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Abstract. A comparative study of the energy loss, mean free path and straggling of protons, positrons and
electrons in an electron gas is performed using three dielectric models which represent the case of metals
(Lindhard model for a free electron gas) and the cases of semiconductors and insulators (Levine and Louie
model and Brandt and Reinheimer model for systems with a band gap). The properties of individual and
collective contributions according to each model and for each of the particles are analyzed. In particular,
the effects produced by the band gap of the material and by the properties of the incident particle are
analyzed in detail. Significant differences related to the mass and to the indistinguishability (in the case of
electrons) are described. Analytical expressions for the high-energy limit are derived in a simple way using
the plasmon-pole approximation.

1 Introduction

The interaction of light ions with solids is one of the most
powerful tools to study and modify the properties of differ-
ent materials, and yields access to many techniques and
applications. This includes several topics related to ap-
plied physics, medical treatments, space and materials sci-
ence, and others. The recent advances in the areas of nan-
otechnology and electronic devices provide new stages for
scientific research and applications that involve the inter-
action of light ions with materials with different electronic
and structural properties. It is in the context of the ad-
vances in these new areas that detailed studies and quanti-
tative comparisons between the interactions produced by
different types of particles on material with different elec-
tronic properties is of great current interest.

Several studies of stopping powers and mean-free-
paths of electrons in solids have already been made, start-
ing with the pioneering work by Ashley et al. for metallic
elements [1], and further studies by Akkerman et al for in-
sulating materials [2], as well as a set of very complete cal-
culations of inelastic scattering of electrons and positrons
in a free electron gas by Fernández-Varea et al. [3]. A re-
cent review of electron attenuation lengths in solids may
be useful for further references in this area [4].

However, to our knowledge, no systematic comparisons
between protons, electrons and positrons, using different
dielectric models appropriate for band-gap materials have
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been made. The cases of interest include in particular dif-
ferent types of insulators or compounds with large band
gaps, which are some of the basic materials of current in-
terest for many of the applications mentioned before.

Based on these premises we aim here to describe and
compare in detail the characteristics of the interactions
between electrons, positrons and protons, with a material
characterized in terms of different dielectric approaches,
including in particular three main models [5–8] that rep-
resent the cases of metals (free electron gas) [5], semicon-
ductors, and insulators (systems with a band gap) [6–8].
As part of this study we describe the appearance and
the characteristics of threshold effects in the interaction
of electrons, positrons and protons with those materials.
For this study, three representative parameters are con-
sidered: the stopping power, the mean-free path, and the
energy straggling, showing the differences that arise in all
these cases.

The present work is organized as follows: in Section 2
we describe the dielectric approaches used in this study
including the expressions for the various energy loss mo-
ments that can be applied to the three particles consid-
ered in this study. In Section 3 we show the calculations of
the energy loss moments for protons, positrons and elec-
trons, showing and comparing the contributions due to
individual and collective excitations, and comparing the
results for the three types of particles. The conclusions
are summarized in Section 4. We also include an Appendix
where the method of line integral for the plasmon term and
the plasmon-pole approximations are reviewed and useful
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analytical expressions for the high-energy limit of the
energy-loss moments are derived.

2 Dielectric models

We shall compare the first three moments of the energy
distribution for protons, electrons and positrons traversing
an electron gas with rs = 1.5, without a band gap, and
with a band gap Eg = 14 eV. For this purpose we shall use
the same approaches that have been used in reference [9]
for the case of protons, namely: the full-scale formulation
involved in Brandt-Reinheimer dielectric model [6,7] and
the heuristic approach of Levine-Louie dielectric model [8].
To analyze the effects of the energy gap more closely the
results of these models will be compared with those of a
free electron gas using Lindhard’s model [5,10].

For all these cases, the dielectric function of the ma-
terial is expressed in terms of reduced variables in the
following way (see Ref. [9] for further details):

ε(k, ω) = 1 + g(z, Eg)[f1(z, u, Eg) + if2(z, u, Eg)] (1)

where k and ω represent the momentum and energy trans-
fers to the medium, and u and z are the corresponding
reduced variables defined by the relations: z = k/2kF ,
u = ω/kvF . Eg is the energy gap of the material (Eg = 0
for Lindhard dielectric function), and vF and EF are the
Fermi velocity and corresponding energy. Other impor-
tant quantities to characterize the system are the electron
density n, the plasma frequency ωp = (4πne2/m)1/2 and
the electronic Wigner-Seitz radius rs = 1.919/vF .

The first-order moment of the energy-loss distribu-
tion yields the mean energy loss, or stopping power,
calculated in the dielectric formulation by the integral
expression [11]:

dE

dx
=

2
π

e2

v2

∫ kmax

0

dk

k
(1 + fex(k))

×
∫ �max

0

ωdω Im
[ −1
ε(k, ω)

]
. (2)

Several important differences exist between this expres-
sion and that considered in reference [9] for the case of
protons. First, the exchange term: fex(k) = (�k/mv)4 −
(�k/mv)2 for electrons, and fex(k) = 1 for positrons, takes
into account the exchange effects in the electron-electron
interaction due to the indistinguishability of scattered and
ejected electrons when the energies of both electrons are
similar. Second, we cannot neglect the quadratic term in
the maximum transferred energy �max = kv − �k2

2m (re-
coil effect) by an electron or positron with incident energy
T = mv2/2. Third, the Pauli exclusion principle is taken
into account setting the condition that ��maxcannot ex-
ceed the value T − (Eg + EF ). Finally, another additional
condition is necessary for the special case of electrons: the
indistinguishability between the incident and the ejected
electron requires that the maximum energy transfer can-
not exceed T/2 [11].

The zero-order moment, or inverse mean free path, is
obtained from the expression:

λ−1 =
2
π

e2

�v2

∫ kmax

0

dk

k
(1 + fex(k))

×
∫ �max

0

dω Im
[ −1
ε(k, ω)

]
. (3)

The second-order moment or straggling, associated to the
dispersion in the energy loss, is calculated as:

Ω2/dx =
2
π

�e2

v2

∫ kmax

0

dk

k
(1 + fex(k))

×
∫ �max

0

ω2dωIm
[ −1
ε(k, ω)

]
. (4)

All the moments i = 0, 1, 2 can be characterized by a di-
mensionless number Li separated into two contributions:
Li = Li

eh + Li
pl, corresponding to the excitation of sin-

gle individual electrons, or electron-hole pairs (Li
eh), and

collective or plasmon excitations (Li
pl), as explained in ref-

erence [9]. The calculation of the eh term is made by in-
tegrating equations (2)–(4) over the region of the k − ω
plane where the imaginary part of ε(k, ω) is different from
zero, while the calculation of the plasmon component re-
quires a different procedure; in this case the integral can
be transformed into a line integral along the resonance line
corresponding to the plasmon dispersion curve defined by
ε(k, ω) = 0. This procedure is described in detail in the
Appendix.

In the following we present a set of calculations of
the three relevant energy-loss moments mentioned before,
considering a material described by rs = 1.5, and en-
ergy gap values Eg = 0 and Eg = 14 eV. The case with
rs = 1.5 and Eg = 14 eV corresponds to the particular
case of LiF; however similar properties may be expected
for other insulators such as Al2O3 (rs = 1.5, Eg = 8 eV),
AlF3 (rs = 1.446, Eg = 10.8 eV), NaCl (rs = 2.088,
Eg = 8.5 eV). Other cases of interest include semicon-
ductors, such as Si and Ge, with rs values close to 2 but
much smaller energy gaps, so that threshold effects will be
strongly reduced (see Ref. [9]).

3 Calculations of energy loss moments

3.1 Protons

In Figures 1a and 1b we show some illustrative results
for all the moments calculated using the three dielec-
tric models considered here (Lindhard, Levine-Louie and
Brandt-Reinheimer) in the case of protons traversing an
electron gas characterized by rs = 1.5. In panel (1) of
Figure 1a we show stopping calculations, separating the
contributions of electron-hole (eh) and plasmon (pl). For
the Lindhard case, three main aspects of the energy loss
phenomenon may be noticed: panel (1) of Figure 1a shows
the proportionality with ion speed in the low energy range,
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Fig. 1. (a) Separate contributions from individual and collec-
tive excitations to the energy-loss moments versus the projec-
tile velocity for a proton impinging on a medium represented
by a free electron gas with rs = 1.5 a.u. Comparisons be-
tween the three dielectric models: full-line, Lindhard model
(energy gap = 0 eV), dashed-line, Levine-Louie model (energy
gap = 14 eV), dashed-dotted line, Brandt-Reinheimer model
(energy gap = 14 eV). (Panel 1) Stopping power vs. projectile
velocity. (Panel 2) Inverse mean free path vs projectile veloc-
ity. (Panel 3) Straggling vs. projectile velocity. (b) Total con-
tributions (individual+collective excitations) dotted line, high
energy limit.

where only eh excitations can take place, and the thresh-
old for plasmon excitation, in the region around the stop-
ping power maximum; panel (1) of Figure 1b shows the
total stopping power, and its convergence to the Bethe
limit at high energies, i.e. [6,7]

dE

dx

∣∣∣∣
Bethe

=
e2ω2

p

v2
ln

(
α1mv2

�ωp

)
(5)

where ωp =
[
ω2

p + E2
g/�

2
]1/2

, and α1 = 2 for protons.
Notice that when Eg = 14 eV the stopping curve at low
speeds deviates from the linear dependence correspond-
ing to a free electron gas. This “threshold effect”, is a

consequence of the energy gap and has been analyzed in
reference [9].

In panel (2) of Figure 1a we show similar calculations
for the mean free path. Here we notice that at low speeds
there is a significant deviation from the behavior corre-
sponding to a free electron gas. This effect is even more
interesting than the one obtained for the stopping be-
cause it could be easier to be detected in the experiments.
Panel (2) of Figure 1b shows that at high energies the to-
tal results for protons converge to the following limit (see
Appendix for further details)

λ−1
∣∣
Bethe

=
e2ω2

p

v2

1
�ωp

ln
(

α0
v

vF

)
(6)

where α0 is a numerical constant that depends on the
dielectric model.

In panel (3) of Figure 1a similar results are shown for
the straggling term. As shown in this figure the plasmon
contribution to the straggling is small. Notice that there is
also a shift between the results for a free electron gas and
the results with an energy gap. However, due to the more
pronounced dependence of the straggling with velocity in
the low-energy region, and additional difficulties to mea-
sure al low energies [12], it would be more difficult to de-
tect this shift in the experiments. In panel (3) of Figure 1b
the results are compared with Bohr’s limit, corresponding
to binary collisions at high speeds. In this limit, the total
straggling per unit length is approximated by:

Ω2/dx
∣∣
Bohr

= 4πne4α2 (7)

where n is the electron density and α2 = 1 for protons.
The figure shows also a notorious “overshooting” of the
calculated straggling with respect to the Bohr value. This
effect has been predicted theoretically and experimentally
observed [13].

3.2 Positrons

In Figures 2a and 2b we show the results for all the mo-
ments calculated using the three dielectric models in the
case of positrons traversing an electron gas characterized
by rs = 1.5. Figure 2a shows the contributions of electron-
hole and plasmons for the three dielectric models. Fig-
ure 2b shows the corresponding total values. In panel (1)
of Figure 2a we observe for low velocities a nonlinear de-
pendence of the stopping as a function of the projectile
velocity v, even for a free electron gas, as predicted by
Ritchie [14]. The energy gap produces an additional shift
of the curve for both contributions (eh and pl) in the re-
gion of low velocities, but the nonlinear dependence makes
it more difficult to observe this threshold effect experi-
mentally than in the case of protons. The results shown
in panel (2) of Figure 2a suggest that the threshold ef-
fect due to the energy gap could be detected more easily
in the experiments if the mean free path is measured. Fi-
nally, we notice that the relative contributions of plasmons
is higher for positrons than for protons. The importance
of the plasmon contribution produces a sudden change
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Fig. 2. Similar conditions to Figure 1 for a positron impinging
on a medium represented by a free electron gas with rs =
1.5 a.u.

of slope in the cases of Lindhard and Levine-Louie for
the total results, as is shown in all the panels of Fig-
ure 2b. The high-energy limits from the equations de-
rived in the Appendix are also shown in Figure 2b, where
α1,2 = 1, 0.25 for the stopping and straggling respectively,
and α0 = 1.6, 1.05, 0.8 for the inverse mean-free path of
positrons, for the Lindhard, Levine-Louie and Brandt-
Reinheimer models, respectively.

3.3 Electrons

In Figures 3a and 3b we show the results for all the mo-
ments calculated using the three dielectric models in the
case of electrons traversing an electron gas characterized
by rs = 1.5. In Figure 3a, we observe that the energy
gap also produces a large shift of all the curves for low
velocities. The expected presence of a threshold effect is
explained by similar reasons to those exposed in the anal-
ysis of the results for protons and positrons, with the addi-
tional restrictions imposed by the Pauli principle. Notice
also that panels (1) and (2) of Figure 3a show a sud-
den change in the slope of the e-h stopping and inverse
mean free path curves for the case of Lindhard dielectric
model at low energies. This behavior is not present for
positrons and it is produced by the additional restrictions

Fig. 3. Similar conditions to Figure 1 for an electron impinging
on a medium represented by a free electron gas with rs =
1.5 a.u.

to the maximum transferred energy when the projectile
is an electron. However, the presence of a wide energy
gap eliminates this anomaly as it can be appreciated in
panels (1) and (2) of Figure 3a for the cases of Levine-
Louie and Brandt-Reinheimer dielectric models. Figure 3b
shows that this behavior is present also in the total results
for the case of Lindhard model. The high-energy limits of
equations (5), (6), (7) are also shown in Figure 3b, where
α1 = 0.7 for the stopping term, α2 = 0.25 for the strag-
gling, and α0 = 1.5, 0.97 and 0.8 for the inverse mean-
free path of electrons, for the Lindhard, Levine-Louie and
Brandt-Reinheimer models respectively. We notice that
the limiting straggling value with α = 0.25 yields a lower
limit in the case of positrons (Fig. 2b panel (3)) and an
upper limit in the case of electrons (Fig. 3b panel (3)).
The first effect indicates an overshooting, similar to, but
still larger than the one obtained for protons (Fig. 1b panel
(3)). The second effect is a new one and shows a significant
reduction of the straggling of electrons as a consequence
of the identity of incident and target particles.

3.4 Comparative results

The results of the total energy loss moment calculations
using the Lindhard and Levine-Louie dielectric models
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Fig. 4. Total contributions (individual + collective excita-
tions) to the energy-loss moments versus the projectile velocity
for different projectiles impinging on a medium represented by
a free electron gas with rs = 1.5 a.u. Comparisons between
dielectric models: dashed-line, Lindhard model (energy gap =
0 eV); full-line, Levine-Louie model (energy gap = 14 eV);
panel (a) stopping power vs. projectile velocity; panel (b) in-
verse mean-free-path vs projectile velocity; panel (c) straggling
vs projectile velocity.

are shown in Figure 4 for the cases of protons, positrons
and electrons traversing an electron gas characterized by
rs = 1.5. For the sake of clarity we include here only
the calculations using the L and L-L models. Figure 4
shows that the most notorious differences appear for low
energies, where the results are strongly reduced for all
the projectiles when an energy gap is present. The con-
tributions are also lower for positrons than for protons
in all the cases, for the whole energy range. This lat-
ter result is a natural consequence of the restrictions im-
posed by the fact that the maximum energy transfer for
positrons, �max = kv − k2

2me
, is lower than for protons,

where �max = kv− k2

2mp
, with mp = 1836me, which makes

the quadratic term negligible in the case of protons.
Figure 4 also shows that the results for electrons are

even lower than for positrons in all the cases. This is
also caused by the additional restrictions to the maxi-
mum transferred energy in the case of electrons, indicated
in Section 2, and by the effect of the exchange function
fex(k) in equations (2)–(4). As it has been observed in

previous paragraphs, these new ingredients in the calculus
arise as a consequence of the indistinguishability between
the projectile and the target particles when the incident
particle is an electron.

4 Conclusions

This work contains the first comparative study of the three
main moments of the energy losses of protons, electrons
and positrons using three dielectric models to represent
the excitations of valence electrons in metals, semicon-
ductors and insulators. We used for this purpose three
dielectric models: the Lindhard model, appropriate for
a free electron gas, and the Levine-Louie and Brandt-
Reinheimer models which include the effects of band gaps
in the excitation of individual electrons and collective
modes. We described in detail the effects of band gaps
in these materials, showing important changes in the con-
tributions of individual and collective (plasmon) excita-
tions to the stopping power, inelastic mean-free path, and
energy straggling, for a wide range of energies, showing
also characteristic features in each energy range and for
each case. The low energy range is where the effects of the
band gaps are stronger. They produce different threshold
effects in all the energy loss moments and, in particular,
great changes in the mean-free paths for all the particles
here considered. At intermediate energies, we observe a
displacement of the plasmon threshold in all cases, and
a significant overshooting of the straggling of protons and
positrons; the results for electrons are strongly affected
by the restrictions imposed by the effects of particle in-
distiguishability and fermionic character (Pauli principle).
The high (non-relativistic) energy limits show in all cases
a simple behavior that can be described by simple asymp-
totic formulas which can be derived analytically using the
plasmon-pole approximation. Finally, we included an Ap-
pendix where the integration of the plasmon resonance
as well as the plasmon-pole approximation are briefly re-
viewed and the asymptotic limits of the energy loss mo-
ments are obtained.

On the basis of these results, and adding the effects
of inner shell excitations, we will consider applications to
specific semiconductors and insulator materials in a sepa-
rate publication. We expect that the largest threshold ef-
fects could be observed in the case of high band-gap insula-
tors such as those mentioned in Section 3, which would be
among the most appropriate materials for studying that
kind of effects, while much smaller effects may be expected
for semiconductors. However, the main and strong differ-
ences between protons, electrons and positrons, should be
present in all type of materials (metals, semiconductors
and insulators) since those differences arise from the fun-
damental properties of each particle.

As a final consideration, we hope that this comparative
study will be useful for applications in several cases of
interest such as those mentioned at the beginning of this
article.
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Appendix

We consider here a method to integrate the plasmon con-
tribution to the energy loss moments by transforming
the doble integral into a line integral along the plasma
resonance curve. We start with the expression for the
energy-loss moments of a charge Z1e in the form

Qn =
2
π

(
Z1e

v

)2

�
n−1

∫ kmax

0

dk

k

×
∫ ωmax

0

ωn Im
[ −1
ε(k, ω)

]
dω, (A.1)

where we have set fex(k) = 0, so this calculation applies
correctly to protons and positrons, and has only some
restricted applicability in the case of electrons. This ex-
pression of Qn yields the values of the mean-free-path,
stopping power, and straggling when n = 0, 1 and 2 re-
spectively. The units of Qn are (energy)n/length.

In the absence of damping effects, the plasmon reso-
nance is described by a resonance line in the k − ω plane
defined by the root of the equation ε(k, ω) = 0. The so-
lution of this equation provides a dispersion relation for
plasmons that we shall call ωk, which is a real function
of k in the range 0 < k < kc, where the value of kc is
the point where the resonance line merges into the region
of individual excitations, which opens a channel for plas-
mon decay [10,15] Hence, the range where plasmons are a
well-defined collective mode is 0 < k < kc.

To transform the previous expression into a line in-
tegral we consider the following limit of the energy loss
function in the region of the plasma resonance

Im
[ −1
ε(k, ω)

]
= Lim

[
ε2(k, ω)

ε1(k, ω)2 + ε2(k, ω)2

]
ε2(k,ω)→0

= πδ [ε1(k, ω)] (A.2)

and using the properties of the Dirac-delta function we
get:

Im
[ −1
ε(k, ω)

]
=

π

D(k)
δ(ω − ωk) (A.3)

where
D(k) = |∂ε1(k, ω)/∂ω|ωk

. (A.4)

Using this expression in the Qn integral and limiting the
k integral to the plasmon range we get

Qn =
2
π

(
Z1e

v

)2

�
n−1

∫ kc

kmin

dk

k

πωn
k

D(k)
. (A.5)

This is an exact expression for the plasmon resonance
contribution to the energy-loss moments for protons and
positrons and yields a high-energy estimation in the case
of electrons.

We consider now a simplified representation of the di-
electric function of a free electron gas, which is usually
called the plasmon-pole approximation (PPA) [16]

ε(k, ω) ∼= 1 − ω2
p

ω2 + ω2
p − ω2

k

. (A.6)

Here ωk is the plasmon frequency, which is determined
from the condition ε(k, ω) = 0. A numerical solution of
this equation may be obtained using the particular mod-
els (Lindhard, BR or LL) described before. Alternatively,
useful analytical approximations have been provided in
the context of the PPA by previous authors [6,7,16,17]

ω2
k
∼= ω2

p + E2
g/�

2 + β2k2 + γ2k4 (A.7)

where β is a typical velocity, related to the Fermi speed
as β2 = (3/5)v2

F and γ = �/2m.
Using the previous expression of ε(k, ω) one gets

D(k) = 2ωk/ω2
p, and therefore

Qn ≈

(
Z1e

v

)2

�
n−1ω2

p

∫ kmax

kmin

dk

k
ωn−1

k (A.8)

where the values of kmin and kmax are defined below. This
is a general expression for the energy loss moments in the
context of the PPA. Notice that the upper limit of the in-
tegral has been extended to kmax. This is consistent with
the PPA since the aim of this approximation is to extend
the domain of integration so as to include both collective
and individual excitations in an approximate way [16]. We
also notice that while equation (A.5) applies exactly to
the plasmon resonance, equation (A.8) aims at describing
both plasmon and single-particle excitations in an approx-
imate way.

Several useful approximations can be derived from
this expression. For instance, for n = 1 we retrieve the
well-known Bethe expression for the high-energy stopping
power:

dE

dx
= Q1 ≈

(
Z1eωp

v

)2

ln
(

kmax

kmin

)

≈

(
Z1eωp

v

)2

ln
(

α1mv2

�ωp

)
, (A.9)

where ωp =
[
ω2

p + E2
g/�

2
]1/2

.
For n = 0 we get a similar expression for the inverse

mean-free path

λ−1 = Q0 ≈

(
Z1e

v

)2 ω2
p

�ωp
ln

(
kcv

ωp

)

≈

(
Z1e

v

)2 ω2
p

�ωp
ln

(
α0

v

vF

)
, (A.10)

and for n = 2 we get the high-energy result for the strag-
gling

Ω2/dx = Q2 ≈ (Z1eωp)
2
m

(
�kmax

2mv

)2

≈ α2m (Z1eωp)
2
.

(A.11)
In these expressions the value of kmin is given by ωp/v
(high-energy limit), whereas the value of kmax depends
on the particle being considered, namely: kmax = α1mv,
with α1 = 2 for protons and 1 for positrons. These values
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correspond to the largest momentum transfer in the high-
energy limit. In the case of electrons, the condition that
the maximum energy transfer does not exceed the value
T/2 yields α1 =

√
2; additionally, in this case the correc-

tion term fex(k) must be considered, and so the value of
α1 differs from the previous ones.

To obtain the corresponding approximation for the in-
verse mean-free path λ−1, it should be noticed that the
term ω−1

k in equation (A.8) is nearly constant (ωk ∼ ωp)
for k < kc and it drops very rapidly for k larger than kc, so
that the upper limit in this integral can be approximated
by kc ∼ α0ωp/vF , where the value of α0 is determined
numerically.

On the other hand, when calculating the straggling in-
tegral, the factor ωk in equation (A.8) produces a large
contribution of the highest k values (binary collision
limit); therefore, by approximating ωk ∼ γk2 (last term
in Eq. (A.7)) we obtain the result of equation (A.11) with
α2 = α2

1/4 (i.e., α2 = 1 and 1/4 for protons and positrons
respectively).

These expressions are useful to explain the high-energy
limits of the results shown in the various figures of this
paper.

C.D. Archubi is a research staff member of CONICET,
Argentina. The authors acknowledge support from Universi-
dad Nacional de Cuyo and ANPCYT, Argentina.
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