Multivariate analysis was performed with Matlab 7.0 software
(MathWorks, Natick, USA) and PLS Toolbox 3.5 (Eigenvector
Research Incorporated). Spectra were autoscaled before classifica-
tion analysis.

3. Results and discussion
3.1. Spectra

The direct determination of Sudan dyes in culinary spices can be
achieved by means of the fluorescence phenomena that such dyes
have. This advantage allows us to propose a method based on
synchronous fluorescence which is direct, rapid, inexpensive and it
does not require hard experimental work.

Samples were firstly studied by conventional fluorescence by
setting an excitation wavelength at 420 nm. Fig. 1 shows the spectra
of an original (unadulterated) and adulterated sample together
with pure Sudan I spectrum. It can be observed broad spectra with
lack of signals, which do not allow visual differences between un-
adulterated and adulterated samples. The analysis of complex food
matrices is difficult with conventional fluorescence, so in light of
these results, synchronous fluorescence was evaluated for the
following measurements.

Synchronous fluorescence spectra were measured at five
wavelength-intervals (from 20 to 60 nm). This range of intervals
was chosen because when selecting lower intervals than 20 nm,
fluorescence detector was saturated in many spectral regions while
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Fig. 1. Conventional fluorescence spectra of (i) pure Sudan I dye, (ii) an original sample
and (iii) an adulterated sample. Sudan I concentration level is 5 ppm.

upper intervals than 60 nm did not allow visual difference between
unadulterated and adulterated samples. As an example, Fig. 2
shows the spectra of both an unadulterated and adulterated mild
paprika (randomly chosen) with pure Sudan I spectrum at the five
different wavelength-intervals. It can be seen that the spectra of the
adulterated sample is clearly different from the unadulterated one
at all wavelength-intervals and most of adulterated samples pre-
sent peaks belonging to the adulterant (Sudan I dye) which are not
present in the unadulterated samples. This behavior was similar for
the rest of paprika samples.

3.2. Classification results

With the aim to achieve the best discrimination between the
two classes (i.e. class 1 formed by unadulterated samples and class
2 by adulterated samples), an appropriate wavelength-interval (A))
must be chosen for SyF measurements. Therefore values ranging
from AX = 20—60 nm were evaluated considering the maximum
Sudan dye concentration level (5 ppm). PLS-DA classification
models were validated using a cross-validation approach with five
deletion groups (Venetian-blind scheme) in which the first deletion
group is formed by samples 1, 6, 11, ... , the second deletion group
by samples 2, 7,12, ..., and so on. Classification results show that
when the maximum concentration level was evaluated, all
wavelength-intervals gave 100% of correct classification (for both
classes) except for AA = 60 nm that gives a 97% for class 1 and a
100% for class 2. This was somehow expected as the spectra con-
taining the adulterant can be highly differentiated from the un-
adulterated spectra at all wavelength-interval as shown in Fig. 2.

The study follows by building a new classification model with
the addition of a lower concentration level. Hence, class 2 is now
formed by adulterated samples at two concentration levels: 5 and
1 ppm. During the development of a classification model, it is
important to detect if there are samples with extreme behavior
which could worsen the classification performance (outliers).
Outliers can be detected by inspection of Q residuals and Hotelling
T? values obtained during PLS-DA model construction (Bakeev,
2010). Q values represent a measure of variance which is not
captured by the model (fit of samples outside the model) while T?
values reflect the variance captured by the model (fit of samples
within the model). Therefore, Q residuals vs Hotelling T? plots were
evaluated for all wavelength-intervals. As example, Fig. 3 shows a

graph with defined limits at a 95% level of confidence for
A\ =40 nm. It can be seen that samples 30, 60, and 90 fall outside
the limits defined by Q and T? values, which corresponds to the
same smoked paprika sample that is unadulterated (30) and
adulterated at 5 and 1 ppm (60 and 90, respectively). It has to be
mentioned that a similar behavior was observed for the rest of
wavelength-intervals, therefore these three outliers were elimi-
nated from all datasets.

Datasets were then divided into training set (used to construct
the classification model) and test set (used to predict unknown
samples). The test was generated by leaving out 6 out of 29 sam-
ples for class 1 (which represent a 20% of the total samples). For
class 2 the same criterion was applied considering 5 and 1 ppm
concentrations, so 12 out of 58 samples have been selected. The
selection of test samples was based on the Kennard-Stone algo-
rithm (Di Anibal, Ruisanchez, et al., 2012) that selects one by one
the samples which are furthest from each other in the group (in
terms of the Euclidean distance) in the multivariate space they are
spread.

Before the modeling process, the optimal number of PLS-DA
latent variables (LVs) retained must be chosen. This was done ac-
cording to the minimum root mean square error of cross validation
(RMSECV) in terms of the fractional misclassification error rate.
Table 1 shows PLS-DA classification results with number of LVs
used for each model, explained variance percentage and recogni-
tion and prediction ability for training and test set, respectively. It
can be seen that the percentage of explained variance is higher than
83% in all cases. Regarding classification results, the maximum
recognition ability (100%) was achieved with all the models
(AX = 20—60 nm) for both classes. It can be remarkable that the test
set gave a prediction ability of 100% for both classes (AA = 30, 40,
60 nm), 83.3% (class 1) and 100% (class 2) considering A\ = 20 nm
and 83.3% for the two classes with A = 50 nm. At this point, the
classification models built at all wavelength-intervals considering
two Sudan I concentration levels (5 and 1 ppm) gave quite satis-
factory results.

In order to evaluate the ability of the built classification models,
samples at a lower Sudan I concentration level (0.5 ppm) were used
as test set (unknown samples). The five same wavelength-intervals
were taken into account. Table 2 shows the prediction results ob-
tained with the models presented in Table 1. It can be seen that all
wavelength-intervals give a prediction ability higher than 72%
(original data), being the best results for AA = 50 and 60 nm
(around 88%). To improve the obtained prediction results, first-
derivative spectra were evaluated. The combination of synchro-
nous and derivative fluorescence enhances minor spectral features
which allow to increase differences between spectra and to resolve
overlapping bands (Patra & Mishra, 2002; Sadecka & Tothova,
2007). Table 2 also shows derivative results and it can be
observed a great improvement on prediction ability for all wave-
length-intervals.

When dealing with a food adulteration problem, it is important
to know whether a sample is safe to be consumed or not. In this
context, if adulterated samples (class 2) are wrongly classified as
unadulterated (class 1) they represent a risk for consumer health.
Results presented in Table 2 are shown in detail in Table 3 by means
of a confusion matrix. Besides improving classification results, the
first-derivative strategy reduced the number of wrongly predicted
samples in class 1 (i.e. samples from class 2 assigned to class 1) for
all wavelength-intervals (see bold values). This is very advanta-
geous taking into account the implication such classification errors
have on consumer health because the risk of assigning adulterated
samples as safe is highly minimized. Finally, AA = 60 nm was
selected as the optimum interval because gives the best classifi-
cation results (100% of correct classification).
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Fig. 2. Synchronous spectra of unadulterated samples (dashed lines), adulterated samples at 5 ppm (solid lines) and pure Sudan I dye (dotted line) at all wavelength-intervals.

There are two parameters to evaluate the quality of a classifi-
cation model: sensitivity and specificity. The sensitivity is the
ability of the model to recognize its own samples while the speci-
ficity is the ability to distinguish external samples. ROC curves
combine these two parameters. Highly discriminating classifiers
give ROC curves that consist of a vertical line followed by a hori-
zontal line while models that randomly assign samples into two
groups tend to have ROC curves that are along the diagonal axis and
are poor classifiers without any discrimination (Brereton, 2009).
The area under the ROC curve called area under curve (AUC) is a
measure of a model's ability to discriminate objects of different
classes. AUC values range from 0.5 to 1.0 being the higher the AUC,

the better the model. Fig. 4 shows ROC curves for PLS-DA model
built with first-derivative data at AA = 60 nm considering class 1
(unadulterated) and class 2 (adulterated). The crossing point be-
tween the maximum sensitivity (1) and the maximum specificity
(1) correspond to the optimum PLS-DA threshold which is calcu-
lated in such a way that the number of true positives (sensitivity)
and true negatives (specificity) are maximized. It can be observed
perfect classification ability (100% sensitivity and specificity)
because ROC curves look like squares at the upper left corner with
an area close to one. This behavior shows that samples are not

randomly predicted and PLS-DA is a reliable classifier. Both classes
follow the same trend.

21
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tion levels (1 and 5 ppm).

Table 1
Classification results for training and test set.

AN N°LVs Explained variance  Class 1 Class 2

Training  Test Training  Test

20 4 83.25 100 833 100 100
30 4 83.74 100 100 100 100
40 4 85.87 100 100 100 100
50 4 85.74 100 833 100 833
60 4 86.42 100 100 100 100

Class 1 correspond to unadulterated samples and class 2 adulterated samples (5 and
1 ppm).

Table 2
Percentage of prediction ability for adulterated samples at 0.5 ppm.
AX % Prediction ability
Original data Derivative data
20 724 86.2
30 724 86.2
40 79.3 86.2
50 86.2 96.5
60 89.6 100

Results are presented for original and first-derivative data.

Table 3
Confusion matrix of the results shown in Table 2.

AX Number of samples True class Predicted in
Class 1 Class 2 NAC?
20 29 2 7 21 1
2 25 2
30 29 2 7 21 1
2 25 2
40 29 2 5 23 1
4 25 0
50 29 2 4 25 0
1 28 0
60 29 2 1 26 2
0 29 0

Original data and first-derivative data (bold values).
2 NAC: Not in any class.
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Fig. 4. ROC (Receiver Operating Characteristics) curves of PLS-DA model for first-
derivative data at AA = 60 nm.

4. Conclusions

This work proposes a direct, rapid, feasible and reliable
screening tool for determining Sudan I dye in three varieties of
paprika spices based on synchronous fluorescence and multivariate
classification. Synchronous fluorescence is more appropriate than
conventional fluorescence when a complex matrix such as paprika
is analyzed. Different wavelength-intervals (AX) were evaluated. A
strategy based on first-derivative spectra demonstrated to be useful
for improving classification results, and excellent classification re-
sults (100%) were obtained when using AA = 60 nm. The accuracy of
this optimal classification model was assessed by means of ROC
curves. It has to be highlighted that this methodology determined a
lower adulterant concentration level respect to our previous works
(Di Anibal, Callao, & Ruisanchez, 2011; Di Anibal, Rodriguez, &
Albertengo, 2014).

The developed method can be used as a practical screening tool
to distinguish food samples suspicious to be adulterated with Sudan
I dye that could be applied to achieve on-site detection in situations
requiring a rapid response such as those found in international
commerce. In addition, this methodology may also be valuable to
determine the adulteration of other foods such as sauces and
related-foods containing spices as well as food adulteration with
mixtures of Sudan dyes, considering the advantages that synchro-
nous fluorescence provides for multi-component matrices.
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