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Abstract
Rationale Angiotensin II, by activation of its brain AT1-recep-
tors, plays an active role as neuromodulator in dopaminergic
transmission. These receptors participate in the development
of amphetamine-induced behavioral and dopamine release
sensitization. Dopamine is involved in cognitive processes
and provides connectivity between brain areas related to these
processes. Amphetamine by its mimetic activity over dopa-
mine neurotransmission elicits differential responses after
acute administration or after re-exposure following long-
term withdrawal periods in different cognitive processes.
Objective The purpose of this study is to evaluate the AT1-
receptor involvement in the acute and long-term amphet-
amine-induced alterations in long-term memory and in
cellular-related events.
Methods MaleWistar rats (250–300 g) were used in this study.
Acute effects: Amphetamine (0.5/2.5 mg/kg i.p.) was adminis-
tered after post-training in the inhibitory avoidance (IA) re-
sponse. The AT1-receptor blocker Losartan was administered
i.c.v. before a single dose of amphetamine (0.5 mg/kg i.p.).

Long-term effects: The AT1-receptors blocker Candesartan
(3 mg/kg p.o.) was administered for 5 days followed by 5
consecutive days of amphetamine (2.5 mg/kg/day, i.p.). The
neuroadaptive changes were evidenced after 1 week of with-
drawal by an amphetamine challenge (0.5 mg/kg i.p.). The IA
response, the neuronal activation pattern, and the hippocampal
synaptic transmission were evaluated.
Results The impairing effect in the IA response of post-
training acute amphetamine was partially prevented by
Losartan. The long-term changes induced by repeated am-
phetamine (resistance to acute amphetamine interference in
the IA response, neurochemical altered response, and in-
creased hippocampal synaptic transmission) were prevented
by AT1-receptors blockade.
Conclusions AT1-receptors are involved in the acute alter-
ations and in the neuroadaptations induced by repeated am-
phetamine associated with neurocognitive processes.

Keywords Angiotensin II . Amphetamine . AT1 receptors .

Long-termmemory . Long-termpotentiation .Hippocampus .
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Introduction

The role of brain renin-angiotensin system (RAS) is complex,
and its main active peptide, angiotensin II (Ang II), was ini-
tially described as a modulator of autonomic and hormonal
systems, sensorial and cognitive processes, and it also partic-
ipates in the regulation of cerebral blood flow. Ang II exerts its
known actions principally by activation of the angiotensin
receptors type 1 (AT1-R) (Saavedra 1992; Saavedra et al.
2005). Locally produced brain Ang II plays an important role
in the modulation of central dopaminergic neurotransmission.
Dopamine (DA) innervated areas such as caudate putamen
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(CPu), nucleus accumbens (NAc), substancia nigra (SN), the
hypothalamus, and ventral pallidum express high AT1-R den-
sity (Zhuo et al. 1998; Daubert et al. 1999; Paz et al. 2014).
Indeed, AT1-R are located in the soma and terminal fields of
dopaminergic neurons, and there is a cross regulation between
DA and Ang II systems. Thereby, decreased levels of DA after
chronic depletion with reserpine or 6-hydroxydopamine pro-
motes an increase in AT1-R expression in SN and CPu, which
can be reversed by restatement of DA activity (Villar-Cheda
et al. 2010; Labandeira-Garcia et al. 2011). Similarly, knock-
out mice for DA receptors (D1-R and D2-R type) have in-
creased levels of AT1-R, while transgenic mice overexpress-
ing D2-R have reduced levels. Moreover, aged rats show de-
creased levels of DA receptors and increased expression of
AT1-R simultaneously, when compared to young animals
(Villar-Cheda et al. 2014). On the other hand, acute or chronic
manipulation of brain RAS with AT1-R antagonists decreased
D2-R and increased D1-R expression (Dominguez-Meijide
et al. 2014). Functional evidences indicate that tonic and
evoked DA synthesis and release are positively regulated by
AT1-R activation (Hoebel et al. 1994; Brown et al. 1996).
Finally, recent evidences point out a direct interaction between
AT1-R and D2-R, as they shape functional heterodimers in
cultured striatum cells (Martinez-Pinilla et al. 2015).

Amphetamine (Amph) is a drug of abuse, worldwide con-
sumed for its stimulant properties over the central nervous
system. It promotes mainly noradrenergic and dopaminergic
neurotransmission and induces long-term changes in multiple
neuronal circuits, modifying their future responses to pharma-
cological or non-pharmacological challenges (Pierce and
Kalivas 1997; Vanderschuren and Kalivas 2000). The altered
neuronal connectivity induced byAmph has long been studied
in reward-processing brain areas (i.e., CPu and NAc) and in
behavioral performance (i.e., locomotor activity); however,
only few evidences have focused on the effects of Amph ex-
posure over learning and memory processes. Depending on
the type of memory evaluated, controversial results have been
reported after Amph administration: an improving effect is
observed with an acute administration in reward-associated
memories (Nelson and Killcross 2006; Simon and Setlow
2006), while fear memories can be either improved or inter-
fered. The DBA/2 mice (DBA inbred strain) display poor
retention latencies in inhibitory avoidance (IA) responses
when receiving Amph, stress, or DA agonist after the training
session (Cestari et al. 1992; Cabib and Castellano 1997).
Meanwhile, rodents under an Amph sensitization protocol
show no altered performance after long periods of withdrawal
(Eldred and Palmiter 2013).

The striatum, which comprises the CPu and NAc, receives
inputs from all areas of the cortex as well as from the thalamus
and limbic structures such as the hippocampus (HP) and
amygdala (Parent 1990). Repeated Amph exposure results in
altered interactions in the striatum and prefrontal cortex (PFC)

between converging dopaminergic inputs from the ventral teg-
mental area and glutamatergic inputs from the amygdala and
HP (Ito and Canseliet 2010). The HP has been implicated in
spatial and context-dependent learnings, including those relat-
ed to the development and persistent expression of addictive
behaviors and drug sensitization (Wolf 2002; Robbins et al.
2008). A major form of synaptic plasticity in the HP is long-
term potentiation (LTP) characterized by an enduring increase
in the efficacy of synaptic transmission. This phenomenon is
accepted as a molecular mechanism for learning and memory
in the brain in which contextual cues are relevant (Phillips and
LeDoux 1992; Martin et al. 2000). Psychostimulants such as
cocaine are known to facilitate this phenomenon in the HP
(Perez et al. 2010; Gabach et al. 2013).

Brain RAS is proposed as a neuromodulatory system in-
volved in regulation of vascular, glial, and neuronal function.
Previously, we have reported reciprocal interactions between
brain Ang II and Amph effects in long-term modifications in
the reward circuit and behavioral-related responses. We ob-
served that AT1-R are involved in the behavioral and neuro-
chemical adaptive responses induced by Amph exposure (Paz
et al. 2011; Paz et al. 2013). Moreover, Amph exposure in-
duced long-term changes in AT1-R density and in
angiotensinogen mRNA in CPu, a rich DA area strongly re-
lated to drugs of abuse responses (Paz et al. 2014). Most of the
studies employing repeated Amph administration investigated
the effects on locomotor and/or stereotyped activities and at-
tributed the enhanced locomotor activity induced by Amph to
increases in striatal and cortical DA (Robinson and Kolb
1997; White and Kalivas 1998; Robinson and Kolb 2004).
Only a few studies assessed possible alterations in learning
and memory induced by Amph in rodents and primates (Ito
and Canseliet 2010; Eldred and Palmiter 2013; Leri et al.
2013). Therefore, the aim of the current study is to evaluate
the participation of RAS over alterations in learning and mem-
ory processes induced by Amph, in order to explore this sys-
tem as a target for pharmacological intervention in treatment
of disorders related to psychostimulant abuse. For this pur-
pose, we used behavioral, neurochemical, and electrophysio-
logical approaches in order to elucidate the role of AT1-R in
learning and memory alterations induced by Amph and the
possible brain structures and mechanisms implicated in those
alterations.

Materials and methods

Animals

A total of 213 adult male Wistar rats (250–330 g) from the
Department of Pharmacology vivarium (Facultad de Ciencias
Químicas, Universidad Nacional de Córdoba, Argentina)
were used. Rats were maintained at 20–24 °C under a 12-h
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light–dark cycle (lights on at 07 a.m.) with free access to food
and water. Animals were randomly housed in groups of four
per cage a week before the beginning of the treatment.

All procedures were handled in accordance with the NIH
Guide for the Care and Use of Laboratory Animals as ap-
proved by the Animal Care and Use Committee of the
Facultad de Ciencias Químicas, Universidad Nacional de
Córdoba, Argentina.

Drugs

D-amphetamine sulfate (Amph, Sigma Chemical Co.) was
dissolved in 0.9 % saline (NaCl, Sal) immediately before use.

Two selective AT1-R antagonists were used: Losartan
(LOS, Sigma-Aldrich) dissolved in 0.9 % NaCl (vehicle,
Veh), and Candesartan cilexetil (CV, Laboratorios Phoenix,
Buenos Aires, Argentina) dissolved in NaHCO3 0.1 N (vehi-
cle, Veh).

All solutions were protected from light, maintained at 4 °C,
and freshly used. Concentrations were calculated on the basis
of the weight of the salt of each drug, and each dose was
chosen considering previous work (Schmidt et al. 1999;
Tilders and Schmidt 1999; Vanderschuren et al. 1999; Paz
et al. 2011; Llano Lopez et al. 2012).

Drug administration protocols

Experimental protocol 1

To evaluate the acute effects of Amph, animals were exposed
to a single injection of Amph: 0.5 or 2.5 mg/kg intraperitoneal
(i.p.) or Sal (Fig. 1c). To evaluate the involvement of AT1-R in
the acute Amph effects, the animals were implanted with a
cannula in the lateral ventricle (see below) 1 week before the
experiment. Five minutes before the Amph (0.5 mg/kg) or Sal
injection, the animals received a cerebral microinjection in the
lateral ventricle (intracerebroventricular, i.c.v.) of the AT1-R
antagonist LOS (20 μg/μl, infusion volume 0.5 μl) or Veh
(infusion volume 0.5 μl) (Fig. 1e).

Experimental protocol 2

To evaluate the long-term effects of repeated Amph exposure,
the animals received Veh by oral administration (by gavage
using a feeding needle) once a day along 5 days. From day 6
until day 10, they were injected once daily with Amph
2.5 mg/kg or Sal i.p. and left undisturbed (drug-free period)
in their home cages until day 17 when behavioral experiments
were performed (Fig. 2a).

To study the involvement of AT1-R in the development of
Amph-induced long-term effects, a different group of animals
received CV 3 mg/kg by oral administration once a day along
5 days. From day 6 until the day 10, they were injected once

daily with Amph 2.5 mg/kg or Sal i.p. and left undisturbed
(drug-free period) in their home cages until day 17 when be-
havioral experiments were performed (Fig. 2c).

Surgery

Cannulae implantation

Animals were anesthetized i.p. with ketamine (55 mg/kg,
Holliday) and xylazine (11 mg/kg, Köing). In aseptic condi-
tions, rats’ skulls were exposed and, using a stereotaxic device
(Stoelting), they were implanted with stainless steel cannula
(22 gauge) and fixed with dental cement (Subiton, Argentina).
Also, a stainless steel screw was anchored to the skull.
Cannulae were placed 2 mm above the final place of injection.
According to Paxinos and Watson Atlas (Paxinos and Watson
2009), coordinates respect to bregma for lateral ventricle were
as follows: AP=−0.9 mm; L=−1.6 mm; DV=−2.0 mm.
Immediately after surgery and on the next day, the animals
received Norciciline (5,000,000 U.I., i.p. Laboratorios
NORT, Buenos Aires, Argentina) and were maintained undis-
turbed in their home cages to allow recovery from surgery
during a week.

Intracerebral infusion of Losartan

The day of the behavioral experiment, animals were adminis-
tered with LOS or Sal by inserting a stainless steel injection
cannula (30 gauges) into the guide cannula. This cannula was
attached through a polyethylene catheter (P10) to a 10-μl
microsyringe (Hamilton). Volumes of 0.5 μl of Sal or LOS
solution were gradually injected, over 1 min period, into the
lateral ventricle using an infusion pump (HARVARD, model
22). The injection cannula was left in place for additional 30 s
to allow complete liquid diffusion.

Histology

After the test session in the passive avoidance test (see below),
animals were euthanatized by an overdose of chloral hydrate
16 %; their brains were removed and immersion-fixed in a
4 % formaldehyde solution for a week. Coronal sections of
60 μm were obtained using a cryostat (Leica CM1510S) and
analyzed under magnifying glass in order to confirm the guide
cannula location. Only animals with correct cannula position
were considered for statistical analysis.

Behavior

The passive avoidance test is a widely accepted method to test
long-term memory performance. The IA response was deter-
mined using a Bstep-through^ apparatus which consisted of an
illuminated and a dark compartment (each 60×30×30 cm)
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next to each other and connected by a guillotine door. The
floor was constructed of stainless steel rods. The experiment
was conducted for 2 consecutive days (training and test ses-
sion), at the same time each day (between 9.00 a.m. and
1 p.m.).

In order to evaluate the precise shock intensity for all
experiments, two schemes with different shock intensities
were evaluated in naive animals as follows: on the first
day (training session), each rat was placed in the illumi-
nated compartment facing away from the dark compart-
ment. A maximum of 60 s was considered for the animal
to enter the dark compartment; otherwise, the animals
were dismissed from the experiment. Once the rat entered
completely, it received electric footshocks through the
stainless steel grid floor (3 shocks×0.2 mA or 0.5 mA,
3 s each, separated by 30 s). On the second day (test
session), the same procedure was followed, but no foot-
shock was delivered. The time taken by each rat to enter
into the dark compartment in the test session was recorded
as a measure of memory retention and described as step-
through latency 2. If rats did not enter in the dark com-
partment within 300 s, the test was concluded and a la-
tency of 300 s was recorded (Fig. 1a). The intensity of
0.5 mA to deliver the footshock was selected for experi-
mental protocols 1 and 2 since it induced the higher la-
tency values in the test (see BResults^ section).

Accordingly to the experimental protocol 1, the acute effect
of Amph exposure on the IA response was evaluated. For this
purpose, animals received an Amph injection (0.5 or
2.5 mg/kg) immediately after the training session. The step-
through latency 2 was recorded 24 h later (Fig. 1c). In order to
evaluate the involvement of AT1–R in the acute effect of
Amph, animals were first trained and then microinjected in
the lateral ventricle with LOS or Veh, 5 min before the
Amph injection (0.5 mg/kg) (Fig. 1e).

For the experimental protocol 2, animals from the Veh-Sal
and Veh-Amph groups were trained in the passive avoidance
test 7 days after the last Amph injection (day 17 in Fig. 2a).
Immediately after the shock delivery in the training day, ani-
mals were administered with a Sal or an Amph (0.5 mg/kg)

challenge injection. The step-through latency 2 was recorded
24 h later (Fig. 2a). To assess the involvement of AT1-R in the
long-term effects of repeated Amph exposure, animals from
the CV-Sal and CV-Amph groups were evaluated for the IA
response on day 17 as described above (Fig. 2c).

For both protocols, possible drug interferences with mem-
ory acquisition were avoided since drugs were administered
after training, allowing a drug-free training (McGaugh 1973).

�Fig. 1 Acute effects of Amph involve AT1-R activation. a General
experimental protocol for the passive avoidance test. b Step-through la-
tencies for the training and the test session under two schemes with
different shock intensities (0.2 and 0.5 mA), *p<0.05 different from
training session. c Experimental protocol 1 to test the acute effect of
post-training Amph administration. d Step-through latencies 2 of animals
receiving saline or Amph (0.5 or 2.5 mg/kg) immediately after the train-
ing session, *p<0.05 different from saline group. e Experimental protocol
1 to evaluate AT1-R role in the Amph acute effects. f Step-through laten-
cies 2 for the experimental groups, *p<0.05 different from control groups
(Veh-Sal and Los-Sal), #p<0.05 different from Veh-Amph group. Values
are presented as the median, interquartile range, and minimum and max-
imum values
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Neurochemistry

c-Fos immunohistochemistry

Fos-immunoreactivity assay was performed taking into ac-
count activated brain areas during the test session in IA re-
sponses (Fukushima et al. 2014): PFC (Bregma 3.20 mm), HP
(Dentate Gyrus-DG-, CA1 and CA3; Bregma −3.30/
−3.60 mm) and basolateral amygdala (BLA; Bregma −2.56/
−2.80 mm). The motor cortex (M1; Bregma 3.20 mm) was
selected as a negative control area. Ninety minutes after the
test session, animals were prepared for brain fixation for im-
munohistochemical detection of Fos as previously described
(Paz et al. 2013). Briefly, animals were anesthetized with chlo-
ral hydrate 16 % (400 mg/kg i.p.) and perfused transcardially
with 250 mL of physiologic solution (0.9 % NaCl) and hepa-
rin (200μL/L), followed by 400 mL of 4 % paraformaldehyde
in 0.1 M phosphate buffer (PB, pH 7.4). The brains were
removed, fixed in the same paraformaldehyde solution over-
night, and then stored at 4 °C in PB containing 30 % sucrose.
Coronal sections of 40 μm were cut using a freezing micro-
tome (Leica CM15105) and collected in PB 0.01 M. They
were placed in a mixture of 10 % H2O2 and 10 % methanol

for 2 h. Samples were incubated in 10% normal horse serum
(NHS) (Natocor, Villa Carlos Paz, Córdoba, Argentina) in
PB 0.1 M for 2 h to block non-specific binding sites. The
free-floating sections were incubated overnight at room
temperature in a rabbit anti-c-Fos antibody (produced in
rabbit against a synthetic 14-amino acid sequence, corre-
sponding to residues 4–17 of human Fos) (Ab-5;
Oncogene Science, Manhasset, NY), diluted 1:20,000 in
PB 0.1 M containing 2 % NHS and 0.3 % Triton X-100
(Flucka Analytical). The sections were then rinsed with
PB 0.01 M and incubated with biotin-labeled universal sec-
ondary antibody (diluted 1:2000 in 2%NHS-PB 0.1M) and
avidin-biotin-peroxidase complex (Vector Laboratories,
Burlingame, CA; diluted 1:200 in 2 % NHS-PB 0.1 M),
for 2 h each at room temperature. The peroxidase label
was detected with diaminobenzidine hydrochloride (Sigma
Chemical Co.); the solution was intensified with 1 % cobalt
chloride and 1 % nickel ammonium sulfate; this method
produces a violet nuclear reaction product.

Finally, the free-floating sections were mounted on
gelatinized slides, air-dried overnight, dehydrated, cleared in
xylene, and placed under a coverslip with DPX mountant for
histology (Flucka Analytical).

Fig. 2 Amph-induced long-term changes involve AT1-R activation. a, c
Experimental protocol 2 used to evaluate long term changes after repeated
Amph exposure and AT1 receptors involvement in those changes. b Step-
through latencies 2 for Veh-Sal and Veh-Amph treated groups when re-
ceiving a Sal or Amph challenge immediately after training session,
*p<0.05 different from Veh-Sal challenged with Sal and from Veh-
Amph challenged with Amph. d Step-through latencies 2 for CV-Sal

and CV-Amph treated groups when receiving a Sal or Amph challenge
(0.5 mg/kg) immediately after training session. e Step-through latencies 2
for Veh-Amph and CV-Amph treated groups when receiving a Sal or
Amph challenge (0.5 mg/kg) immediately after training session,
*p<0.05 different from Sal challenged groups. Values are presented as
the median, interquartile range, and minimum and maximum values
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Cytoarchitectural and quantitative analysis

Images containing Fos-immunoreactive (Fos-IR) nuclei
were obtained by using a computerized system that in-
cluded a Leica DM 4000B microscope equipped with a
DFC Leica digital camera attached to a contrast enhance-
ment device. The abovementioned brain areas evidencing
Fos-IR nuclei were identify and delimited according to the
atlas of Paxinos and Watson (Paxinos and Watson 2009).
The brain sections were processed concurrently for sub-
jects across all groups. Counting of Fos-IR nuclei was
accomplished using IMAGE J software from the
National Institutes of Health (NIH). Images threshold
were fixed between intervals of 120–150 in black and
white conditions; all lower values were considered back-
ground. Fos-IR neurons were identified by dense black
staining of the nucleus and counted by setting a size range
for cellular nuclei (8 to 12 μm of diameter). The measure-
ment for each brain area was done bilaterally in two sec-
tions. The value obtained was the average of the four
counted sections. The counting was made blinded to the
experimental groups. Because the size and section thick-
ness of nuclei did not change between experimental and
control groups, any systematic error should be identical
for all groups. Hence, the results are meant to provide
relative data on expression of Fos-immunoreactivity but
are not meant to be accurate estimates of absolute cell
counts.

Electrophysiology

Electrophysiological experiments were carried out using
the in vitro hippocampal slice preparation (Perez et al.
2010). Rats were treated as described in experimental pro-
tocol 2 and sacrificed 7 days after the last Amph admin-
istration without receiving any challenge injection
(Fig. 4a). To prevent variations caused by circadian
rhythms or non-specific stressors, rats were sacrificed be-
tween 11:00 a.m. and noon (Teyler and DiScenna 1987).
The hippocampal formation was dissected, and transverse
slices of approximately 400 μm thick were maintained in
a storage chamber containing standard Krebs solution
(NaCl, 124.3 mM; KCl, 4.9 mM; MgSO4·7H2O,
1.3 mM; H2KPO4, 1.25 mM; HNaCO3, 25.6 mM; glu-
cose , 10 .4 mM; CaCl2 ·2H2O, 2 .3 mM; Sigma,
Argentina) saturated with 95 % O2 and 5 % CO2. At the
beginning of the experiments, a single slice was placed in
a recording chamber (BSC-BU Harvard Apparatus) per-
fused with the standard Krebs solution saturated with
95 % O2 and 5 % CO2. The perfusion rate was 1.6 ml/
min, and the bathing solution temperature was kept at
28 °C with a temperature controller (TC-202A Harvard
Apparatus). A stimulating electrode made of two twisted

wires, which were insulated except for the cut ends (di-
ameter 50 μm), was placed in the perforant path (PP).
Then, a recording microelectrode was inserted in the DG
cell body layer. Only slices showing a stable response
were included in the study. Amplitude (mV) of field ex-
citatory postsynaptic potentials (EPSP) that responded to
0.2 Hz stimuli were sampled for 40 min until EPSP sta-
bilization (baseline). Once no further changes were ob-
served in the amplitude of EPSP, the stimulation protocol
was applied (Perez et al. 2010). The stimulation allowed
us to assay different stimulating frequency values in order
to determine the minimum value to generate LTP (we call
this value Bthreshold^). The stimulus consisted in a train
of square pulses of 2 s length, with 0.5 ms being the
duration of each square pulse. We used a stimulus fre-
quency ranging from 5 to 200 Hz, delivered by an A310
accupulser pulse generator (World Precision Instruments
Inc.). LTP was considered to have occurred when the
EPSP amplitude recorded after the stimulus had risen at
least 30 % from baseline and persisted for 60 min. If LTP
was not observed at 20 min after of a given stimulation
frequency, another hippocampal slice was used to test a
stimulus at the next frequency value.

Statistical analysis

For Fos-immunoreactivity and electrophysiological re-
cordings, the results are expressed as means±SEM.
The study design used t test for Fos-IR comparison
regarding shock intensity and two-way ANOVA with
Veh/CV or Sal/Amph as treatment factor and Sal/Amph
as the second factor analyzed (drug). If an interaction
and/or main effect were observed, pairwise comparisons
following ANOVA were made using the Bonferroni
post-test.

For passive avoidance analysis, maximum latencies were
set for training and test session (60 and 300 s, respectively);
thus, a non-parametric distribution of the data was consid-
ered, and because its variance does not fulfill the assump-
tion of homoscedasticity, non-parametric analyses were per-
formed and the results are expressed as median with inter-
quartile range. Step-through latencies were analyzed by
Kruskal-Wallis (acute Amph exposure) or Scheirer-Ray-
Hare test (Sal/LOS as microinjection factor and Sal/Amph
as the second factor; and Sal/Amph as treatment factor and
Sal/Amph as challenge factor). All analyses were followed
by the Mann-Whitney test with Bonferroni correction as
posthoc analysis. In all comparison, p<0.05 was considered
significant. Statistics were performed by using Prism 6.0
software (GraphPad Software for Science, San Diego, CA,
USA) and IBM SPSS Statistic 20 software (SPSS Software
for Business Analytics, IBM Software).
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Results

AT1 receptors are involved in the long-term memory
impairment induced by acute amphetamine

Figure 1a shows the scheme to test 2 shock intensities in the
passive avoidance protocol. The results indicate that 3 shock
deliveries of 0.2 mA intensity does not increase step-through
latency on the test day (step-through latency 2) compared to
the training day (step-through latency 1): Mann–Whitney U(5,

5, 0.05)=11 p=0.80(Fig. 1b). When the animals received 3
shocks of 0.5 mA intensity on the training day, a significant
difference was observed on the step-through latency 2 com-
pared to the step-through latency 1: U(12, 12, 0.05)=11 p<0.001
(Fig. 1b).

In these animals, the neuronal activation pattern was
assessed by Fos-immunoreactivity 90 min after the test ses-
sion. The results indicate significantly higher Fos-IR neurons
in the 0.5-mA shock intensity group compared to the 0.2-mA
shock intensity group in brain areas involved in memory and
learning: DG t(12, 0.05)=10.58 p<0.0001, CA1 t(12, 0.05)=6.76
p<0.0001, CA3 t(12, 0.05)=8.39 p<0.0001 and BLA t(14, 0.05)=
5.37 p<0.0001, PFC t(14, 0.05)=4.16 p<0.01. No significant
difference on Fos-immunoreactivity was observed in M1 t(10,
0.05)=0.80 p=0.44 (Table 1).

In another set of experiments, the effects of a single Amph
administration immediately after the training session were
evaluated (Fig. 1c). The result of the Kruskal-Wallis test
showed a significant effect of the acute injection (Sal vs.
Amph 0.5 mg/kg or Amph 2.5 mg/kg) H(2)=8.58 p<0.05.
Mann-Whitney with Bonferroni’s correction posthoc compar-
ison indicate significant lower values for the step-through la-
tency 2 in animals receiving an Amph injection of 0.5 or
2.5 mg/kg (p<0.05) compared to those receiving a Sal injec-
tion (Fig. 1d). No significant differences were found in step-
through latency 1 between the groups (data not shown,
Supplementary Table 1).

The experiments performed to evaluate AT1-R role in the
long-term memory impairment observed after an acute injec-
tion of Amph are shown in Fig. 1e. The Scheirer-Ray-Hare
test results were as follows: MICROINJECTION (Veh or
LOS) H(1)=6.33 p<0.01, DRUG (Sal or Amph) H(1)=12.21
p<0.01 and interaction MICROINJECTION*DRUG H(1)=
0.37 p>0.05. Mann-Whitney with Bonferroni’s correction
posthoc comparison indicates significant lower step-through
latency 2 for Veh-Amph and LOS-Amph compared to their
respective controls (Veh-Sal and LOS-Sal, corrected
p<0.0125). Moreover, the step-through latency 2 of the
LOS-Amph group was significantly higher than the Veh-
Amph group (corrected p<0.0125, Fig. 1f). These results
show a functional role for AT1-R in the impairment in long-
term memory induced by acute post-training Amph adminis-
tration. No significant differences were found in step-through
latency 1 between groups (Supplementary Table 1).

AT1 receptor blockade prevents the long-term repeated
amphetamine-induced alterations in long-term memory

Inhibitory avoidance response

In order to evaluate the long-term neuroadaptative changes
induced by repeated Amph exposure, the animals were sub-
mitted to the experimental protocol 2 and tested in the passive
avoidance bearing a Sal or an Amph (0.5 mg/kg) challenge
injection immediately after training (Fig. 2a). The involve-
ment of AT1-R in the repeated Amph long-term adaptations
was evaluated according to the experimental protocol 2 shown
in Fig. 2c.

Figure 2b shows the step-through latency 2 from Veh-Sal
and Veh-Amph groups. Scheirer-Ray-Hare test results were:
TREATMENT (Veh-Sal or Veh-Amph) H(1)=0.50 p>0.05,
CHALLENGE (Sal or Amph) H(1)=0.79 p>0.05 and interac-
tion TREATMENT*CHALLENGE H(1)=11.30 p<0.01.
Mann-Whitney with Bonferroni’s correction posthoc compar-
ison indicates significant difference in the step-through laten-
cy 2 between Veh-Sal groups when receiving a Sal or Amph
challenge and between Veh-Sal and Veh-Amph groups when
receiving an Amph (0.5 mg/kg) challenge (corrected
p<0.0125). No significant difference was observed in Veh-
Amph groups bearing a Sal or Amph challenge nor between
Veh-Sal and Veh-Amph when receiving a post-training saline
challenge. These results show that repeated Amph induced
long-term alterations in the IA response when receiving an
acute challenge dose of Amph after the withdrawal period.
No significant differences were found in step-through latency
1 between groups (Supplementary Table 1).When animals
were administered with the AT1-R blocker previous to repeat-
ed Amph administration and received a Sal or Amph chal-
lenge injection immediately after the training session
(Fig. 2d), the Scheirer-Ray-Hare Test results were:

Table 1 Pattern of Fos-IR cells

3×0.2 mA shock 3×0.5 mA shock

Dentate Gyrus 15.52±0.78 25.57±0.54*

CA1 10.07±1.69 34.64±3.58*

CA3 7.98±0.74 22.31±1.72*

Basolateral amygdala 11.02±0.92 19.71±1.33*

PFCx 44.18±2.43 58.65±2.48*

Motor cortex 12.16±2.09 14.14±1.48

Average number of Fos-IR neurons in brain nuclei 90 min after the test
session in animals trained under two different schemes of shock intensity
(0.2 and 0.5 mA).Values are means±SEM

*p<0.05 different from 0.2 mA shock trained group
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TREATMENT (Cv-Sal or CV-Amph) H(1)=1.21 p>0.05,
CHALLENGE (Sal or Amph) H(1)=8.11 p<0.05 and interac-
tion PRETREATMENT*CHALLENGE H(1)=0.07 p>0.05.
These results demonstrate a functional role for AT1 receptors
in the Amph-induced alteration after repeated administration.
No significant differences were found in step-through latency
1 between groups (Supplementary Table 1).

Additional analysis was performed to evaluate Amph-
treated groups, Scheirer-Ray-Hare test results were as follows:
TREATMENT (Veh-Amph or CV-Amph) H(1)=0.18 p>0.05,
CHALLENGE (Sal or Amph) H(1)=3.7 p>0.05 and interac-
tion TREATMENT*CHALLENGE H(1)=8.11 p<0.01.
Mann-Whitney with Bonferroni’s correction posthoc compar-
ison indicates significant difference in the step-through laten-
cy 2 between CV-Amph groupswhen receiving a Sal or Amph
challenge and between Veh-Amph and CV-Amph groups
when receiving an Amph (0.5 mg/kg) challenge (corrected
p<0.0125). No significant difference was observed in Veh-
Amph groups bearing a Sal or Amph challenge nor between
Veh-Amph and CV-Amph when receiving a post-training sa-
line challenge (Fig. 2e).

Brain distribution of Fos-immunoreactivity

The neuronal activation pattern was assessed in animals from
experimental protocol 2 and sacrificed 90 min after the test
session, by analyzing the Fos-IR neurons in brain areas in-
volved in memory and learning, as detailed in Figs. 3 and 4.

The results of the two-way ANOVA for vehicle-treated
groups (Veh-Sal and Veh-Amph) indicate a significant effect
for CHALLENGE (Sal or Amph) in DG F(1,13)=20.94
p<0.01; CA1 F(1,13)=27.08 p<0.01; and CA3 F(1,13)=23.45
p<0.01 (Fig. 3b–d). Meanwhile, the Fos-activation pattern in
BLA shows a significant effect for CHALLENGE (Sal or
Amph ) F ( 1 , 1 3 ) = 32 . 78 p < 0 . 01 and i n t e r a c t i o n
TREATMENT*CHALLENGE F(1,13)=5.31 p<0.05. No sig-
nificant effect was found for TREATMENT (Veh-Sal or Veh-
Amph) F(1,13)=4.05 p=0.66. Bonferroni posthoc comparison
indicates a significant decrease in Fos-IR neurons for Veh-Sal
group when receiving an Amph challenge compared to the
group receiving a Sal challenge (p<0.01, Fig. 4b), while no
differences were found in Veh-Amph group receiving either
Sal or Amph challenge. Moreover, significant differences
were found for Fos-immunoreactivity in the Veh-Sal group
compared to the Veh-Amph group when receiving an Amph
challenge (p<0.05, Fig. 4 b): No differences were found in
Fos-immunoreactivity pattern in PFC between groups
(Supplementary Table 2).

The results of the two way ANOVA for the CV treated
groups (CV-Sal and CV-Amph) indicates a significant effect
for CHALLENGE (Sal or Amph) in DG F(1,13)=42.53
p<0.01; CA1 F(1,13)=8.09 p<0.05; CA3 F(1,13)=8.90
p<0.01; and BLA F(1,13)=36.88 p<0.01 (Figs. 3e–g and 4c).

No differences were found in Fos-immunoreactivity pattern in
PFC between groups (Supplementary Table 2).

AT1 receptor blockade prevents repeated
amphetamine-induced alterations in hippocampal
synaptic transmission

In order to evaluate if repeated Amph alters synaptic transmis-
sion in the HP, together with AT1-R involvement in those
changes, animals were submitted to the experimental protocol
2 and sacrificed a week after the last Amph administration
without performing the passive avoidance test, as shown in
Fig. 5a. Two-way ANOVA analysis indicate a significant ef-
fect for DRUG (Sal or Amph) F(1,14)=6.44 p<0.05 and inter-
action PRETREATMENT*DRUG F(1,14)=4.71 p<0.05. No
significant effect was found for PRETREATMENT (Veh or
CV) F(1,14)=2.50 p=0.14. Bonferroni posthoc comparison in-
dicates a significant difference in the threshold to generate
LTP in the Veh-Amph group when compared to Veh-Sal and
CV-Amph groups (p<0.05). These results indicate a signifi-
cant decrease in the minimum effective stimulating frequency
(threshold) to generate LTP in DG in animals exposed to re-
peated Amph. Interestingly, this phenomenon was completely
prevented with AT1-R blockade (Fig. 5c). Then, the increased
hippocampal synaptic transmission induced by repeated
Amph administration involves AT1-R activation.

Discussion

The results presented here show that acute Amph impairs
memory retention in male rats in the one-trial IA response
when administered immediately post-training. This effect in-
volves central AT1-R activation since i.c.v. LOS administra-
tion given before the psychostimulant partially prevented the
drug-induced memory impairment. Moreover, a previous ex-
perience of repeated Amph followed by 7 days of withdrawal
modified the animals’ performance in the IA response and the
neuronal activation pattern in BLAwhen receiving an Amph
challenge. Furthermore, the long-term Amph-induced alter-
ations were evidenced in the HP synaptic transmission, mea-
sured as a lower threshold necessary to generate LTP. It is
noteworthy that AT1-R blockade prevented the behavioral,
neurochemical, and electrophysiological alterations observed
in the repeated Amph group, pointing out a functional role for
AT1-R in the psychostimulant-induced neuroadaptations.

AT1 receptors role in the acute amphetamine-induced
neurocognitive alterations

Acute Amph administration induces memory impairments in
several learning trials (Crabbe and Alpern 1975; James 1975;
Seliger 1977; Cabib and Castellano 1997; van den Buuse et al.
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2005). Furthermore, the same deleterious effect has been de-
scribed for acute cocaine, stress, or DA agonists and prevented
by DA antagonists in all cases (Castellano et al. 1991; Cestari
et al. 1992; Puglisi-Allegra et al. 1994; Cabib and Castellano
1997). Although under different experimental conditions, oth-
er authors have reported enhancement or no effect for acute

Amph administration (Kaminsky et al. 2001; Nelson and
Killcross 2006; Simon and Setlow 2006).

The RAS system also participates in memory processes
since Ang II injected either before or after training sessions
impairs memory retention when evaluated 24, 48, or 72 h
latter (Morgan and Routtenberg 1977; Lee et al. 1995;

Fig. 4 Involvement of AT1-R in the expression pattern of Fos-IR cells in
the BLA. a Studied brain area is indicated in the schematic microphoto-
graph (Scale bar=1 mm). Graphs show average number of Fos-IR neu-
rons from animals receiving a saline (white bars) or Amph (gray bars)

challenge immediately after the training session. Veh-Sal and Veh-Amph
groups (b) and CV-Sal and CV-Amph groups (c). *p<0.05 different from
saline challenged group. Values are means±SEM

Fig. 3 Involvement of AT1-R in the expression pattern of Fos-IR cells in
HP. a Studied hippocampal subareas are indicated in themicrophotograph
(Scale bar=1 mm). Graphs show the average number of Fos-IR neurons
in the brain nuclei from animals receiving a saline (white bars) or Amph
(gray bars) challenge immediately after the training session. For Veh-Sal

and Veh-Amph groups: Dentate Gyrus (b), CA1 (c), and CA3 (d). For
CV-Sal and CV-Amph groups: Dentate Gyrus (e), CA1 (f), and CA3
(g).*p<0.05 different from saline challenged group. Values are means±
SEM
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Raghavendra et al. 1999; de Souza et al. 2004). Similar results
were obtained after Ang II synthesis stimulation by renin i.c.v
administration (Koller et al. 1979; DeNoble et al. 1991).
Moreover, these reports also indicate that the deleterious effect
induced by Ang II upon memory is AT1-R activation depen-
dent (DeNoble et al. 1991; Lee et al. 1995).

The present work shows that central LOS administration
partially prevented the memory impairment observed after
acute Amph exposure, highlighting the implication of the
Ang II AT1-R in the psychostimulant’s deleterious effect.
These pioneering findings are supported by the fact that brain
RAS interacts with the DA neurotransmission system. Ang II
by AT1-R activation stimulates DA synthesis and release in
the striatum and also participates in nicotine and electrical
stimulation evoked DA release in this structure (Simonnet
and Giorguieff-Chesselet 1979; Dwoskin et al. 1992;
Mendelsohn et al. 1993; Brown et al. 1996; Jenkins et al.
1997; Narayanaswami et al. 2013). Furthermore, the disrup-
tive effect in pre-pulse inhibition induced by acute Amph or a
DA agonist was not evidenced in angiotensin converting en-
zyme 1 −/− transgenic mice (van den Buuse et al. 2005).

Our results clearly demonstrate a neuromodulatory role of
Ang II through its AT1-R in DA-related alterations elicited by
acute Amph administration in neurocognitive processes.

AT1 receptors involvement in long-term
amphetamine-induced neurocognitive alterations

The activation of the limbic system with single or repeated
psychostimulant administration triggers the development of
neuroadaptations that can be revealed at behavioral and

neurochemical levels, after long withdrawal periods with the
administration of a drug challenge (Pierce and Kalivas 1997;
Vanderschuren and Kalivas 2000). In accordance with previ-
ous reports (Kokkinidis 1983; Tse et al. 2011; Eldred and
Palmiter 2013), our results indicate that repeated Amph ad-
ministration did not affect the animals’ performance in the
passive avoidance test. Interestingly, the repeated Amph-
induced neuroadaptations were evidenced after a week of
withdrawal as a resistance to the deleterious effect of the
post-training Amph challenge administration; therefore, these
results can be interpreted as a tolerance to the acute effect of
Amph.

In the present work, we demonstrated that AT1-R blockade
effectively prevented the resistance to the deleterious effect on
memory observed after Amph challenge. Meanwhile, the
AT1-R blocker per se had no effect in the IA response.
Indeed, these results point out that AT1-R blockade could pre-
vent the long-term neuroadaptations underlying the resistance
to the deleterious effect on memory induced by repeated
Amph administration without affecting memory disruption
after acute Amph.

The Amph-induced long-term neuroadaptations were also
evaluated by Fos-immunoreactivity, a recognized tool that
provides a pattern of the ongoing neuronal activation in the
central nervous system (Morgan and Curran 1991; Herdegen
and Leah 1998). Reduced number of Fos-IR cells was ob-
served in BLA and HP after Amph challenge in animals with
previous saline exposure which also displayed reduced perfor-
mance in the passive avoidance test. These results are in ac-
cordance with recent evidences suggesting that Fos-IR cells in
these regions are increased synchronously in response to

Fig. 5 Amph-induced HP synaptic plasticity involves AT1-R activation.
a Experimental protocol used to evaluate synaptic plasticity after Amph
exposure and AT1-R role. b Hippocampal slice cartoon indicating
position of stimulating and recording electrodes and fEPSP sample
traces showing how measurements of fEPSP are taken. c fEPSP sample

traces forVeh-Sal, CV-Sal, Veh-Amph, and CV-Amph groups before (dot-
ted line) and after (full line) effective tetanus. d Threshold to generate LTP
in the four experimental groups. *p<0.05 different fromVeh-Sal and CV-
Amph groups. Values are means±SEM
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memory reactivation in the passive avoidance test (Fukushima
et al. 2014). Oppositely, previous Amph history affected the
Fos-immunoreactivity pattern after Amph challenge, again
evidencing a resistant effect to the reduced neuronal activation
induced by acute Amph only in BLA, while in HP reduced
neuronal activity remains even with previous Amph exposure.
Excitatory and inhibitory transmission in the BLA–PFC path-
way is modulated by DA activity, and it can be differentially
modified by acute or repeated Amph administration.
Electrophysiological evidences showed that under a similar
repeated Amph administration and withdrawal schedule, ani-
mals display resistance to the acute effects of Amph over BLA
excitatory and inhibitory evoked responses in PFC (Tse et al.
2011).Moreover, our results show an increased synaptic trans-
mission (lower threshold to generate LTP) within the hippo-
campal DG in the repeated Amph group without receiving a
drug challenge. This phenomenon has been previously report-
ed for repeated cocaine administration during withdrawal,
with or without cocaine challenge (Perez et al. 2010; Gabach
et al. 2013), and implies an increased neuronal sensitivity to
further challenges and a subsequent potentiation of the output
response. In the present work, the already described resistant
effect of repeated Amph over decreased BLA neuronal activ-
ity and the increased HP synaptic transmission observed evi-
dences a neuroadaptative change after repeated Amph that
may underlie the lack of impairment in the memory task per-
formance in the passive avoidance after Amph challenge.
Once again, AT1-R were found to play a functional role in
the development of this altered responses in BLA and HP
because their blockade prevented the long-term changes in-
duced by repeated Amph exposure concerning Fos-
immunoreactivity and synaptic transmission efficacy,
respectively.

The absence of changes in Fos-IR observed in the PFC
between all groups cannot discard the participation of this
important center of stimulus integration in the acute or repeat-
ed Amph-induced effects (Bush et al. 1998; Bush et al. 2000;
MacDonald et al. 2000; Kerns et al. 2004). To this respect, it is
important to hallmark the limitation of Fos-immunoreactivity
technique because a multitude of stimulations, including sen-
sory, electrical, and epileptogenic, can increase c-Fos expres-
sion (Alberini 2009).

Conclusions

Taken all together, our results clearly stand out the brain RAS
as a neuromodulatory system of superior brain activities and
further validate the Ang II involvement in Amph-induced al-
terations by activating AT1-R. This is the first time, for our
knowledge, that AT1-R are shown to play a functional role in
Amph-induced alterations over neurocognitive processes. We
showed that AT1-R activity mediates the acute impairing

memory effect of Amph as well as the resistance to this effect
induced by a previous history of repeated Amph administra-
tion. Because AT1-R blockers are currently and safety used in
clinics for different pathologies, our results suggest that they
would be prominent candidates for pharmacological treatment
in pathologies related to altered DA neurotransmission such as
drug addiction, schizophrenia, or even depression. More stud-
ies need to be performed in order to further characterize
Amph-RAS interactions and also evaluate the effectiveness
of AT1-R blockers not only in prevention of altered responses
induced by Amph but also in their reversion.
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