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SHORT COMMUNICATION
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Abstract

A small series of C-glycosides containing the phenol moiety was tested for the inhibition of the
b-class carbonic anhydrases (bCAs, EC 4.2.1.1) from Brucella suis. Many compounds showed
activities in the micromolar or submicromolar range and excellent selectivity for pathogen CAs
over human isozymes. Glycosides incorporating the 3-hydroxyphenyl moiety showed the best
inhibition profile, and therefore this functionality represents lead for the development of novel
anti-infectives with a new mechanism of action.
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Introduction

Brucella spp. are facultative intracellular pathogens responsible of
widespread zoonosis, known as brucellosis or Malta fever.
Brucellae are Gram-negative a-proteobacteria, infecting various
vertebrates, from fish to primates. Brucellosis is difficult to fight,
as these bacteria have developed strategies to evade immune
recognition by the host. The bacterium is able to cause enormous
losses in agriculture and is endemic in several areas such as the
Mediterranean Europe, Middle East and Latin America.

Among the many antibacterial drug targets available so far
from bacterial genomics studies, metalloenzymes are highly
attractive as they provide an excellent opportunity for mechanism-
based drug discovery of novel classes of antibiotics1,2. In this
framework, carbonic anhydrases have recently emerged as
promising anti-infective targets. Indeed, several bacterial b-class
carbonic anhydrases (b-CA) representatives have been cloned
and characterized in some pathogens such as, among others,
Helicobacter pylori and Mycobacterium tuberculosis3,4.

The genome of the bacterial pathogen Brucella suis con-
tains two CAs belonging to the b-class: bsCA I and bsCA II5,6.
These two CAs were shown to be catalytically efficient, with
activity for the CO2 hydration reaction similar to that of the
human (h) isoform hCA II and are inhibited by many sulfona-
mides/sulfamates2. Furthermore, certain sulfonamide carbonic

anhydrase inhibitors (CAIs) were shown to inhibit the bacterial
growth in cell cultures7.

The use of glycomimetics in the design of CAIs has proven to be
a successful approach and now constitutes one of the most
attractive ways to develop new generations of effective and
selective inhibitors8–10. Winum’s group has previously reported
that N-(4-sulfamoylphenyl)-b-D-glycopyranosylamines are very
efficient inhibitors of the B. suis growth7. Recently. our group has
applied the ‘‘sugar approach’’ to the preparation of inhibitors of the
M. tuberculosis b-CAs, which leads to the identification of the first
mtCAs inhibitor with antimycobacterial activity11,12. Exploring
alternative chemotypes to the usual CAIs, we developed a novel
series of C-glycosides containing the methoxyaryl scaffold and
investigated them as inhibitors against human and bacterial
isozymes of carbonic anhydrase, allowing us to identify six
potent and highly selective inhibitors of bsCA I and II13,14.

In the search of non-sulfonamide CAIs belonging to different
classes of compounds, we report in this study the synthesis of a
series of C-glycosides incorporating the phenol moiety, and
their inhibitory activity against the off-target hCA I and II, and
B. suis b-CAs.

Materials and methods

C-glycosides 1–8 were previously described and have been
prepared by aldol reaction of aryl aldehydes with per-O-acetylated
C-glucosyl or C-galactosyl ketones and subsequent deprotection
using triethylamine in methanol/water11.

An Applied Photophysics (Surrey, UK) stopped-flow instru-
ment has been used for assaying the CA-catalyzed CO2 hydration
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activity15. Phenol red (at a concentration of 0.02 mM) has been
used as indicator, working at the absorbance maximum of 557 nm,
with 20 mM Hepes (pH 7.5) as buffer, and 20 mM Na2SO4 (for
maintaining constant the ionic strength), following the initial rates
of the CA-catalyzed CO2 hydration reaction for a period of 10–
100 s. The CO2 concentrations ranged from 1.7 to 17 mM for the
determination of the kinetic parameters and inhibition constants.
For each inhibitor, at least six traces of the initial 5–10% of the
reaction have been used for determining the initial velocity. The
uncatalyzed rates were determined in the same manner and
subtracted from the total observed rates. Stock solutions of
inhibitor (0.1 mM) were prepared in distilled-deionized water,
and dilutions up to 0.01 nM were done thereafter with distilled–
deionized water. Inhibitor and enzyme solutions were preincubated
together for 15 min at room temperature prior to assay, in order to
allow for the formation of the E-I complex. The inhibition
constants were obtained by non-linear least-squares methods using
PRISM 3, and the Cheng–Prusoff equation16 as reported earlier and
represent the mean from at least three different determinations.

Growth experiments with B. suis were performed as follows:
For inoculation, bacteria, from a stationary phase, overnight
culture in tryptic soy broth, were washed once with minimal
medium prior to a dilution 1:100 in 3 ml of minimal medium17.
Growth was performed under shaking at 170 rpm/37 �C in the
absence or in the presence of various drugs at a final concentration
of 100mM or 200 mM. The growth of the bacteria was followed by
measuring the optical density at 600 nm for a period of eight days.

Results and discussion

A set of C-cinnamoyl glycosides (Figure 1) was synthesized
as outlined in Scheme 1 and described previously by us11.
C-cinnamoyl glycosides 1–4 have been prepared by aldol
condensation of b-C-glucosyl and b-C-galactosyl ketones with
3-hydroxy or 4-hydroxybenzaldehyde at room temperature in the
presence of pyrrolidine as catalyst. The O-acetate protecting
groups of the carbohydrate moiety were next removed using
triethylamine in methanol/water to afford the deprotected
C-glycosides 5–8.

The inhibitory activity of the C-glycosides 1–8 against human
CA I and CA II and the purified pathogen b-CAs, bsCA I and
bsCA II, are listed in Table 1. These inhibition data were acquired
using a stopped flow assay that monitors the physiological
reaction, that is, the CA-catalyzed hydration of CO2.

A number of structure–activity relationships were identified in
this study and are summarized as follows.

(i) All investigated C-glycosides 1–8 were efficient, micro-
molar hCA I and hCA II inhibitors with inhibition constants
in the range of 3.6–9.3mM (CA I) and of 3.1–8.8 mM
(CA II).

(ii) B. suis enzyme, bsCA I, was inhibited by the C-glycosides
investigated in this study in micromolar or submicromolar
range, with Ki values in the range of 0.68–7.92 mM. It is
significant to note that the protected C-glycosides contain-
ing the 3-hydroxyphenyl moiety (1 and 3) showed to be the
most efficient inhibitors of bsCA I.
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Scheme 1. Preparation of C-cinnamoyl glycosides 1–8.
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Figure 1. Peracetylated C-glycosides (1–4) and fully deprotected derivatives (5–8).
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(iii) The inhibition profile for bsCA II lays in two distinct
groups. The first group includes compounds 1, 3, 5 and 7
with Kis of 0.63–0.83 mM, while glycosides 2, 4, 6 and 8
(second group) were less effective bsCA II inhibitors with
Kis in the range 2.68–4.85 mM. It is important to note that
the position of hydroxyl in the aromatic ring influences the
inhibition profile, with the 3-hydroxyphenyl derivatives
been more effective inhibitors. Neither the stereochemistry
presented by the differing carbohydrate moiety nor the
nature of the carbohydrate hydroxyl groups, either as the C-
glycosides (5–8) or less polar and bulkier acetylated sugar
(1–4), impacted to alter enzyme inhibition characteristics.

Selectivity for inhibiting the B. suis isozymes (bs CA I and II)
over the human cytosolic forms (hCA I and II) is a key issue when
designing bacterial CAIs2. As can be seen in Table 2, several
compounds showed better activity profile against b-CAs over
a-CAs, which is highly desirable when only the bacterial isoforms
would be targeted. The selectivity ratios listed in Table 2 show
that protected C-glycosides 1 and 3 were up to 12-fold selective
for Brucella CAs over human CA I and CA II and thus may
represent leads for better discriminating the inhibition of b-CAs
from this pathogen. This observation provides a compelling
opportunity to explore the 3-hydroxyphenyl moiety scaffold in the

development of potent and selective glycosyl inhibitors for the bs
CAs. Clearly, the deprotected glycosides containing this scaffold
(5 and 7) were less effective in this respect. C-glycosides
incorporating the 4-hydroxyphenyl moiety (2, 4, 6 and 8) showed
almost no selectivity and are not useful in the design of selective
inhibitors.

We have investigated the effect of our compounds on the
growth of B. suis in cell cultures. C-glycosides 1–8 showed
no significant inhibition of the bacterial growth after eight days
of culture both at the concentration of 100mM as well as at
200mM. Although the C-glycosides 1–8 are lipophilic, they do not
penetrate the bacterial cell walls. This could be explained in terms
of their topological polar surface area (TPSA)18,19. Molecules
with a TPSA greater than 140 A2 are likely to have low capacity
for penetrating cell membranes, while those with TPSA� 60 A2

have good passive permeability properties. The calculated TPSA
for the protected C-glycoside 1–4 is 152 A2, while for the
deprotected compounds 5–8, the calculated are somewhat lower
(127 A2). This molecular property shows that all compounds fall
within the range indicative of molecules with poor membrane
permeability.

In conclusion, we have investigated the enzyme inhibition
profile of a series of C-glycosides incorporating the phenol
moiety (compounds 1–8) against a panel of CAs encompassing
the human a-CAs I and II and the pathogenic B. suis enzymes.
Inhibition of bacterial CAs is indeed a topic of great interest, with
the possibility to uncover novel mechanisms of pathogenesis or
classes of antibiotics with new characteristics, distinct of the
classical agents for which drug resistance problems emerged20–29.
The 3-hydroxyphenyl glycosides preferentially inhibited
pathogen CAs over human CAs showing that this moiety therefore
represents a lead for the development of novel anti-infectives with
a new mechanism of action. The tested compounds showed no
inhibition of the bacterial growth probably due to their large sizes.
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