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Abstract This work deals with the crack identification using
model reduction based on the proper orthogonal decomposi-
tion method. The proposed inverse problem consists of the
estimation of the crack length and its position in a plate using
boundary displacements as input data. Genetic algorithm and
particle swarm optimization were applied for the minimization
of the error function expressed as the difference between the
boundary displacements of the actual crack and those of the
estimated crack. It was found that the proposed approach is
able to accurately estimate crack size and detect its location.
The stability of the identification algorithm was tested against
measurement uncertainty by introducing a white Gaussian

noise in the input data. The approach showed high stability
for noise levels lower than 5%. The efficiency of the approach
using small number of sensor points was also demonstrated.

Keywords Crack identification . Inverse problem . Proper
orthogonal decomposition . Radial basis functions . Genetic
algorithm . Particle swarm optimization

1 Introduction

Lifetime of structures is limited by the initiation and propaga-
tion of cracks. Therefore, evaluation of the integrity of these
structures is crucial throughout the civil, mechanical, and
aerospace engineering communities. It could be experimental-
ly examined using, for instance, non-destructive testing
(NDT) techniques such as acoustic or ultrasonic methods,
magnetic field methods, radiography, eddy-current methods
or thermal field methods (Ness et al. 1996). Unfortunately,
these methods present some restrictions such as the require-
ment of a priori knowledge of the vicinity of the damage and
that the portion of the structure being inspected is readily
accessible. The need for quantitative global damage detection
methods that can be applied to complex structures has led to
the development of several numerical methods, including vi-
bration based approaches, to identify crack parameters (size,
position and orientation), as summarized in (Doebling et al.
1998). These methods examine changes in the vibration char-
acteristics of the structure. The basic idea is that modal param-
eters including notably frequencies, mode shapes, and modal
damping, are functions of the physical properties of the struc-
ture, i.e. mass, damping, and stiffness. Therefore, changes in
these physical properties, such as reductions in stiffness
resulting from the onset of cracks or loosening of connection,
will cause detectable modifications in the modal properties.
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Because changes in modal properties or in derived quantities
are used as indicators of damage, the process of vibration-
based damage detection is reduced to some form of a pattern
recognition problem. It is evident that these methods make use
of inverse problem techniques, motivated by the need to over-
come the lack of information concerning the properties of the
system.

Some theories and approaches of inverse crack iden-
tification in the case of elastostatic problems are pre-
sented in (Bonnet and Constantinescu 2005; Bui 2007;
Stavroulakis 2000). In these problems, defect parameters
are unknown but the displacements along the boundaries
are accessible. Inverse methods based on boundary data,
which aim to identify the crack parameters using exper-
imentally measured or numerically evaluated boundary
disp lacements , have found broad appl ica t ions
(Alessandri and Mallardo 1999; Amoura et al. 2010;
Burczynski and Beluch 2001; Hattori and Sáez 2013;
Mellings and Aliabadi 1995; Vossou et al. 2007).
Predictions of unknown defect parameters using inverse
identification approaches are based on a function that
compares actual and calculated input data, at selected
sensor points. This function, named the fitness function,
is minimized with an optimization method.

Classical optimization methods are fast, but they suf-
fer from big limitations related to the continuity of the
objective function, the Hessian of the objective function
which might not be positive-defined in all points during
optimization, and the substantial possibility of getting a
local optimum which strongly depends on starting point
(Venter 2010). The Genetic Algorithm (GA) (Gen and
Cheng 2000) and the Particle Swarm Optimization
(PSO) (Kennedy 2010) are well-known optimization
techniques that are free from the mentioned restrictions.
Contrary to classical methods where the gradient of the
objective function is computed, GA and PSO depend
only on the fitness function and the search domain.

As crack identification is an iterative operation, numer-
ical simulation methods are costly in terms of computing
time. Model reduction techniques are alternative methods
that reduce computing time without accuracy lost. In fact,
they were widely employed in the last decade, mainly
because of their speed (Schilders et al. 2008). Among
model reduction techniques is proper orthogonal decompo-
sition (POD), which is a powerful and elegant method
allowing approximation of a problem (making a low di-
mensional descriptions of high-dimensional processes)
making use of the most appropriate set of approximation
functions (Chatterjee 2000). The POD approach has been
applied for the detection and location of damage in beam
structures using vibration data (Galvanetto and Violaris
2007; Lanata and Del Grosso 2006; Shane and Jha
2011). This approach, coupled with the Radial Basis

Functions (RBF), was also employed in elastostatic inverse
problems for determining the Young modulus, yield stress
and hardening coefficient of material, using instrumented
indentation tests data (Bolzon et al. 2011; Buljak and
Maier 2011; Hoang et al. 2013). The POD-RBF network
has been compared to other methods in (Bolzon and
Buljak 2011) and its accuracy has been proved (Buljak
2011; Buljak and Maier 2011; Rogers et al. 2012).

This work deals with crack identification using model re-
duction based on POD-RBF approach combined with GA and
PSO methods, making use of structure boundary displace-
ments. POD technique was used to reduce the dimensions of
the matrix containing the boundary displacements calculated
by Finite Element Method (FEM) and corresponding to dif-
ferent crack configurations. RBF method allowed the calcula-
tion of the boundary displacements related to unknown
cracks, more quickly than using Finite Element Analysis
(FEA). GA and PSO were used as optimization methods in
the identification procedure.

To our best knowledge, the proposed approach has never
been applied for structure crack identification. It aimed to be a
non-destructive and continuous lifetimemonitoringmethod. It
reduces computational cost, simplifies crack identification al-
gorithms and gives the possibility to execute inverse compu-
tation with models based on experimental input data. This
brings out a new dimension to the inverse problem field, par-
ticularly in the crack identification case.

2 Problem description

In elastostatic based inverse crack identification methods,
the deformation of the studied structure is used to predict
crack parameters, i.e. size and position, based in the fact
that crack changes the behavior of the structure under
loading. Boundary displacements are affected by variations
in crack’s size and position and each given crack is related
to a unique boundary displacement field. Inverse identifi-
cation of cracks is done by comparing boundary displace-
ments of unknown crack to the ones of known cracks
which are introduced as input data.

In elastostatic problems, mechanical behavior is governed
by elastic linear equations satisfying continuity and compati-
bility conditions, which depends on the elastic properties of
the material (Bonnet and Constantinescu 2005; Stavroulakis
2000).

In this study, a 40 mm×40 mm plate (Fig. 1) was modeled
under tension with FEM, using ABAQUS code. Uniform
stress was imposed at the upper and lower sides of the spec-
imen. Each plate edge was discretized with 80 quadrilateral
elements. Material’s Young modulus and Poisson coefficient
were respectively E=210 GPa and ν=0.3.
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3 POD-RBF as model reduction method

POD was applied to determine the boundary displace-
ment of an elastic structure containing an unknown
crack. It is a powerful statistical method used for data
analysis as model order reduction technique in different
fields (Liang et al. 2002a, b; Chatterjee 2000; Schilders
et al. 2008). The mathematical procedure of POD
adopted herein is consistent with the approach called
Principal Component Analysis (PCA), described with
details by Liang et al. (2002a, b). The model reduction
described by Buljak and Maier (2011) was here adopted
and is then briefly summarized below.

The main purpose of the PODmethod is to propose a set of
orthogonal vectorsΦ called POD basis vectors, to reassemble
the snapshot matrix U in an optimal way. These so-called
snapshots are the boundary nodal displacements correspond-
ing to a set of known cracks used as input data, stored in
matrix U as:

U ¼
u11 u21
u12 u22

⋯ uS1
uS2

⋮ ⋮ ⋱ ⋮
u1N u2N ⋯ uSN

2
664

3
775; ð1Þ

where S is the number of sensor points and N represents the
number of snapshot vectors Ui, which represent the boundary
displacement field of each crack configuration. The orthogo-
nal vectors Φ are related to U linearly:

U ¼ Φ⋅A; ð2Þ
where A, the amplitude matrix collecting the coefficients of
the new basis combination, is computed as:

A ¼ ΦT⋅U; ð3Þ

due to the orthogonality of Φ. Optimal basis vectors are de-
fined by the performance of the POD method, also known as
the singular value decomposition operation (Buljak and Maier
2011):

Φ ¼ U⋅V⋅Λ−1=2 ; ð4Þ
where V is the matrix storing the normalized eigenvectors of
the covariance matrixC, andΛ the diagonal matrix storing its
eigenvalues. The matrix C is given by the following equation
(Buljak and Maier 2011):

C ¼ UT⋅U; ð5Þ

Low dimensional approximation Φ̂ of high accuracy is
extracted fromΦ, by preserving only K (K≪N) columns that
correspond to the largest eigenvalues. Since the eigenvalues of
the covariance matrixC are stored in a descending order, POD
directions that hold little information can be discarded without
influencing the accuracy of the representation. This is known
as the truncation of the POD basis, and is accomplished by
choosing the fraction of system that can be neglected in later
calculations. Consequently, the amplitude matrix Â is given
by:

Â ¼ Φ̂
T
⋅U; ð6Þ

since:

U ¼ Φ̂⋅Â: ð7Þ

To determine the boundary displacement field of a two
dimensional elastic structure containing an unknown crack,
RBF interpolation was used, method that can generate re-
sponse of the system corresponding to the different parameter
sets not included in the initial selection P. The matrix P stores
the crack parameters sets Pi of all simulations, considered in
our study as the crack’s center position and the crack size. The
amplitude matrix Â is defined as a multiplicative form of the
function G, defined as the matrix of interpolation parameters,
and the matrix B containing the unknown coefficients:

Â ¼ B⋅G: ð8Þ

The interpolation functions are expressed by (Buljak and
Maier 2011; Ostrowski et al. 2008; Rogers et al. 2012), as
follows:

gi ¼ gi P−Pij jð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P−Pij j2

q
þ c2

; ð9Þ

Pi is the crack parameter corresponding to Ui (i = 1,2,…,N).
The argument of the i-th RBF is the distance |P−Pi|, P and Pi
being respectively current and reference parameters. c is the

Fig. 1 Cracked plate specimen under tension

Crack identification using model reduction



RBF smoothing factor defined in the range from 0 to 1. If the
knot points Pi or some of them are relatively close to each
other, the matrix G could be singular, which can be
circumvented by reducing the c value. After the evaluation
of the coefficient matrix B, a low-dimensional model issued
from (8) can be written in the following vector form:

a Pð Þ ¼ B⋅g Pð Þ; ð10Þ

Equation (7) can be expressed as an approximation of the
snapshot u corresponding to a new parameter vector P:

u Pð Þ ¼ Φ̂⋅a Pð Þ; ð11Þ

This model will be referred as the trained POD-RBF net-
work. It is capable of reproduce the unknown boundary dis-
placement field of the structure that corresponds to any set of
crack parameters P. It must be noted that extrapolation outside
the range of P leads probably to poor precision of the model.

Increasing the value of the smoothing factor c leads to a
better interpolation. But it can make the matrix G singular,
depending on the closeness of knot points. In the present
work, the parameter c was chosen to be constant for all func-
tions, and equal to 0.6.

4 Implementation of the crack identification
algorithm: POD-RBF coupled with GA

One of the main steps of the identification algorithm was the
generation of the boundary displacements by using a reduced
model instead of numerical simulations by FEM. The GAwas
coupled with the POD-RBF to inversely estimate the crack
parameters.

GA is a general optimization method that belongs to
the class of evolutionary algorithms. During the last de-
cade, it was widely applied in various kinds of optimiza-
tion problems (Abraham and Jain 2005). In a GA, feasible
solutions – also called individuals – are randomly gener-
ated in the research domain. They evolve towards the
better solution in an iterative process inspired in the natu-
ral evolution. Each of the possible solutions has a set of
properties – or chromosomes – which are parameters gen-
erally represented in binary encoding. Individuals are
allowed to reproduce and cross among themselves in order
to obtain solutions with better fitness values. The highest
probability of getting chosen as parent of new individuals
is given to the best feasible solutions. The parent proper-
ties are combined by exchanging chromosome parts, pro-
ducing new designs. Then, a possibility of mutation is
imposed on the resulting individuals, which arbitrary
changes digits inside a randomly selected chromosome.
These basic operators are used as reference to the next
iteration containing the next generation of the same size

and with better fitness. This process is continued until
stopping criterion is satisfied, commonly until a maximum
number of generations is reached or a satisfactory fitness
value has been achieved (Gen and Cheng 2000).

The vector of boundary displacement caused by the
crack identity desired to be identified, was considered as
a reference. It was compared with all boundary dis-
placement vectors generated by the crack parameters
proposed by the GA optimization method. With the
aim of finding a vector displacement close to the refer-
ence, the minimization of the fitness function f Pð Þ was
done iteratively. This fitness function is defined as the
error between u(P) and u(P0) and calculated from the
following equation:

f Pð Þ ¼ u P0ð Þ− u Pð Þk k2
u P0ð Þk k2

f Poptimal

� � ¼ min f Pð Þ½ �

8><
>:

; ð12Þ

u(P0) being the boundary displacements corresponding to
the real crack.

These stages of the identification algorithm can be summa-
rized as follows:

1. Creation of a starting population of N individuals, created
in real encoding as a random generation. Each individual
has three chromosomes corresponding to the crack param-
eter set P[x, y, s], where x; yð Þ represent the coordinates
of the crack center and s is the length of the crack.

2. Evaluation of each individual by introducing the proposed
parameters into the trained POD-RBF network that gen-
erates the corresponding boundary displacement vector
u(P).

3. If the maximum number of generations or defined fitness
level is reached, the algorithm is stopped, else it
continues.

4. Storing the population according to their fitness value and
then ranked. A proportion for breeding a new generation
is selected. The top ranked populations are more likely to
be selected.

5. Crossover of individuals to produce the population of the
next generation.

6. Mutation of a specified percentage of the resulting
population.

7. Replacement of the old population by new one and com-
ing back to the step 2.

Through series of identification tests, the following genetic
parameters were chosen based on the accuracy of results: pop-
ulation size =1000, crossover rate =0.8 i.e. 800 individuals
were selected for crossover, the mutation rate=0.01. The mu-
tation was used to avoid the convergence of the solution to-
ward local optimums by creating diversity.

B. Benaissa et al.



5 Identification of the size and position of the crack

This study is based on the y displacements of all boundary
nodes, called snapshots. Crack parameter sets were defined in
the ranges of −16 and 16 mm for the crack center abscissa x,
−19 and 19 mm for the crack center ordinate y, and 0 and
12 mm in step of 2 mm for the crack size s. The considered
crack parameter sets, corresponding to the 157 snapshots of
the used matrix U, are depicted in Fig. 2.

The origin of the coordinate system was taken at the center
of the plate (Fig. 1).We have used a reduced model containing
20 POD bases, chosen by applying the criteria that impose to
the ratio between the eigenvalues of the neglected vectors and
the largest of the retained ones to be less than 10−6.

a

b

c

Fig. 4 Results for a crack with parameter P2[10, − 10, 4]: (a) crack center
coordinates, (b) crack length, and (c) fitness values, as a function of
generation

a

b

c

Fig. 3 Results for a crack with parameter P1[2.5, 0, 8]: (a) crack center
coordinates, (b) crack length, and (c) fitness values, as a function of
generation

Fig. 2 Crack parameters sets considered in the case of the rectangular
plate specimen
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The combined POD-RBF-GA algorithm was used to iden-
tify three configurations of crack in the above described plate

(Fig. 1). Each configuration was defined by the parameter
P[crack center abscissa, crack center ordinate, crack length].
The maximum number of iteration was set equal to 50. In
addition, a stagnation criterion was imposed to stop the calcu-
lation if the fitness value does not improve after 10 iterations.
Moreover, to avoid spending computational time once the
result is satisfactory, fitness tolerance was introduced to be
10−4. This identification method was implemented in
MATLAB, on a PC with Intel Dual-Core Processor 3.0 GHz
and 2 GB RAM.

In the first example, we tried to identify a crack of 8 mm
length, located near the center of the specimen and represented
by the parameter P1[2.5, 0, 8]. Results are illustrated in Fig. 3
showing the evolution of the crack center coordinates, the
crack length and the fitness function value. Although the stop-
ping criterion was reached at the 13th iteration (Fig. 3c), after
677 s, results showed that both crack position and crack length
were determined with high precision after only 9 iterations
(Fig. 3a, b). It can also be noted from Fig. 3a, b that the crack
position was earlier predicted than its size, suggesting that the
boundary displacements are more sensitive to the crack posi-
tion than to the crack length.

In the second example, a crack of 4 mm length located at
the lower left side of the specimen was considered. The pa-
rameter representing this crack is P2[10, −10, 4]. Similarly to
the first example, results are shown in Fig. 4. These results
highlighted that the algorithm leads to stable solutions in terms
both of crack position and crack length, at the 7th iteration, as

Fig. 7 Comparison between boundary displacements evaluated by POD-
RBF technique for the approximated crack configurations, and FEM for
the real crack configurations

Table 1 Effect of noise level on the identification of the size and the
position of crack

Noise
level

sestimated xestimated yestimated serror xerror yerror

0 % 8.005 2.546 0.010 0.06 % 1.84 % 1.04 %

1 % 7.990 2.587 −0.008 0.12 % 3.48 % 0.86 %

5 % 8.030 2.644 0.204 0.37 % 5.76 % 20.41 %

10 % 8.063 3.068 0.363 0.79 % 22.72 % 36.36 %Fig. 6 Boundary displacement distribution for the three studied
examples P1[2.5, 0, 8], P2[10, − 10, 4] and P3[0, 0, 0]

Fig. 5 Results for a crack with parameter P3[0, 0, 0] (absence of crack):
(a) crack center coordinates, (b) crack length, and (c) fitness values, as a
function of generation

B. Benaissa et al.



it can be observed in Fig. 4a, b. These figures also show that
the precision of the identification procedure increases with
increasing the iteration number and reaches better stable
values at the 11th iteration. Figure 4c shows, in agreement
with Fig. 4a, b, that the fitness function decreases sharply up
to generation number 7. Then, it converges slowly, step by
step, toward the solution to satisfy the stopping criterion at
the 19th iteration, after 969 s.

In the third example, we examined the ability of the pro-
posed identification approach to detect the absence of cracks.
This configuration was represented by the parameter P3[0, 0,
0]. Results are depicted in Fig. 5 showing that the crack pa-
rameters converge to stable values after 9 iterations. This con-
vergence is highly improved at the 13th generation and the
fitness threshold is reached at the 19th iteration, after 970 s,
leading to a crack length of 0.04 mm (Fig. 5b) that is 1000
times smaller than width of the specimen. So, it can be
neglected. However, it should be noted that the precision of
the numerical solution could be improved by decreasing the
fitness stopping criterion. These results prove that the identi-
fication approach can also be used to check the safety of a
structure.

Finally, Fig. 6 shows the displacement distribution on the
boundary nodes (as labeled in Fig. 1), for the three studied
examples. It can be clearly observed that the three curves are
only slightly different, proving the sensitivity of the crack
identification approach used in this study. Figure 7 presents
the ratio “POD-RBF displacements/ FE displacements” at the

boundary nodes, for the three configurations above investigat-
ed and represented respectively by the parameters P1[2.5, 0,
8], P2[10, −10, 4] and P3[0, 0, 0]. Here, POD-RBF displace-
ments correspond to the estimated configurations. This figure
shows that the maximal error is less than 5.10−4, justifying the
efficiency of the POD-RBF method in the calculation of the
boundary displacements employed as input data in the crack
identification approach. It must be noted that finite element-
based inverse identification methods require much time to
calculate such boundary displacements.

6 Stability of the method to measurement noise

In order to study the stability of the crack identification algo-
rithm to measurement noise, the configuration P1[2.5, 0, 8]
was reanalyzed but this time introducing three perturbation
levels of 1, 5 and 10 % in the input deformation vector. The
noise was determined by the white Gaussian law defining the
standard deviation as the noise level. A number of 15 gener-
ations was fixed as a stopping criterion.

Table 1 shows results illustrating the algorithm perfor-
mance. It appeared that 1 % of noise does not affect consid-
erably the precision of both the predicted crack length and
crack position. Even when the noise level is high, the algo-
rithm still approximates the crack length with a good preci-
sion, unlike the crack position for which the approximation
error increases with the noise level. The input data

Table 2 Effect of noise level on
the identification of the crack size Crack length

(mm)
Without noise Noise = 1 % Noise = 5 % Noise = 10 %

Estimated Error Estimated Error Estimated Error Estimated Error

3 2.96 1.33 % 2.92 2.73 % 2.91 3.09 % 2.84 5.33 %

6 6.01 0.16 % 5.97 0.50 % 6.05 0.83 % 6.09 1.54 %

12 11.97 0.25 % 11.94 0.50 % 11.89 0.92 % 11.86 1.18 %

Fig. 8 Complicated cracked specimen
Fig. 9 Crack parameters sets considered in the case of the complicated
cracked specimen
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perturbation seems to have a more significant effect on the
determination of the crack position than on the crack size.

Furthermore, the influence of noise level on the crack
length prediction was deeply investigated by considering
crack lengths of 3, 6 and 12 mm with a fixed position x; yð Þ
= (2.5, 0). Table 2 shows the outcomes of the inverse identifi-
cation for noise levels of 0, 1, 5 and 10 %. Results’ precision
decreases when the noise level increases, for the three inves-
tigated crack lengths. The highest errors occurred in the case
of the 3 mm crack, and can be attributed to the difficulty of the
algorithm to identify small cracks. Nevertheless, the predic-
tion errors are still reasonable for the three investigated con-
figurations, reflecting the high performance of the crack size
identification approach.

7 Evaluation of the proposed approach as applied
to a complicated crack model

To demonstrate the general applicability of the proposed ap-
proach, it was applied to a more complicated crack model
(Fig. 8), already investigated by Burczynski and Beluch
(2001) using a dual boundary element method combined with
a linear hybrid algorithm. The specimen dimensions were ar-
bitrary selected (Fig. 8) since they are not available in
(Burczynski and Beluch 2001). Moreover, the same material
properties of the rectangular plate analyzed above (Fig. 1),
were adopted for this complicated specimen geometry. Both
GA optimization and Particle Swarm Optimization (PSO)
were used and their performances were compared.

PSO is a population-based optimization method inspired
on the behaviour of bird flocks that is characterized by distinct
social and psychological principles. Large attention has been
paid to this method in few last decades. Its implementation
requires a small number of parameters, which facilitates its
application. The main idea of PSO is to consider the potential
solution as a particle moving through the space, looking for
the global optimum position. Initiated as a group of random

particles, each particle is characterized by its position in the
multidimensional space and by its movement speed. These
particles cooperate each other to reach the solution, based both
on their personal previous experience and the experience of
other particles. More details about PSO method are given in
(Eberhart and Kennedy 1995; Kennedy 2010).

130 ABAQUS simulations were used to build the input
data of the POD-RBF reduced model based on the first 8
POD. This input data consists of 102 boundary node displace-
ments along y direction (Fig. 8). Crack parameters sets were
defined in the −1.4 to +1.4 mm range for both the x and y
coordinates of the crack center, and from 0 to 2.5 mm, in step
of 0.5 mm, for the crack size. The considered crack parameter
sets, corresponding to the 130 snapshots of the used matrixU,
are depicted in Fig. 9.

The origin of the coordinate system was positioned at
5.5 and 2.5 mm respectively from the left side and the
bottom side of the specimen. The same stopping criteria
described in section 5 were adopted.

A crack of 2.2 mm length, represented by the parameter
P[0, 0, 2.2], was considered as the unknown crack to be
identified.

Based on POD-RBF model, both GA and PSO were used
to minimize the fitness function using population of 100 indi-
viduals. In order to compare the performance of the two opti-
mization algorithms, three applications were run with maxi-
mum iteration number of 1000. Their fitness convergence
history is presented in Fig. 10 which highlights that PSO tech-
nique converges more quickly to the solution compared to GA

Fig. 10 History of fitness convergence of PSO and GA methods

Table 3 Crack identification results using 7 sensor points: comparison
to literature results

Crack
parameters

POD-RBF-PSO Burczynski and Beluch (2001)

real estimated real estimated

x1 −1.1 −1.0905 0.05 0.0486

y1 0 0.0488 −0.01 −0.0085
x2 1.1 1.2225 0.01 0.0121

y2 0 0.0488 −0.05 −0.0517

Table 4 Identification results of small and medium cracks using 7
sensor points

Real crack parameters Estimated crack parameters
(Error)

Iterations
(time)

fitness

x y s x y s

1.3 1.3 0.6 1.367
(5.1 %)

1.318
(1.3 %)

0.600
(0 %)

500
(2351 s)

0.00083

−1.3 −0.2 1.4 −1.276
(1.8 %)

−0.215
(7.5 %)

1.422
(1.5 %)

440
(2030 s)

0.00005

B. Benaissa et al.



technique. The best solution obtained by PSO and GA are
respectively [−0.0086, 0.0334, 2.2001], corresponding to fit-
ness value equal to 0.0007, and [−0.0225, 0.0401, 2.1695]
corresponding to fitness value equal to 0.0008.

To analyze the influence of sensor point number on the
precision of the proposed approach, the identification was
achieved using only 7 sensor points represented in Fig. 8 by
small full squares. The PSOmethod was used with population
size of 100 individuals and maximum generation number of
500. The algorithm was stopped if no improvement happened
in the fitness function value after 50 iterations.

A similar configuration was analysed by Burczynski and
Beluch (2001) using a dual boundary element method com-
bined with a linear hybrid algorithm. Theses authors identified
the crack position by predicting the coordinates of the two
crack tips, assuming that the crack length is known.

The proposed POD-RBF-PSO approach converged to the
following solution: x=0.066, y=0.048 and s=2.313, with the
fitness value of 0.00023. These results and those obtained by
Burczynski and Beluch (2001) are reported in Table 3 in terms
of the coordinates of the two crack tips. This table demon-
strates that the accuracy of our approach is equivalent to the
one of the method used by Burczynski and Beluch (2001).
However, 349,800 simulations were required to reach a solu-
tion by the dual boundary element method, using 406 itera-
tions in 7188 s, while our approach needed 404 iterations and
only 1863 s to converge toward a solution, allowing the re-
duction of computing time of ~74 %, without visible accuracy
lost.

Furthermore, the proposed approach was applied, with re-
duced sensor points, in the identification of small and medium
cracks located respectively at (1.3, 1.3) and (−1.3, −0.2) coor-
dinates. The results are reported in Table 4 show that these
cracks were accurately identified using only 7 sensor points.

8 Conclusion

In this paper, a crack identification approach was proposed.
More precisely, based on several simulations of cracked plate
under traction by FEM, a reduced model was built by com-
bining POD and RBF methods, in order to get a solution with
a good precision. The genetic algorithm was implemented for
the inverse crack identification using boundary displacement
as input data.

Results have clearly shown that the proposed algorithm is
capable of accurately predicting the presence, the size and the
position of crack in a structure, within few generations. It also
presented a high stability against measurement uncertainty.

It proved that POD-RBF method could be applicable in
crack identification, in both simple and complicated specimen
geometries, based on boundary displacement, providing the
advantage of the low computational cost.

The use of the population based algorithm in the optimiza-
tion procedure helped to avoid typical limitations of the clas-
sical optimization approaches. It appeared that PSO method is
more suitable than GAmethod for the problem investigated in
this work.

Finally, it should be underlined that the approach presented
in this paper could be applied using accessible experimental
measurements, like strains or displacements as input data,
using small number of sensor points.

As a perspective, it will be interesting to use the proposed
approach to identify the crack orientation.
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