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Extended wave-packet model to calculate energy-loss moments of protons in matter
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In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the
energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions
for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the
Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of
the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the
inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements
for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions.
The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all
the significant terms of the inelastic interaction of light ions with any element of the periodic table.
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I. INTRODUCTION

The physics of the interaction of ions with matter is
a subject of great scientific interest, with large impact on
basic and applied research, being also the basis of numerous
applications, such as ion-beam analysis, particle-induced x-ray
emission, ion implantation, space physics, radiation effects,
medical physics, and many others. Recent surveys in the field
show a great level of activity and provide a large amount of
information [1–3]. The list of scientific works in the field
is large; relevant information, including earlier work and
recent advances, can be found in Refs. [4–14]. Extended
compilations of experimental data are also available [15,16].
From the theoretical side, influential works in this area were
done by Bethe [17], Fermi [18], Lindhard [19], Ritchie [20],
and others. In particular, theoretical approaches have been
developed to describe the characteristic values of the inter-
action processes, including calculations of the mean energy
loss, or stopping power, energy straggling, inelastic mean free
paths, and ionization cross sections [8,9]. Among the earlier
models [17–20], the interesting advantage of the Lindhard
dielectric formulation [19] is that it yields a full description
of the velocity dependence, going from low to high speeds
(in the nonrelativistic range) and describing the stopping
power maximum. However, it has two basic limitations: (i)
it considers a free-electron gas (Sommerfeld model), which in
principle restricts the applicability to conduction electrons in
ideal metals, and (ii) it is a linear model, so it does not take
into account nonlinear effects that are particularly important
at low energies [21–24].
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In the 1990s, Kaneko presented a new theoretical approach
to calculate the stopping power of bound electrons [25–27],
whose internal system was described in momentum space as
a dense interacting electron gas with a Gaussian occupation
probability. This new approach proposed an alternative type
of random-phase-approximation (RPA) dielectric function and
was given the name of wave-packet model (WPM). It has some
of the general properties of Lindhard’s model (LM) but extends
its domain of application to different target systems. The WPM
provides a significant advantage in terms of analyticity and
can be applied in principle to all atomic shells and elements of
the periodic table. Both the LM and WPM were designed
following the quantum (RPA) dielectric function approach
(and so both are of perturbative nature) and bear similarities in
terms of analytical properties, the main difference being that
while Lindhard’s model applies to a degenerate free-electron
gas, described in terms of plane waves, the WPM considers
Gaussian distributions of electron speeds. Thus, the Lindhard
model applies most naturally to conduction electrons in metals
whereas Kaneko’s model provides a better approach to atomic-
shell electrons.

One of the restrictions of both LM and WPM is the
absence of energy gaps or binding effects, so that electrons
can be excited as free particles and may be detached from
the condensed state without spending the minimum energy
corresponding to the band gaps in semiconductors or insulators
(in the LM) or the ionization energy in atomic shells (in the
WPM). In particular, in the WPM case to be considered here,
the velocity distributions are appropriate to describe atomic
shells but the electrons are in other aspects considered as free
particles, and may be easily removed without the restrictions
of ionization thresholds. A consequence of this is that at low
energies the stopping power of each atomic shell shows a linear
velocity behavior down to very low velocities.
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From a different line of research, Levine and Louie (LL)
[28] proposed a general method to introduce the effects of
energy gaps within the context of the quantum dielectric
function formalism. This approach has the great advantage
of maintaining all the pertinent sum rules that characterize
the quantum dielectric response formalism. In a recent set of
papers [29,30] we used a combination of the Lindhard and
LL models to study the band-gap effects in the excitation
of valence electrons in semiconductors and insulators and
extended the comparisons to the cases of protons, electrons,
and positrons. This combination of LM and LL models
provides a convenient way to describe and compare these
various projectile-target combinations with a unified approach
[30,31].

These previous developments serve as a motivation for
the present study. The central idea of this work is to make
use of the analytical properties and wide possibilities of
Kaneko’s wave-packet model, with the important amendment
of considering the binding energies of atomic shells, which
is done using the Levine-Louie method. The result of this is
the extended wave-packet model (EWPM), an approach that
allows one to calculate the characteristic values of inelastic
processes (stopping power, energy straggling, inverse mean
free paths, and ionization cross sections) in a very general and
straightforward way.

The present work is organized as follows: In Sec. II we
describe the dielectric approach used in this study. In Sec. III
we extend this approach considering the binding energies of
atomic shells. In Sec. IV we present the expressions for the
various energy-loss moments and the emission cross section.
In Sec. V we show the results of the calculations of the energy-
loss moments and the ionization cross section for protons
comparing the EWPM results with the experiments and with
those results obtained using the WPM. The conclusions are
summarized in Sec. VI.

II. KANEKO’S WAVE-PACKET MODEL

The main assumption of this model is the consideration of
Gaussian distributions for the electron velocities of a given
atomic shell, i.e., f (v) ≈ e−v2/v2

, where v is a characteristic
speed of the considered shell. The dielectric function for
this system is described in terms of a characteristic wave
vector q, which is related to v by h̄q = mev. The value of
q is determined by the relation q = q1N

1/3, where N is the
number of electrons in the shell and q1 is a shell parameter
whose value is determined from Hartree-Fock calculations of
electron velocity distributions using the results of previous
authors [32,33].

A. Dielectric function

By assuming Gaussian distributions of electron speeds, the
wave-packet model yields closed analytical expressions for the
real and imaginary parts of the dielectric function ε(k,ω) =
ε1(k,ω) + iε2(k,ω), where k and ω are the wave-vector and
frequency variables. The results for ε1 and ε2 may be cast
in a convenient way in terms of the dimensionless variables
u = ω/kv and z = k/2q (which are analogous to Lindhard’s

u,z variables) as follows [25]:

ε1(u,z) = 1 + γ
χ2

z2

1

8z
[F (u + z) − F (u − z)], (1)

ε2(u,z) = γ
χ2

z2

π

8z
[e−(u−z)2 − e−(u+z)2

], (2)

where the parameter χ2 = e2/πh̄v.

The function F (x) is defined by

F (x) = √
πK(x) = √

π

∫ ∞

0
sin(tx)e−t2/4dt. (3)

An alternative expression for K(x) (more useful for
numerical calculations) is

K(x) = ϕ(
√

2x)

x
, (4)

where

ϕ(x) = x

∫ x

0
e(t2−x2)/2dt. (5)

Finally, we have introduced a parameter γ in Eqs. (1) and
(2) which was not present in the original Kaneko model (so
γ = 1 in that case). The use of this parameter is explained
later on.

III. EXTENDED WAVE-PACKET MODEL

We introduce now the effect of energy binding in the wave-
packet formulation using the method proposed by Levine and
Louie [28]. The LL method consists in performing a shift in the
frequency variable by the replacement ω →

√
ω2 − ω2

0, where
ω0 = Is/h̄ and Is is an energy gap, which in the present case
is the binding energy of a given atomic shell.

Specifically, the new dielectric function ε̃ becomes, for
ω > ω0,

ε̃1(k,ω) = ε1
(
k,

√
ω2 − ω2

0

)
, (6)

ε̃2(k,ω) = ε2
(
k,

√
ω2 − ω2

0

)
, (7)

whereas for ω < ω0, ε̃2(k,ω) = 0, while ε̃1(k,ω) is obtained
from ε̃2(k,ω) using the Kramers-Kronig relations. In this way,
the LL method opens a gap in the map of excitations such that
inelastic processes occur only for frequencies ω > ω0. For this
reason, all the quantities calculated here will be obtained from
integrals in the domain ω > ω0, where the values of ε̃1 and
ε̃2 can be expressed analytically in terms of Eqs. (1)–(7). We
refer to this approach as the extended wave-packet model.

A. Sum rules

As is well known, the dielectric function for a free-electron
gas (FEG) satisfies the sum rules∫ ∞

0
ε2(k,ω)ωdω = π

2
ω2

p (8)

and ∫ ∞

0
FEL(k,ω)ωdω = π

2
ω2

p, (9)
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where ωp is the plasma frequency of the electron gas,
and FEL(k,ω) denotes the energy-loss function defined by
FEL(k,ω) = ε2(k,ω)/|ε(k,ω)|2.

In the present case, using the expressions for ε̃1 and ε̃2 given
before and performing the frequency integrals we obtain∫ ∞

0
ε̃2(k,ω)ωdω = π3/2

2
γχ2(qv)2, (10)

and the same value is obtained for the corresponding energy-
loss function.

Therefore we define an equivalent plasma frequency by

ω2
p = π1/2γχ2(qv)2 (11)

(in atomic units this relation is simply given by ω2
p =

γ q3/
√

π ).
It should be noted, however, that this frequency is different

for each atomic shell. As in the case of the free-electron gas,
the value of the sum rules is the same and is independent
of the value of k, and this remarkable property is satisfied both
by the original wave-packet model as by the extended one.
This is one of the significant properties of these models.

IV. INTEGRALS FOR THE ENERGY-LOSS MOMENTS

We are here interested in calculating the main moments of
the energy-loss distribution, which are given by the integrals
(with n = 0,1,2,...)

Qn = 2

π

(
Ze

v

)2

h̄n−1
∫ ∞

0

dk

k

∫ kv

0
ωn Im

[ −1

ε̃(k,ω)

]
dω,

(12)

where Ze and v are the charge and velocity of the incident
particle. The units of Qn are (energy)n/length.

This expression of Qn yields the values of the inverse
inelastic mean free path, stopping power, and straggling, when
n = 0,1, and 2, namely,

(i) inverse inelastic mean free path (IMFP): 1/λi = Q0,
(ii) stopping power: S = |〈dE/dx〉| = Q1,
(iii) energy straggling: 	2 = 〈δE2〉/dx = Q2.
Another quantity of interest is the ionization cross section,

which is directly related to the inelastic mean free path λi by

σi = 1

naλi

, (13)

where na is the atomic density.
Using the reduced variables u = ω/kv and z = k/2q, the

Qn integral becomes

Qn = 2

π

(
Ze

v

)2

h̄n−1(2qv)n+1
∫ ∞

0
zndz

×
∫ v/v

0
Im

[ −1

ε̃(u.z)

]
undu. (14)

Several examples of calculations for specific cases are
considered in the next section.

V. CALCULATIONS

A. Stopping power

Since the previous calculations with the wave-packet
model were concentrated in the stopping power, which is the
most studied energy-loss parameter, both experimentally and
theoretically, we start the analysis by considering this quantity.

Figure 1 shows the separated contributions to the stopping
cross section for the case of protons traversing an Al target. To
represent the conduction band we calculated the stopping cross
section for a free-electron gas characterized by a Wigner-Seitz
radius rs = 2.07 using both the Lindhard model and the non-
linear transport cross-section model [24]. These calculations
for a free-electron gas include the contribution of collective
excitations (plasmons), either as a separate mechanism or
by a self-consistent approach. The results for the conduction
band, which correspond to the dominant contribution at low
velocities, show that nonlinear effects become non-negligible
and must be taken into account. In order to permit the
visualization of the inner-shell contributions in this figure,
the results for the conduction (free-electron) band have been
divided by 3. When calculating the inner-shell contribution
with both models, WPM and EWPM, we have analyzed
the possible contribution of resonant collective excitations of
bound electrons, but we found it negligible (this has also been
noted earlier by Kaneko [26]).

The pair of curves for the 1s, 2s, and 2p shells in Fig. 1
shows the results of the two versions of the wave-packet
model using the Gaussian parameters q1 tabulated by Kaneko
[27], which were obtained from Hartree-Fock calculations
of momentum distributions for each shell [32]. The only
difference between the WPM and EWPM results stems
from the consideration of the binding energies Is of each
shell in the latter case. The figure clearly shows that the
effect of introducing a binding energy is a reduction of the

FIG. 1. Separated contributions to the stopping cross section for
protons in an Al target as a function of the projectile velocity. Dashed
lines: WPM. Full lines: EWPM. Dotted line: Lindhard’s free-electron
gas. Dashed-dotted line: nonlinear results for the free-electron gas.
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FIG. 2. Stopping cross section for protons as a function of the
projectile energy: (a) Al target and (b) Si target. Thick dashed
lines: WPM. Thick full lines: EWPM. Symbols: Experimental data
extracted from [16].

contributions of all the inner shells. This is understandable
because to transfer energy to bound electrons, the projectile
must overcome the corresponding energy thresholds.

To illustrate these results in a more realistic way, we
include in Figs. 2 and 3 a set of calculations and comparisons
with experimental results for several representative cases of
particular interest. In Fig. 2 we show the total stopping cross
section calculated with the WPM and EWPM for two light
targets: (a) Al and (b) Si. The experimental results together
with the semiempirical SRIM curves shown in this figure have
been extracted from Paul’s data tabulations [16]. In both
cases, the results obtained with the EWPM produces a small
improvement in the shape of the curves, although we notice a
depletion in the values just over maximum in the case of Al
(related to a threshold effect in the ionization of the 2s and 2p

shells) and a shift in the position of the maximum for Si. These
differences may indicate some misadjustments in the velocity
distributions of the outer shells with respect to the tabulated
HF values for free atoms. A variation of those parameters
may improve the quality of this comparison, but we leave
this question open to separate investigation. In the EWPM
calculations we used the nonlinear results for the conduction
band, which improves the agreement at low energies.

In Fig. 3 we analyze the interesting case of transition metals
for two characteristic heavier atoms: (a) Ag and (b) Au. We
include here two EWPM calculations (EWPM-1 and EWPM-2
curves): the first one is the result obtained with this model
using the q1 according to the Hartree-Fock values as indicated

FIG. 3. Stopping cross section for protons as a function of the
projectile energy in transition metals: (a) Ag target and (b) Au target.
Dashed-dotted line in panel (b): theoretical calculations by Montanari
et al. [35]. Thick dashed lines: WPM. Thick full lines: EWPM.
Symbols: Experimental data extracted from [16].

before [27,32]. As it may be observed for both elements,
the WPM and EWPM-1 results do not agree well with the
experiments, showing a similar distortion in the shape of the
stopping power curves. For this reason we endeavored to a
more particular analysis. In the cases of Ag and Au, as well
as other transition metals, there is an important contribution
from d electrons. As is well known, these electrons have
particular band-structure properties that cannot be represented
by the standard Hartree-Fock (HF) description corresponding
to free atoms [32,33]. In fact, in the solid-state phase these
electrons are weakly bound, and the corresponding density of
states shows a rather broad distribution [34]. This produces
some particular threshold effects in the low-energy stopping
power, as previous studies revealed [36]. We think this is the
reason why the contribution of the d electrons is not well
described by the standard WPM or EWPM when the atomic HF
parameters are used. Therefore, we considered a possible way
to adapt the wave-packet model to the case of d electrons by a
variation in the value of the Gaussian parameter q1, used in the
wave-packet formulation, to allow a wider velocity distribution
than that predicted by the atomic HF calculations. However,
when doing this modification it is important to assure that the
value of the sum rules is not affected. This is the reason why we
introduced the parameter γ in Eqs. (1) and (2), which permits
us to tune the value of the equivalent plasma frequency and
hence the value of the sum rule. Therefore, in the cases of Ag
and Au we changed simultaneously the parameters q1 and γ ,
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maintaining the value of the sum rules constant. The results
of these calculations are the EWPM-2 curves shown in the
figure. We found a fairly good agreement with the experiments
using the following values: q1 = 0.53, γ = 2.69, for the 4d

electrons of Ag, and q1 = 0.5, γ = 2.993, for the 5d electrons
Au (whereas the HF values of q1 for these cases are 0.737 and
0.7206, respectively). A binding energy of 4 eV was used in
these cases, representing the properties of weakly bound states,
in accord with the density of states of both metals [34]. The
result of these calculations are shown in Fig. 3 by the curves
denoted EWPM-2. These new calculations show a smoother
behavior and a better agreement with the experimental
results.

We conclude from this particular study that the d electrons
play an important role in these cases, and the way in which they
are represented can modify the shape of the stopping curve.
In addition, we observe that the WPM and EWPM can still be
adapted to account in an approximate way for these effects.

Finally, in Fig. 4 we show the behavior of both contributions
for the cases of Au and Ag targets: FEG calculated with the
nonlinear method and the atomic shells calculated with EWPM
model. We have included the separate results for the dominant
last shells. A comparison between Fig. 1 and Fig. 4 clearly
shows that in these last cases the sum of the contributions of
the atomic shells represents a greater percentage of the total

FIG. 4. Separated contributions to the stopping cross section for
protons in Ag and Au targets as a function of the projectile velocity.
Full line: EWPM-2 (total result). Dashed lines: nonlinear results
for the free-electron gas. Dashed-dotted line: total contribution of
the atomic shells calculated with EWPM-2. Dotted lines: separate
contributions for the last atomic shells.

FIG. 5. Inner-shell and free-electron gas contributions to relative
straggling for protons as a function of the projectile energy in Al.
(a) Dotted lines: WPM; dashed lines: EWPM. (b) Contributions from
inner shells and free electrons, and total energy straggling, obtained
with the EWPM; the gray lines show the corresponding results of
Arbó et al. [38] using the CDW-EIS approximation.

results than in the case of Al. Thus, the EWPM model becomes
more important to determine an appropriate comparison with
the experiments.

B. Straggling

We now turn to the analysis of the second moment of the
energy-loss distribution, i.e., the energy straggling. In Fig. 5
we show the characteristics of the straggling contributions
from the various shells of Al. We use as a reference the value
of the Bohr straggling, 	B , which represents the well-known
asymptotic value [37]. In part (a) of this figure we show the
separate contributions of the 1s, 2s, and 2p shells, where in
each case the pair of curves shows the values of the WPM
and EWPM calculations. As in the case of the stopping power,
we obtain a diminution in the values due to the effect of the
energy binding for each shell. In Fig. 5(b) we show the sum of
the inner-shell contributions [	inner = (	2

1s + 	2
2s + 	2

2p)1/2],
the contribution of the Al free electrons (	free), and total
straggling [	total = (	2

inner + 	2
free)1/2]. The gray line in this

figure shows a previous calculation of the straggling using
the CDW-EIS approximation method [38]. We observe that,
as for the stopping cross section, the dominant contribution
for low energies is given by the free-electron gas, but inner-
shell contributions to the straggling become dominant when
the projectile energy increases, overcoming the thresholds
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FIG. 6. Atomic-shell and free-electron gas contributions to rela-
tive straggling for protons as a function of the projectile energy in
Au. Full line: EWPM-2 (total result). Dashed-dotted line: nonlinear
result for the FEG. Gray full line: total atomic-shell contribution.
Gray dotted lines: contributions from the last dominant atomic shells.

corresponding to each individual binding energy of the
atomic shells. The excellent agreement with the much more
sophisticated CDW-EIS calculations is remarkable.

FIG. 7. Relative straggling for protons as a function of the
projectile energy in different targets: (a) Al, (b) Si, and (c) Au.
Full squares: Experimental data extracted from [38]. Open squares:
Experimental data extracted from [39–41].

FIG. 8. Inverse mean free path for protons traversing an Au target
as a function of the projectile energy. Total values according to
the WPM and EWPM, and contributions from inner shells and free
electrons using the EWPM.

Figure 6 shows the results for the case of Au. The
contribution of the atomic shells to the total result is more
important than for Al, as it was expected from the analysis of
the same behavior for stopping. Moreover, Fig. 6 shows that
this contribution to the straggling is dominant in all the range
of energies.

In Fig. 7 we compare the results of the present EWPM
calculations with the experimental values of Refs. [38,39,41],
for Al, Si, and Au. In these cases, both the WPM and EWPM
results are in good agreement with the experiments; this shows
that the straggling is a less sensitive magnitude with respect to
energy-binding effects.

FIG. 9. K-shell ionization cross section for protons traversing an
Al target as a function of the projectile energy. Squares, triangles, and
circles: Experimental data.
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C. Inverse mean free path and ionization cross sections

As a final test of the EWPM, we consider now the
calculation of inelastic inverse mean free paths (IMFP) and
inelastic cross sections (ICS). These quantities are highly
sensitive to energy-binding effects; therefore, these calcula-
tions provide a very stringent numerical test to the present
approach.

In Fig. 8 we show the results of IMFP calculations for
H+ on Au targets. We separate in this figure the contributions
of the free-electron gas and of the inner shells. As it may
be observed, the inner-shell contribution is dominant on the
whole energy range. The solid line in this figure is the value
of the total IMFP obtained with the EWPM, while the blue
dotted line is the total IMFP calculated with the WPM. This
shows that the binding effects produce a strong reduction of
the IMFP values. As indicated by Eq. (13), the IMFP terms
and the corresponding ICS’s are directly related. But in the
case of protons the experiments directly determine the values
of the cross sections [42–49]. Therefore we concentrate here
on ICS values for various inner shells and elements where
experimental results are readily available. In Fig. 9 we show
the calculations of the ionization cross section for the K shell

FIG. 10. Ionization cross sections for protons traversing different
targets: (a) Si: K and L shells, (b) Cu: K shell, and (c) Au: L and
M shells. Full squares and circles: Experimental data from different
sources.

of Al and compare it with experimental values from different
sources [42–46]. We find a very good agreement, except for the
lower energy range where the theoretical EWPM curve drops
too rapidly. The blue dotted line in this figure is the ICS value
calculated with the original WPM, which does not consider
energy-binding effects and shows too large and nearly constant
values. We notice here that the binding effects amount to
several orders of magnitude (from 1 to around 6 orders) on the
whole energy range. A set of similar calculations is shown in
Fig. 10, including the K and L shells of Si [43,47], the K shell
of Cu [48], and the L and M shells of Au [49]. In all the cases
(with the exception of the L shell of Si) the magnitude of the
binding effects is also very large and in accord with the values
of the binding energies for the inner shells. We may stress
here that the theoretical values show good agreement with the
experiments, reproducing the results over a range of ICS from 1
barn up to 107 barns. We also observe a systematic discrepancy
for the L shell of Si, which may bear some relation with the
previously noticed differences in the stopping power values
in Fig. 2. This seems to confirm the previous consideration
that a more extensive study of the HF parameters for the outer
shells used in the wave-packet model could lead to further
improvements in the final numerical tests.

VI. CONCLUSIONS

The original wave-packet model proposed by Kaneko
brings the possibility of representing the kinematic properties
of inner shells in terms of Gaussian distributions of electron
speeds. This provides a convenient framework to achieve
a very general description of the energy loss of charged
particles or related quantities. The original model accounts
for the shell corrections to the stopping power but does
not include the corresponding binding effects of the atomic
shells. In this work we extended the wave-packet model by
incorporating those binding effects through a very general
formulation that conserves the exact sum rules, and it requires
as the only additional ingredient the values of the binding
energy for each shell. This yields a powerful method that can
be used to calculate the main parameters characterizing the
interaction of protons or other light ions with almost any atomic
shell (without considering relativistic effects), and allows a
straightforward application for all atoms in the periodic table.
We have illustrated this approach by calculations of stopping
powers, energy straggling, mean free paths, and ionization
cross sections for various representative elements. A good
general agreement with experiments was obtained, comparable
with that obtained by calculations with more sophisticated
methods. We find some irregularities in the stopping-power
results for transition elements such as Ag and Au, which we
consider related to the special band-structure properties of
the d-electron bands of those elements. The results for the
ionization cross sections show a good agreement, covering
many orders of magnitude in the results for K , L, and M

shells of typical elements. We think this method can be used
with perhaps great advantages in many future developments,
remaining open to the possibility of modifying our model to
investigate significant areas of current interest, such as the
stopping of protons in compounds, the stopping of helium
projectiles, the study of phase effects, and the significance of
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Bragg’s rule. As far as we know, this is the only general method
that provides immediate theoretical values for all the moments
of the energy loss, or inelastic interaction terms, for any target
element of the periodic table, without recourse to cumbersome
computations. Further calculations and applications to other
cases of interest will be considered elsewhere.

ACKNOWLEDGMENTS

This work was supported by the following institutions of
Argentina: Consejo Nacional de Investigaciones Científicas
y Técnicas, Agencia Nacional de Promoción Científica y
Tecnológica, and Universidad de Buenos Aires.

[1] Ion Beam Analysis: Fundamentals and Applications, edited by
M. Nastasi, J. W. Mayer, and Y. Wang (CRC Press, Boca Raton,
FL, 2014).

[2] Handbook of Modern Ion Beam Materials Analysis, 2nd ed.,
edited by Y. Wang and M. Nastasi (Cambridge University Press,
Cambridge, UK, 2011), Vol. 1.

[3] Ion Beams in Materials Processing and Analysis, edited by
B. Schmidt and K. Wetzig (Springer, New York, 2012).

[4] U. Fano, Penetration of protons, alpha particles, and mesons,
Annu. Rev. Nucl. Sci. 13, 1 (1963).

[5] F. Inokuti, Inelastic collisions of fast charged particles with
atoms and molecules–The Bethe theory revisited, Rev. Mod.
Phys. 43, 297 (1971).

[6] S. P. Ahlen, Theoretical and experimental aspects of the energy
loss of relativistic heavily ionizing particles, Rev. Mod. Phys.
52, 121 (1980).

[7] Energy Loss and Ion Ranges in Solids, M. A. Kumakhov and
F. F. Komarov (Gordon and Breach, New York, 1981).

[8] Interaction of Charged Particles with Solids and Surfaces, edited
by A. Gras-Martí, H. M. Urbassek, N. R. Arista, and F. Flores
(Plenum Press, New York, 1991).

[9] Theory of the Interaction of Swift Ions with Matter, edited by R.
Cabrera-Trujillo and J. Sabin, Advances in Quantum Chemistry
Vol. 45 (Elsevier, New York, 2004), Chap. 3.

[10] Particle Penetration and Radiation Effects, edited by P. Sigmund
(Springer, New York, 2006).

[11] A. P. Horsfield, A. Lim, W. M. C. Foulkes, and A. A.
Correa, Adiabatic perturbation theory of electronic stopping in
insulators, Phys. Rev. B 93, 245106 (2016).

[12] E. E. Quashie, B. C. Saha, and A. A. Correa, Electronic band
structure effects in the stopping of protons in copper, Phys. Rev.
B 94, 155403 (2016).

[13] M. A. Zeb, J. Kohanoff, D. Sanchez-Portal, A. Arnau, J. I.
Juaristi, and E. Artacho, Electronic Stopping Power in Gold:
The Role of d Electrons and the H/He Anomaly, Phys. Rev.
Lett. 108, 225504 (2012).

[14] D. Roth, B. Bruckner, M. V. Moro, S. Gruber, D. Goebl,
J. I. Juaristi, M. Alducin, R. Steinberger, J. Duchoslav, D.
Primethzhofer, and P. Bauer, Electronic Stopping of Slow
Protons in Transition and Rare Earth Metals: Breakdown of
the Free Electron Gas Concept, Phys. Rev. Lett. 118, 103401
(2017).

[15] The Stopping and Range of Ions in Solids, J. Ziegler, J. P.
Biersack, and U. Littmark (Pergamon, New York, 1985); cf.
also full tabulations at http://www.srim.org.

[16] Stopping Power of Matter for Ions, Graphs, Data, Comments
and Programs, https://www-nds.iaea.org/stopping/.

[17] H. Bethe, Zur theorie des durchgangs schneller Ko-
rpuskularstrahlen durch materie, Ann. Phys. 397, 325
(1930).

[18] E. Fermi, The ionization loss of energy in gases and in condensed
materials, Phys. Rev. 57, 485 (1940).

[19] J. Lindhard, On the properties of a gas of charged particles, Mat.
Fys. Medd. Dan. Vid. Selsk 28, 1-57 (1954).

[20] R. H. Ritchie, Interaction of charged particles with a degenerate
Fermi-Dirac electron gas, Phys. Rev. 114, 644 (1959).

[21] T. L. Ferrell and R. H. Ritchie, Energy losses by slow ions and
atoms to electronic excitation in solids, Phys. Rev. B 16, 115
(1977).

[22] A. Mann and W. Brandt, Material dependence of low-velocity
stopping powers, Phys. Rev. B 24, 4999 (1981).

[23] P. M. Echenique, R. M. Nieminen, and R. H. Ritchie, Density
functional calculation of stopping power of an electron gas for
slow ions, Solid State Commun. 37, 779 (1981).

[24] N. R. Arista, Energy loss of ions in solids: Non-linear calcu-
lations for slow and swift ions, Nucl. Instrum. Methods Phys.
Res., Sect. B 195, 91 (2002).

[25] T. Kaneko, Wave packet theory of bond electrons, Phys. Rev. A
40, 2188 (1989).

[26] T. Kaneko, Partial and total electronic stoppings of solids and
atoms for energetic ions, Phys. Status Solidi B 156, 49 (1989).

[27] T. Kaneko, Partial and electronic stopping cross sections of
atoms and solids for protons, At. Data Nucl. Data Tables 53,
271 (1993).

[28] Z. H. Levine and S. G. Louie, New model dielectric function
and exchange-correlation potential for semiconductors and
insulators, Phys. Rev. B 25, 6310 (1982).

[29] C. D. Archubi, and N. R. Arista, A study of threshold effects in
the energy loss of slow protons in semiconductors and insulators
using dielectric and nonlinear approaches, Eur. Phys. J. B 89,
86 (2016).

[30] C. D. Archubi, and N. R. Arista, A comparative study of
threshold effects in the energy loss moments of protons,
electrons and positrons using dielectric models for band gap
materials, Eur. Phys. J. B 90, 18 (2017).

[31] C. D. Archubi and N. R. Arista, Multiple scattering of slow
muons in an electron gas, Eur. Phys. J. D 71, 239 (2017).

[32] A. D. McLean, and R. S. McLean, Roothaan-Hartree-Fock
atomic wave functions Slater basis-set expansions for Z = 55-92,
At. Data Nucl. Data Tables 26, 197 (1981).

[33] E. Clementi, and D. Roetti, Roothaan-Hartree-Fock atomic
wavefunctions: Basis functions and their coefficients for ground
and certain excited states of neutral and ionized atoms, Z=54,
At. Data Nucl. Data Tables 14, 177 (1974).

[34] V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated
Electronic Properties of Metals (Pergamon Press, New York,
1978).

[35] C. C. Montanari, C. D. Archubi, D. M. Mitnik, and J. E. Miraglia,
Energy loss of protons in Au, Pb, and Bi using relativistic wave
functions, Phys. Rev A 79, 032903 (2009).

062701-8

https://doi.org/10.1146/annurev.ns.13.120163.000245
https://doi.org/10.1146/annurev.ns.13.120163.000245
https://doi.org/10.1146/annurev.ns.13.120163.000245
https://doi.org/10.1146/annurev.ns.13.120163.000245
https://doi.org/10.1103/RevModPhys.43.297
https://doi.org/10.1103/RevModPhys.43.297
https://doi.org/10.1103/RevModPhys.43.297
https://doi.org/10.1103/RevModPhys.43.297
https://doi.org/10.1103/RevModPhys.52.121
https://doi.org/10.1103/RevModPhys.52.121
https://doi.org/10.1103/RevModPhys.52.121
https://doi.org/10.1103/RevModPhys.52.121
https://doi.org/10.1103/PhysRevB.93.245106
https://doi.org/10.1103/PhysRevB.93.245106
https://doi.org/10.1103/PhysRevB.93.245106
https://doi.org/10.1103/PhysRevB.93.245106
https://doi.org/10.1103/PhysRevB.94.155403
https://doi.org/10.1103/PhysRevB.94.155403
https://doi.org/10.1103/PhysRevB.94.155403
https://doi.org/10.1103/PhysRevB.94.155403
https://doi.org/10.1103/PhysRevLett.108.225504
https://doi.org/10.1103/PhysRevLett.108.225504
https://doi.org/10.1103/PhysRevLett.108.225504
https://doi.org/10.1103/PhysRevLett.108.225504
https://doi.org/10.1103/PhysRevLett.118.103401
https://doi.org/10.1103/PhysRevLett.118.103401
https://doi.org/10.1103/PhysRevLett.118.103401
https://doi.org/10.1103/PhysRevLett.118.103401
http://www.srim.org
https://www-nds.iaea.org/stopping/
https://doi.org/10.1002/andp.19303970303
https://doi.org/10.1002/andp.19303970303
https://doi.org/10.1002/andp.19303970303
https://doi.org/10.1002/andp.19303970303
https://doi.org/10.1103/PhysRev.57.485
https://doi.org/10.1103/PhysRev.57.485
https://doi.org/10.1103/PhysRev.57.485
https://doi.org/10.1103/PhysRev.57.485
https://doi.org/10.1103/PhysRev.114.644
https://doi.org/10.1103/PhysRev.114.644
https://doi.org/10.1103/PhysRev.114.644
https://doi.org/10.1103/PhysRev.114.644
https://doi.org/10.1103/PhysRevB.16.115
https://doi.org/10.1103/PhysRevB.16.115
https://doi.org/10.1103/PhysRevB.16.115
https://doi.org/10.1103/PhysRevB.16.115
https://doi.org/10.1103/PhysRevB.24.4999
https://doi.org/10.1103/PhysRevB.24.4999
https://doi.org/10.1103/PhysRevB.24.4999
https://doi.org/10.1103/PhysRevB.24.4999
https://doi.org/10.1016/0038-1098(81)91173-X
https://doi.org/10.1016/0038-1098(81)91173-X
https://doi.org/10.1016/0038-1098(81)91173-X
https://doi.org/10.1016/0038-1098(81)91173-X
https://doi.org/10.1016/S0168-583X(02)00687-0
https://doi.org/10.1016/S0168-583X(02)00687-0
https://doi.org/10.1016/S0168-583X(02)00687-0
https://doi.org/10.1016/S0168-583X(02)00687-0
https://doi.org/10.1103/PhysRevA.40.2188
https://doi.org/10.1103/PhysRevA.40.2188
https://doi.org/10.1103/PhysRevA.40.2188
https://doi.org/10.1103/PhysRevA.40.2188
https://doi.org/10.1002/pssb.2221560104
https://doi.org/10.1002/pssb.2221560104
https://doi.org/10.1002/pssb.2221560104
https://doi.org/10.1002/pssb.2221560104
https://doi.org/10.1006/adnd.1993.1007
https://doi.org/10.1006/adnd.1993.1007
https://doi.org/10.1006/adnd.1993.1007
https://doi.org/10.1006/adnd.1993.1007
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1140/epjb/e2016-60974-0
https://doi.org/10.1140/epjb/e2016-60974-0
https://doi.org/10.1140/epjb/e2016-60974-0
https://doi.org/10.1140/epjb/e2016-60974-0
https://doi.org/10.1140/epjb/e2016-70637-9
https://doi.org/10.1140/epjb/e2016-70637-9
https://doi.org/10.1140/epjb/e2016-70637-9
https://doi.org/10.1140/epjb/e2016-70637-9
https://doi.org/10.1140/epjd/e2017-80264-9
https://doi.org/10.1140/epjd/e2017-80264-9
https://doi.org/10.1140/epjd/e2017-80264-9
https://doi.org/10.1140/epjd/e2017-80264-9
https://doi.org/10.1016/0092-640X(81)90012-7
https://doi.org/10.1016/0092-640X(81)90012-7
https://doi.org/10.1016/0092-640X(81)90012-7
https://doi.org/10.1016/0092-640X(81)90012-7
https://doi.org/10.1016/S0092-640X(74)80016-1
https://doi.org/10.1016/S0092-640X(74)80016-1
https://doi.org/10.1016/S0092-640X(74)80016-1
https://doi.org/10.1016/S0092-640X(74)80016-1
https://doi.org/10.1103/PhysRevA.79.032903
https://doi.org/10.1103/PhysRevA.79.032903
https://doi.org/10.1103/PhysRevA.79.032903
https://doi.org/10.1103/PhysRevA.79.032903


EXTENDED WAVE-PACKET MODEL TO CALCULATE . . . PHYSICAL REVIEW A 96, 062701 (2017)

[36] J. E. Valdés, P. Vargas, and N. R. Arista, Electronic energy loss
of slow protons channeled in metals, Phys. Rev. A 56, 4781
(1997).

[37] P. Sigmund, Particle Penetration and Radiation Effects
(Springer, New York, 2006).

[38] D. G. Arbó, M. S. Gravielle, J. E. Miraglia, J. C. Eckardt, G. H.
Lantschner, M Famá, and N. R. Arista, Energy straggling of
protons through thin solid films, Phys. Rev. A 65, 042901 (2002).

[39] Y. Kido, Energy straggling for fast proton beams passing through
solid materials, Nucl. Instrum. Methods Phys. Res., Sect. B
24/25, 347 (1987).

[40] A. Ikeda, K. Sumimoto, T. Nishioka, and Y. Kido, Stopping
powers and energy straggling for 50–300 keV H+ in amorphous
Si and Ge films, Nucl. Instrum. Methods Phys. Res., Sect. B
115, 34 (1996).

[41] Y. Kido and T. Koshikawa, Energy straggling for medium-
energy H+ beams penetrating Cu, Ag, and Pt, Phys. Rev. A
44, 1759 (1991).

[42] W. Brandt and R. Laubert, Ionization of the aluminum K shell
by low energy hydrogen and helium ions, Phys. Rev. 69, 178
(1968).

[43] H. Tawara, Y. Achiya, K. Ishii, and S. Morita, K shell ionization
of light elements by protons and helium-3-ion impact, Phys.
Rev. A 13, 572 (1975).

[44] J. M. Khan, D. L. Potter, and R. D. Worely, Studies in x-ray
production by proton bombardment of C, Mg, Al, Nd, Sm, Gd,
Tb, Dy, and Ho, Phys. Rev. 139, A1735 (1965).

[45] G. Basbas, W. Brandt, and R. Laubert, Universal cross sections
for K-shell ionization by heavy charged particles. I. Low particle
velocities, Phys. Rev. A 7, 983 (1973).

[46] G. Basbas, W. Brandt, and R. Laubert, Universal cross sections
for K-shell ionization by heavy charged particles. I. Intermediate
particle velocities, Phys. Rev. A 17, 1655 (1978).

[47] W. M. Ariyasinghe, H. T. Awuku, and D. Powers, L-shell
ionization of Si, P, S, Cl and Ar by 0.4- to 2.0-MeV H+ and 0.4-
to 1.2-MeV H+

2 bombardment, Phys. Rev. A 42, 3819 (1990).
[48] K. Sera, K. Ishii, M. Kamiya, A. Kuwako, and S. Morita, K-shell

ionization of Al and Cu for 0.5-40-MeV-proton bombardment,
Phys. Rev. A 21, 1412 (1980).

[49] K. Ishii, S. Morita, H. Tawara, H. Kaji, and T. Shiokawa, Me-
shell ionization of Au, Bi, and U by protons and helium ions in
the MeV region, Phys. Rev. A 11, 119 (1975).

062701-9

https://doi.org/10.1103/PhysRevA.56.4781
https://doi.org/10.1103/PhysRevA.56.4781
https://doi.org/10.1103/PhysRevA.56.4781
https://doi.org/10.1103/PhysRevA.56.4781
https://doi.org/10.1103/PhysRevA.65.042901
https://doi.org/10.1103/PhysRevA.65.042901
https://doi.org/10.1103/PhysRevA.65.042901
https://doi.org/10.1103/PhysRevA.65.042901
https://doi.org/10.1016/0168-583X(87)90658-6
https://doi.org/10.1016/0168-583X(87)90658-6
https://doi.org/10.1016/0168-583X(87)90658-6
https://doi.org/10.1016/0168-583X(87)90658-6
https://doi.org/10.1016/0168-583X(95)01511-6
https://doi.org/10.1016/0168-583X(95)01511-6
https://doi.org/10.1016/0168-583X(95)01511-6
https://doi.org/10.1016/0168-583X(95)01511-6
https://doi.org/10.1103/PhysRevA.44.1759
https://doi.org/10.1103/PhysRevA.44.1759
https://doi.org/10.1103/PhysRevA.44.1759
https://doi.org/10.1103/PhysRevA.44.1759
https://doi.org/10.1103/PhysRevA.13.572
https://doi.org/10.1103/PhysRevA.13.572
https://doi.org/10.1103/PhysRevA.13.572
https://doi.org/10.1103/PhysRevA.13.572
https://doi.org/10.1103/PhysRev.139.A1735
https://doi.org/10.1103/PhysRev.139.A1735
https://doi.org/10.1103/PhysRev.139.A1735
https://doi.org/10.1103/PhysRev.139.A1735
https://doi.org/10.1103/PhysRevA.7.983
https://doi.org/10.1103/PhysRevA.7.983
https://doi.org/10.1103/PhysRevA.7.983
https://doi.org/10.1103/PhysRevA.7.983
https://doi.org/10.1103/PhysRevA.17.1655
https://doi.org/10.1103/PhysRevA.17.1655
https://doi.org/10.1103/PhysRevA.17.1655
https://doi.org/10.1103/PhysRevA.17.1655
https://doi.org/10.1103/PhysRevA.42.3819
https://doi.org/10.1103/PhysRevA.42.3819
https://doi.org/10.1103/PhysRevA.42.3819
https://doi.org/10.1103/PhysRevA.42.3819
https://doi.org/10.1103/PhysRevA.21.1412
https://doi.org/10.1103/PhysRevA.21.1412
https://doi.org/10.1103/PhysRevA.21.1412
https://doi.org/10.1103/PhysRevA.21.1412
https://doi.org/10.1103/PhysRevA.11.119
https://doi.org/10.1103/PhysRevA.11.119
https://doi.org/10.1103/PhysRevA.11.119
https://doi.org/10.1103/PhysRevA.11.119



