
J. Math. Anal. Appl. 427 (2015) 805–816
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On the norm of products of polynomials on ultraproducts 

of Banach spaces ✩

Jorge Tomás Rodríguez a,b,∗

a Departamento de Matemática – Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos 
Aires, (1428) Buenos Aires, Argentina
b IMAS-CONICET, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2014
Available online 20 February 2015
Submitted by Richard M. Aron

Keywords:
Polynomials
Banach spaces
Norm inequalities
Ultraproducts
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(Xi)U. We show that, under certain hypotheses, there is a strong relation between 
this problem and the same problem for the spaces Xi.
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1. Introduction

In this article we study the factor problem in the context of ultraproducts of Banach spaces. This 
problem can be stated as follows: for a Banach space X over a field K (with K = R or K = C) and natural 
numbers k1, · · · , kn find the optimal constant M such that, given any set of continuous scalar polynomials 
P1, · · · , Pn : X → K, of degrees k1, · · · , kn; the inequality

M‖P1 · · ·Pn‖ ≥ ‖P1‖ · · · ‖Pn‖ (1)

holds, where ‖P‖ = sup‖x‖X=1 |P (x)|. We also study a variant of the problem in which we require the 
polynomials to be homogeneous.

Recall that a function P : X → K is a continuous k-homogeneous polynomial if there is a continuous 
k-linear function T : Xk → K for which P (x) = T (x, · · · , x). A function Q : X → K is a continuous 
polynomial of degree k if Q =

∑k
l=0 Ql with Q0 a constant, Ql (1 ≤ l ≤ k) an l-homogeneous polynomial 

and Qk �= 0.
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The factor problem has been studied by several authors. In [3], C. Benítez, Y. Sarantopoulos and A. Tonge 
proved that, for continuous polynomials, the inequality (1) holds with constant

M = (k1 + · · · + kn)(k1+···+kn)

kk1
1 · · · kkn

n

for any complex Banach space. The authors also showed that this is the best universal constant, since there 
are polynomials on �1 for which equality prevails. For complex Hilbert spaces and homogeneous polynomials, 
D. Pinasco proved in [10] that the optimal constant is

M =

√
(k1 + · · · + kn)(k1+···+kn)

kk1
1 · · · kkn

n

.

This is a generalization of the result for linear functions obtained by Arias-de-Reyna in [1]. In [4], also 
for homogeneous polynomials, D. Carando, D. Pinasco and the author proved that for any complex Lp(μ)
space, with dim(Lp(μ)) ≥ n and 1 < p < 2, the optimal constant is

M = p

√
(k1 + · · · + kn)(k1+···+kn)

kk1
1 · · · kkn

n

.

This article is partially motivated by the work of M. Lindström and R.A. Ryan in [8]. In that article 
they studied, among other things, a problem similar to (1): finding the so called polarization constant of 
a Banach space. They found a relation between the polarization constant of the ultraproduct (Xi)U and 
the polarization constant of each of the spaces Xi. Our objective is to do an analogous analysis for our 
problem (1). That is, to find a relation between the factor problem for the space (Xi)U and the factor 
problem for the spaces Xi.

In Section 2 we give some basic definitions and results of ultraproducts needed for our discussion. In 
Section 3 we state and prove the main result of this paper, involving ultraproducts, and a similar result on 
biduals.

2. Ultraproducts

We begin with some definitions, notations and basic results on filters, ultrafilters and ultraproducts. Most 
of the content presented in this section, as well as an exhaustive exposition on ultraproducts, can be found 
in Heinrich’s article [7].

A filter U on a family I is a collection of non-empty subsets of I closed by finite intersections and 
inclusions. An ultrafilter is maximal filter.

In order to define the ultraproduct of Banach spaces, we are going to consider some topological results 
first.

Definition 2.1. Let U be an ultrafilter on I and X a topological space. We say that the limit of (xi)i∈I ⊆ X

with respect of U is x if for every open neighborhood U of x the set {i ∈ I : xi ∈ U} is an element of U. We 
denote

lim
i,U

xi = x.

The following is Proposition 1.5 from [7].

Proposition 2.2. Let U be an ultrafilter on I, X a compact Hausdorff space and (xi)i∈I ⊆ X. Then, the limit 
of (xi)i∈I with respect of U exists and is unique.
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Later on, we are going to consider the next basic lemma about limits of ultraproducts, whose proof is an 
easy exercise of basic topology and ultrafilters.

Lemma 2.3. Let U be an ultrafilter on I and {xi}i∈I a family of real numbers. Assume that the limit of 
(xi)i∈I ⊆ R with respect of U exists and let r be a real number such that there is a subset U of {i : r < xi}
with U ∈ U. Then

r ≤ lim
i,U

xi.

We are now able to define the ultraproduct of Banach spaces. Given an ultrafilter U on I and a family 
of Banach spaces (Xi)i∈I , take the Banach space �∞(I, Xi) of norm bounded families (xi)i∈I with xi ∈ Xi

and norm

‖(xi)i∈I‖ = sup
i∈I

‖xi‖.

The ultraproduct (Xi)U is defined as the quotient space �∞(I, Xi)/ ∼ where

(xi)i∈I ∼ (yi)i∈I ⇔ lim
i,U

‖xi − yi‖ = 0.

Observe that Proposition 2.2 assures us that this limit exists for every pair (xi)i∈I , (yi)i∈I ∈ �∞(I, Xi). 
We denote the class of (xi)i∈I in (Xi)U by (xi)U.

The following result is the polynomial version of Definition 2.2 from [7] (see also Proposition 2.3 from [8]). 
The reasoning behind is almost the same.

Proposition 2.4. Given two ultraproducts (Xi)U, (Yi)U and a family of continuous homogeneous polynomials 
{Pi}i∈I of degree k with

sup
i∈I

‖Pi‖ < ∞,

the map P : (Xi)U −→ (Yi)U defined by P ((xi)U) = (Pi(xi))U is a continuous homogeneous polynomial of 
degree k. Moreover ‖P‖ = lim

i,U
‖Pi‖.

If K = C, the hypothesis of homogeneity can be omitted, but in this case the degree of P can be lower 
than k.

Proof. Let us start with the homogeneous case. Write Pi(x) = Ti(x, · · · , x) with Ti a k-linear continuous 
function. Define T : (Xi)kU −→ (Yi)U by

T ((x1
i )U, · · · , (xk

i )U) = (Ti(x1
i , · · · , xk

i ))U.

T is well defined since, by the polarization formula, sup
i∈I

‖Ti‖ ≤ sup
i∈I

kk

k! ‖Pi‖ < ∞.

Seeing that for each coordinate the maps Ti are linear, the map T is linear in each coordinate, and thus 
it is a k-linear function. Given that

P ((xi)U) = (Pi(xi))U = (Ti(xi, · · · , xi))U = T ((xi)U, · · · , (xi)U)

we conclude that P is a k-homogeneous polynomial.
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To see the equality of the norms for every i choose a norm 1 element xi ∈ Xi where Pi almost attains its 
norm, and from that it is easy to deduce that ‖P‖ ≥ lim

i,U
‖Pi‖. For the other inequality we use that

|P ((xi)U)| = lim
i,U

|Pi(xi)| ≤ lim
i,U

‖Pi‖‖xi‖k =
(

lim
i,U

‖Pi‖
)
‖(xi)U‖k.

Now we treat the non-homogeneous case. For each i ∈ I we write Pi =
∑k

l=0 Pi,l, with Pi,0 a constant 
and Pi,l (1 ≤ l ≤ k) an l-homogeneous polynomial. Take the direct sum Xi ⊕∞ C of Xi and C, endowed 
with the norm ‖(x, λ)‖ = max{‖x‖, |λ|}. Consider the polynomial P̃i : Xi ⊕∞ C → Yi defined by P̃i(x, λ) =∑k

l=0 Pi,l(x)λk−l. The polynomial P̃i is a homogeneous polynomial of degree k and, using the maximum 
modulus principle, it is easy to see that ‖Pi‖ = ‖P̃i‖. Then, by the homogeneous case, we have that the 
polynomial P̃ : (Xi ⊕∞ C)U → (Yi)U defined as P̃ ((xi, λi)U) = (P̃i(xi, λi))U is a continuous homogeneous 
polynomial of degree k and ‖P̃‖ = lim

i,U
‖P̃i‖ = lim

i,U
‖Pi‖.

Via the identification (Xi ⊕∞ C)U = (Xi)U ⊕∞ C given by (xi, λi)U = ((xi)U, lim
i,U

λi) we have that 

the polynomial Q : (Xi)U ⊕∞ C → C defined as Q((xi)U, λ) = P̃ ((xi, λ)U) is a continuous homogeneous 
polynomial of degree k and ‖Q‖ = ‖P̃‖. Then, the polynomial P ((xi)U) = Q((xi)U, 1) is a continuous 
polynomial of degree at most k and ‖P‖ = ‖Q‖ = lim

i,U
‖Pi‖. If lim

i,U
‖Pi,k‖ = 0 then the degree of P is lower 

than k. �
Note that, in the last proof, we can take the same approach used for non-homogeneous polynomials in 

the real case, but we would not have the same control over the norms.

3. Main result

This section contains our main result. As mentioned above, this result is partially motivated by The-
orem 3.2 from [8]. We follow similar ideas for the proof. First, let us fix some notation that will be used 
throughout this section.

In this section, all polynomials considered are continuous scalar polynomials. Given a Banach space X, 
BX and SX denote the unit ball and the unit sphere of X respectively, and X∗ is the dual of X. Given a 
polynomial P on X, deg(P ) stands for the degree of P .

Definition 3.1. For a Banach space X let D(X, k1, · · · , kn) denote the smallest constant that satisfies (1) for 
polynomials of degrees k1, · · · , kn. We also define C(X, k1, · · · , kn) as the smallest constant that satisfies (1)
for homogeneous polynomials of degrees k1, · · · , kn.

Throughout this section most of the results will have two parts. The first involving the constant 
C(X, k1, · · · , kn) for homogeneous polynomials and the second involving the constant D(X, k1, · · · , kn) for 
arbitrary polynomials. Given that the proofs of both parts are similar, we will limit to prove only the second 
part of the results.

Recall that a space X has the 1+ uniform approximation property if for all n ∈ N, there exists m = m(n)
such that for every subspace M ⊂ X with dim(M) = n and every ε > 0 there is an operator T ∈ L(X, X)
with T |M = id, rg(T ) ≤ m and ‖T‖ ≤ 1 + ε (i.e. for every ε > 0 X has the 1 + ε uniform approximation 
property).

Main Theorem 3.2. If U is an ultrafilter on a family I and (Xi)U is an ultraproduct of complex Banach 
spaces then
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(a) C((Xi)U, k1, · · · , kn) ≥ lim
i,U

(C(Xi, k1, · · · , kn)).

(b) D((Xi)U, k1, · · · , kn) ≥ lim
i,U

(D(Xi, k1, · · · , kn)).

Moreover, if each Xi has the 1+ uniform approximation property, equality holds in both cases.

In order to prove this theorem some auxiliary lemmas are going to be considered. The first one is due to 
Heinrich [7].

Lemma 3.3. Given an ultraproduct of Banach spaces (Xi)U, if each Xi has the 1+ uniform approximation 
property then (Xi)U has the metric approximation property.

When working with the constants C(X, k1, · · · , kn) and D(X, k1, · · · , kn), the following characterization 
may result easily.

Lemma 3.4. a) The constant C(X, k1, · · · , kn) is the biggest constant M such that given any ε > 0 there 
exists a set of homogeneous continuous polynomials {Pj}nj=1 with deg(Pj) ≤ kj such that

M

∥∥∥∥∥∥
n∏

j=1
Pj

∥∥∥∥∥∥ ≤ (1 + ε)
n∏

j=1
‖Pj‖. (2)

b) The constant D(X, k1, · · · , kn) is the biggest constant satisfying the same for arbitrary polynomials.

To prove this lemma it is enough to see that D(X, k1, · · · , kn) is decreasing as a function of the degrees 
k1, · · · , kn and use that the infimum is the greatest lower bound.

Remark 3.5. It is clear that in Lemma 3.4 we can take the polynomials {Pj}nj=1 with deg(Pj) = kj instead 
of deg(Pj) ≤ kj . Later on we will use both versions of the lemma.

One last lemma is needed for the proof of the Main Theorem.

Lemma 3.6. Let P be a (not necessarily homogeneous) polynomial on a complex Banach space X with 
deg(P ) = k. For any point x ∈ X

|P (x)| ≤ max{‖x‖, 1}k‖P‖.

Proof. If P is homogeneous the result is rather obvious since we have the inequality

|P (x)| ≤ ‖x‖k‖P‖.

Suppose that P =
∑k

l=0 Pl with Pl an l-homogeneous polynomial. Consider the space X ⊕∞ C and the 
polynomial P̃ : X ⊕∞ C → C defined by P̃ (x, λ) =

∑k
l=0 Pl(x)λk−l. The polynomial P̃ is homogeneous of 

degree k and ‖P‖ = ‖P̃‖. Then, using that P̃ is homogeneous we have

|P (x)| = |P̃ (x, 1)| ≤ ‖(x, 1)‖k‖P̃‖ = max{‖x‖, 1}k‖P‖. �
We are now able to prove our main result.

Proof of Main Theorem. Throughout this proof we regard the space (C)U as C via the identification (λi)U =
limλi.

i,U
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First, we are going to see that D((Xi)U, k1, · · · , kn) ≥ lim
i,U

(D(Xi, k1, · · · , kn)). To do this we only need to 

prove that lim
i,U

(D(Xi, k1, · · · , kn)) satisfies (2). Given ε > 0 we need to find a set of polynomials {Pj}nj=1 on 

(Xi)U with deg(Pj) ≤ kj such that

lim
i,U

(D(Xi, k1, · · · , kn))

∥∥∥∥∥∥
n∏

j=1
Pj

∥∥∥∥∥∥ ≤ (1 + ε)
n∏

j=1
‖Pj‖ .

By Remark 3.5 we know that for each i ∈ I there is a set of polynomials {Pi,j}nj=1 on Xi with deg(Pi,j) =
kj such that

D(Xi, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Pi,j

∥∥∥∥∥∥ ≤ (1 + ε)
n∏

j=1
‖Pi,j‖ .

Replacing Pi,j with Pi,j/‖Pi,j‖ we may assume that ‖Pi,j‖ = 1. Define the polynomials {Pj}nj=1 on (Xi)U
by Pj((xi)U) = (Pi,j(xi))U. Then, by Proposition 2.4, deg(Pj) ≤ kj and

lim
i,U

(D(Xi, k1, · · · , kn))

∥∥∥∥∥∥
n∏

j=1
Pj

∥∥∥∥∥∥ = lim
i,U

⎛
⎝D(Xi, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Pi,j

∥∥∥∥∥∥
⎞
⎠

≤ lim
i,U

⎛
⎝(1 + ε)

n∏
j=1

‖Pi,j‖

⎞
⎠

= (1 + ε)
n∏

j=1
‖Pj‖

as desired.
To prove that D((Xi)U, k1, · · · , kn) ≤ lim

i,U
(D(Xi, k1, · · · , kn)) if each Xi has the 1+ uniform approximation 

property is not as straightforward. Given ε > 0, let {Pj}nj=1 be a set of polynomials on (Xi)U with deg(Pj) =
kj such that

D((Xi)U, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Pj

∥∥∥∥∥∥ ≤ (1 + ε)
n∏

j=1
‖Pj‖.

Let K ⊆ B(Xi)U be the finite set K = {x1, · · · , xn} where xj is such that

|Pj(xj)| > ‖Pj‖(1 − ε) for j = 1, · · · , n.

Being that each Xi has the 1+ uniform approximation property, then, by Lemma 3.3, (Xi)U has the metric 
approximation property. Therefore, there exists a finite rank operator S : (Xi)U → (Xi)U such that ‖S‖ ≤ 1
and

‖Pj − Pj ◦ S‖K < |Pj(xj)|ε for j = 1, · · · , n.
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Now, define the polynomials Q1, · · · , Qn on (Xi)U as Qj = Pj ◦ S. Then
∥∥∥∥∥∥

n∏
j=1

Qj

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
n∏

j=1
Pj

∥∥∥∥∥∥
‖Qj‖K > |Pj(xj)| − ε|Pj(xj)| = |Pj(xj)|(1 − ε) ≥ ‖Pj‖(1 − ε)2.

The construction of these polynomials is a slight variation of Lemma 3.1 from [8]. We have the next inequality 
for the product of the polynomials {Qj}nj=1

D((Xi)U, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Qj

∥∥∥∥∥∥ ≤ D((Xi)U, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Pj

∥∥∥∥∥∥
≤ (1 + ε)

n∏
j=1

‖Pj‖ . (3)

Since S is a finite rank operator, the polynomials {Qj}nj=1 have the advantage that they are finite 
type polynomials. This will allow us to construct polynomials on (Xi)U which are limit of polynomi-
als on the spaces Xi. For each j write Qj =

∑mj

t=1(ψj,t)rj,t with ψj,t ∈ (Xi)∗U, and consider the spaces 
N = span{x1, · · · , xn} ⊂ (Xi)U and M = span{ψj,t} ⊂ (Xi)∗U. By the local duality of ultraproducts (see 
Theorem 7.3 from [7]) there exists T : M → (X∗

i )U a (1 + ε)-isomorphism such that

JT (ψ)(x) = ψ(x) ∀x ∈ N, ∀ψ ∈ M

where J : (X∗
i )U → (Xi)∗U is the canonical embedding. Let φj,t = JT (ψj,t) and consider the polynomials 

Q̄1, · · · , Q̄n on (Xi)U with Q̄j =
∑mj

t=1(φj,t)rj,t . Clearly Q̄j is equal to Qj in N and K ⊆ N , therefore we 
have the following lower bound for the norm of each polynomial

‖Q̄j‖ ≥ ‖Q̄j‖K = ‖Qj‖K > ‖Pj‖(1 − ε)2 (4)

Now, let us find an upper bound for the norm of the product ‖ 
∏n

j=1 Q̄j‖. Let x = (xi)U be any point in 
B(Xi)U . Then, we have

∣∣∣∣∣∣
n∏

j=1
Q̄j(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∏

j=1

mj∑
t=1

(φj,t(x))rj,t

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∏

j=1

mj∑
t=1

(JTψj,t(x))rj,t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∏

j=1

mj∑
t=1

((JT )∗x̂(ψj,t))rj,t

∣∣∣∣∣∣
Since (JT )∗x̂ ∈ M∗, ‖(JT )∗x̂‖ = ‖JT‖‖x‖ ≤ ‖J‖‖T‖‖x‖ < 1 + ε and M∗ = (Xi)∗∗U

M⊥ , we can 
choose z∗∗ ∈ (Xi)∗∗U with ‖z∗∗‖ < ‖(JT )∗x̂‖ + ε < 1 + 2ε, such that 

∏n
j=1

∑mj

t=1((JT )∗x̂(ψj,t))rj,t =∏n
j=1

∑mj

t=1(z∗∗(ψj,t))rj,t . By Goldstine’s Theorem there exists a net {zα} ⊆ (Xi)U w∗-convergent to z
in (Xi)∗∗U with ‖zα‖ = ‖z∗∗‖. In particular, ψj,t(zα) converges to z∗∗(ψj,t). If we call k =

∑
kj , since 

‖zα‖ < (1 + 2ε), by Lemma 3.6, we have
∥∥∥∥∥∥

n∏
Qj

∥∥∥∥∥∥ (1 + 2ε)k ≥

∣∣∣∣∣∣
n∏

Qj(zα)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∏ mj∑

t=1
((ψj,t)(zα))rj,t

∣∣∣∣∣∣ . (5)

j=1 j=1 j=1
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Combining this with the fact that

∣∣∣∣∣∣
n∏

j=1

mj∑
t=1

((ψj,t)(zα))rj,t

∣∣∣∣∣∣ −→
∣∣∣∣∣∣

n∏
j=1

mj∑
t=1

(z∗∗(ψj,t))rj,t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∏

j=1

mj∑
t=1

((JT )∗x̂(ψj,t))rj,t

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∏

j=1
Q̄j(x)

∣∣∣∣∣∣
we conclude that 

∥∥∥∏n
j=1 Qj

∥∥∥ (1 + 2ε)k ≥ | 
∏n

j=1 Q̄j(x)|.
Since the choice of x was arbitrary we arrive at the next inequality

D((Xi)U, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Q̄j

∥∥∥∥∥∥ ≤ (1 + 2ε)kD((Xi)U, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Qj

∥∥∥∥∥∥
≤ (1 + 2ε)k(1 + ε)

n∏
j=1

‖Pj‖ (6)

< (1 + 2ε)k(1 + ε)
∏n

j=1 ‖Q̄j‖
(1 − ε)2n . (7)

In (6) and (7) we use (3) and (4) respectively. The polynomials Q̄j are not only of finite type, these 
polynomials are also generated by elements of (X∗

i )U. This will allow us to write them as limits of polynomials 

in Xi. For any i, consider the polynomials Q̄i,1, · · · , Q̄i,n on Xi defined by Q̄i,j =
mj∑
t=1

(φi,j,t)rj,t , where the 

functionals φi,j,t ∈ X∗
i are such that (φi,j,t)U = φj,t. Then Q̄j(x) = lim

i,U
Q̄i,j(x) ∀x ∈ (Xi)U and, by 

Proposition 2.4, ‖Q̄j‖ = lim
i,U

‖Q̄i,j‖. Therefore

D((Xi)U, k1, · · · , kn) lim
i,U

∥∥∥∥∥∥
n∏

j=1
Q̄i,j

∥∥∥∥∥∥ = D((Xi)U, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Q̄j

∥∥∥∥∥∥
<

(1 + ε)(1 + 2ε)k

(1 − ε)2n
n∏

j=1
‖Q̄j‖

= (1 + ε)(1 + 2ε)k

(1 − ε)2n
n∏

j=1
lim
i,U

‖Q̄i,j‖.

To simplify the notation let us call λ = (1+ε)(1+2ε)k
(1−ε)2n . Take L > 0 such that

D((Xi)U, k1, · · · , kn) lim
i,U

∥∥∥∥∥∥
n∏

Q̄i,j

∥∥∥∥∥∥ < L < λ
n∏

lim
i,U

‖Q̄i,j‖.

j=1 j=1



J.T. Rodríguez / J. Math. Anal. Appl. 427 (2015) 805–816 813
Since (−∞, L
D((Xi)U,k1,···,kn) ) and (Lλ , +∞) are neighborhoods of lim

i,U

∥∥∥∥∥∥
n∏

j=1
Q̄i,j

∥∥∥∥∥∥ and 
∏n

j=1 lim
i,U

‖Q̄i,j‖ re-

spectively, and 
∏n

j=1 lim
i,U

‖Q̄i,j‖ = lim
i,U

n∏
j=1

‖Q̄i,j‖, by definition of lim
i,U

, the sets

A = {i0 : D((Xi)U, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Q̄i0,j

∥∥∥∥∥∥ < L} and B = {i0 : λ
n∏

j=1
‖Q̄i0,j‖ > L}

are elements of U, since U is closed by finite intersections A ∩ B ∈ U. If we take any element i0 ∈ A ∩ B

then, for any δ > 0, we have that

D((Xi)U, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Q̄i0,j

∥∥∥∥∥∥
1
λ
≤ L

λ
≤

n∏
j=1

‖Q̄i0,j‖ < (1 + δ)
n∏

j=1
‖Q̄i0,j‖

Then, since δ is arbitrary, the constant D((Xi)U, k1, · · · , kn) 1
λ satisfies (2) for the space Xi0 and therefore, 

by Lemma 3.4,

1
λ
D((Xi)U, k1, · · · , kn) ≤ D(Xi0 , k1, · · · , kn).

This holds true for any i0 in A ∩ B. Since A ∩ B ∈ U, by Lemma 2.3, 1
λD((Xi)U, k1, · · · , kn) ≤

lim
i,U

D(Xi, k1, · · · , kn). Using that λ → 1 when ε → 0 we conclude that D((Xi)U, k1, · · · , kn) ≤
lim
i,U

D(Xi, k1, · · · , kn). �
Similar to Corollary 3.3 from [8], a straightforward corollary of our main result is that for any com-

plex Banach space X with 1+ uniform approximation property C(X, k1, · · · , kn) = C(X∗∗, k1, · · · , kn) and 
D(X, k1, · · · , kn) = D(X∗, k1, · · · , kn). Using that X∗∗ is 1-complemented in some adequate ultrafilter (X)U
the result is rather obvious. For a construction of the adequate ultrafilter see [8].

But following the previous proof, and using the principle of local reflexivity applied to X∗ instead of the 
local duality of ultraproducts, we can prove the next stronger result.

Theorem 3.7. Let X be a complex Banach space. Then

(a) C(X∗∗, k1, · · · , kn) ≥ C(X, k1, · · · , kn).
(b) D(X∗∗, k1, · · · , kn ≥ D(X, k1, · · · , kn)).

Moreover, if X∗∗ has the metric approximation property, equality holds in both cases.

Proof. The inequality D(X∗∗, k1, · · · , kn) ≥ D(X, k1, · · · , kn) is a corollary of Theorem 3.2 (using the ade-
quate ultrafilter mentioned above).

Let us prove that if X∗∗ has the metric approximation property then D((X∗∗, k1, · · · , kn) ≥
D(X, k1, · · · , kn). Given ε > 0, let {Pj}nj=1 be a set of polynomials on X∗∗ with deg(Pj) = kj such that

D(X∗∗, k1, · · · , kn)

∥∥∥∥∥∥
n∏

Pj

∥∥∥∥∥∥ ≤ (1 + ε)
n∏

‖Pj‖ .

j=1 j=1
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Analogously to the proof of Theorem 3.2, since X∗∗ has the metric approximation, we can construct 
finite type polynomials Q1, · · · , Qn on X∗∗ with deg(Qj) = kj , ‖Qj‖K ≥ ‖Pj‖(1 − ε)2 for some finite set 
K ⊆ BX∗∗ and such that

D(X∗∗, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Qj

∥∥∥∥∥∥ < (1 + ε)
n∏

j=1
‖Pj‖ .

Suppose that Qj =
∑mj

t=1(ψj,t)rj,t and consider the spaces N = span{K} and M = span{ψj,t}. By the 
principle of local reflexivity (see [6]), applied to X∗ (thinking of N as a subspace of (X∗)∗ and M as a 
subspace of (X∗)∗∗), there is an (1 + ε)-isomorphism T : M → X∗ such that

JT (ψ)(x) = ψ(x) ∀x ∈ N, ∀ψ ∈ M ∩X∗ = M,

where J : X∗ → X∗∗∗ is the canonical embedding.
Let φj,t = JT (ψj,t) and consider the polynomials Q̄1, · · · , Q̄n on X∗∗ defined by Q̄j =

∑mj

t=1(φj,t)rj,t . 
Following the proof of the Main Theorem, one arrives at the inequation

D(X∗∗, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Q̄j

∥∥∥∥∥∥ < (1 + δ) (1 + ε)(1 + 2ε)k

(1 − ε)2n
n∏

j=1
‖Q̄j‖

for every δ > 0. Since each Q̄j is generated by elements of J(X∗), by Goldstine’s Theorem, the restriction 
of Q̄j to X has the same norm and the same is true for 

∏n
j=1 Q̄j . Then

D(X∗∗, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Q̄j

∣∣
X

∥∥∥∥∥∥ < (1 + δ) (1 + ε)(1 + 2ε)k

(1 − ε)2n
n∏

j=1
‖ Q̄j

∣∣
X
‖

By Lemma 3.4 we conclude that

(1 − ε)2n

(1 + ε)(1 + 2ε)kD(X∗∗, k1, · · · , kn) ≤ D(X, k1, · · · , kn).

Given that the choice of ε is arbitrary and that (1−ε)2n
(1+ε)(1+2ε)k tends to 1 when ε tends to 0 we conclude that 

D(X∗∗, k1, · · · , kn) ≤ D(X, k1, · · · , kn). �
Note that in the proof of the Main Theorem the only parts where we need the spaces to be complex 

Banach spaces are at the beginning, where we use Proposition 2.4, and in the inequality (5), where we use 
Lemma 3.6. But both results hold true for homogeneous polynomials on a real Banach space. Then, copying 
the proof of the Main Theorem we obtain the following result for real spaces.

Theorem 3.8. If U is an ultrafilter on a family I and (Xi)U is an ultraproduct of real Banach spaces then

C((Xi)U, k1, · · · , kn) ≥ lim
i,U

(C(Xi, k1, · · · , kn)).

If in addition each Xi has the 1+ uniform approximation property, the equality holds.

Also we can get a similar result for the bidual of a real space.
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Theorem 3.9. Let X be a real Banach space. Then

(a) C(X∗∗, k1, · · · , kn) ≥ C(X, k1, · · · , kn).
(b) D(X∗∗, k1, · · · , kn) ≥ D(X, k1, · · · , kn).

If X∗∗ has the metric approximation property, equality holds in (a).

Proof. The proof of item (a) is the same as in the complex case, so we limit to prove D(X∗∗, k1, · · · , kn) ≥
D(X, k1, · · · , kn)). To do this we will show that given an arbitrary ε > 0, there is a set of polynomials 
{Pj}nj=1 on X∗∗ with deg(Pj) ≤ kj such that

D(X, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Pj

∥∥∥∥∥∥ ≤ (1 + ε)
n∏

j=1
‖Pj‖ .

Take {Qj}nj=1 a set of polynomials on X with deg(Qj) = kj such that

D(X, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Qj

∥∥∥∥∥∥ ≤ (1 + ε)
n∏

j=1
‖Qj‖ .

Consider now the polynomials Pj = AB(Qj), where AB(Qj) is the Aron Berner extension of Qj (for 
details on this extension see [2] or [11]). Since AB

(∏n
j=1 Pj

)
=

∏n
j=1 AB(Pj), using that the Aror Berner 

extension preserves norm (see [5]) we have

D(X, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Pj

∥∥∥∥∥∥ = D(X, k1, · · · , kn)

∥∥∥∥∥∥
n∏

j=1
Qj

∥∥∥∥∥∥
≤ (1 + ε)

n∏
j=1

‖Qj‖

= (1 + ε)
n∏

j=1
‖Pj‖

as desired. �
As a final remark, we mention two types of spaces for which the results on this section can be applied.
Corollary 9.2 from [7] states that any Orlicz space LΦ(μ), with μ a finite measure and Φ an Orlicz function 

with regular variation at ∞, has the 1+ uniform projection property, which is stronger than the 1+ uniform 
approximation property.

In [9, Section 2], A. Pełczyński and H. Rosenthal proved that any Lp,λ-space (1 ≤ λ < ∞) has the 
1 + ε-uniform projection property for every ε > 0 (which is stronger than the 1 + ε-uniform approximation 
property), therefore, any Lp,λ-space has the 1+ uniform approximation property.
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