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Abstract: Observing an action performed by another individual activates,

in the observer, similar circuits as those involved in the actual execution

of that action. This activation is modulated by prior experience; indeed,

sustained training in a particular motor domain leads to structural and

functional changes in critical brain areas. Here, we capitalized on a novel

graph-theory approach to electroencephalographic data [1] to test whether

variability in functional brain networks implicated in Tango observation

can discriminate between groups differing in their level of expertise. We

found that experts and beginners significantly differed in the functional or-

ganization of task-relevant networks. Specifically, networks in expert Tango

dancers exhibited less variability and a more robust functional architecture.

Notably, these expertise-dependent effects were captured within networks

derived from electrophysiological brain activity recorded in a very short

time window (2 s). In brief, variability in the organization of task-related

networks seems to be a highly sensitive indicator of long-lasting training

effects. This finding opens new methodological and theoretical windows to

explore the impact of domain-specific expertise on brain plasticity, while

highlighting variability as a fruitful measure in neuroimaging research.

Keywords and phrases: Functional networks, EEG, Predicting expertise,

Statistics on networks.

1. Introduction

Expertise can be conceptualized as a set of specific skills or abilities acquired

through sustained training, which supports outstanding performance in a par-

ticular artistic, athletic, professional, or otherwise cognitive domain. Under-

standing what is special in the expert brain provides a unique window into

experience-dependent plasticity changes and learning mechanisms. Several stud-

ies have shown that expert deployment of specific functions induces structural

changes in brain areas devoted to them. For example, relative to non-expert con-

trols, experienced taxi drivers have greater grey matter volume in the posterior

hippocampus, a region subserving navigational skills [2]. Moreover, expertise

may change long-range cortical connections, allowing top-down control mecha-
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nisms to modulate the states (and multiply the function) of sensory and motor

circuits [3, 4, 5]. In this sense, expertise may involve the functional reorganiza-

tion of a brain region originally specialized for different domains. For instance,

expertise in recognizing cars and birds is associated with activity in the fusiform

face area, a cortical region normally specialized in face recognition [6].

While these notions have some degree of generalization, how they are instan-

tiated depends on each specific domain and form of expertise. Two interest-

ing questions thus emerge: (a) can a general signature of expertise be reliably

identified; and, if so, (b) which could be a suitable approach for its detection

and measurement? Fruitful answers may be derived from functional connec-

tivity methods [7]. In particular, graph-theory metrics have been proposed as

powerful tools for quantifying properties in complex brain networks [8, 9]. In-

terestingly, this approach allows capturing inter- and intra-individual variation

during task performance. Although variability is an inherent property of the

human brain, neuroimaging research has largely neglected its importance or

interpreted it as the result of various confounds [10]. However, an increasing

body of evidence suggests that variability measures constitute a powerful index

to study human brain functions (for a review, see [10]). In line with this idea,

we propose that variability in functional brain networks derived from a task-

evoked condition would be a natural candidate to track this general signature

of expertise. Notably, intense training has been specifically linked to a decrease

in variability [11], with some demonstrations of a causal role between tempo-

ral variability and learning [12, 13]. Furthermore, naturalistic everyday stimuli

(which can be conceived as stimuli for which we all are naturally experts) evoke

highly reliable brain activity across observers, both at the neuronal [14, 15] and

at the macroscopic [16] scales.

Here, we test the hypothesis that expertise results in more reproducible pat-

terns of brain activation across individuals, and that these connectivity patterns

can be used as an index to classify participants according to their expertise.
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Based on the notion that action observation and execution depend on partially

shared circuits [17, 18, 19], and that only those actions performable by the

observer are mapped onto his/her own motor system [20, 21], we focused on

Tango dancers as a model of expertise. Using high-density electroencephalogra-

phy (EEG), we recorded neural activity from expert and beginner Tango dancers

as they observed videos depicting a couple of dancers performing various Tango

steps. Importantly, by using videos of dance movements which vary in time

and are well-known by the observers, we aimed to measure the reliability of

task-evoked functional networks.

Overall, we predicted that: (i) brain functional networks engaged during the

dance observation task [22] would show lower variability in experts than in

beginners; and that (ii) network variability would serve as a classifier to identify

the observers degree of expertise.

2. Materials and Methods

Participants

The study comprised 53 Tango dancers recruited from three Tango schools:

DNI, the Flor de Milonga and the DivinoEstudio del Abasto. Twenty-five (14

female) were expert dancers (mean age = 29, SD = 6.2), and 28 (15 female)

were beginner dancers (mean age = 29.5, SD = 5.8). The groups were matched

for age, education level, gender, and executive skills. Furthermore, previous

studies on action observation suggest that empathic abilities may affect ac-

tion simulation[23, 24, 25], including the observation of dance movements [26].

Therefore, to ensure that expertise-related differences between groups were not

confounded by such a factor, we controlled for it using the Interpersonal Reac-

tivity Index (IRI) questionnaire (Table 1).

All participants were right-handed, as confirmed with the Edinburgh Inven-

tory [27], and possessed normal or corrected-to-normal vision. None of them
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reported a history of neurological or psychiatric disorders. Each participant

read and signed a consent form in agreement with the Declaration of Helsinki

and the Ethics Committee of the Institute of Cognitive Neurology (INECO),

which approved this study.

Table 1
The average and the standard deviation is presented within parentheses.

Experts (25) Beginners (28) p-value
M(SD) M(SD)

Demographics Age (years) 29.08 (6.20) 29.57 (5.85) 0.76
Gender (M: F) 11:14 13:15 0.85
Education (years) 17.4 (3.59) 18.25 (3.40) 0.38
Handedness (L:R) 0:25 0:28 1.00

Empathy Perspective taking 26.76 (4.09) 28.82 (3.43) 0.07
Fantasy 23.16 (4.57) 23.67 (3.43) 0.49
Empathy 31.6 (3.90) 33 (3.03) 0.11
Personal distress 14.2 (3.50) 15.5 (3.97) 0.23

Executive IFS Global Score 26.16 (2.3) 26.64 (1.9) 0.66
functions Motor series 2.76 (0.66) 2.92 (0.26) 0.57

Conflicting instructions 2.92 (0.27) 3 (0) 0.62
Go / no go 2.84 (0.37) 2.96 (0.18) 0.44
Backward digits span 4.28 (0.84) 4.28 (0.18) 0.81
Verbal working memory 1.84 (0.37) 1.82 (0.47) 0.95
Spatial working memory 3.32 (0.69) 3.28 (0.65) 0.83
Abstraction capacity 2.8 (0.32) 2.75 (0.65) 0.64
Verbal inhibitory control 5.4 (0.81) 5.60 (0.62) 0.42

Stimuli and procedure

The stimuli comprised realistic videos of two Tango dancers (one man and one

woman), captured from head to toes, performing Tango Salon dance sequences.

Each step could be either correctly or incorrectly executed. In the latter case,

the error could be performed either by the man or the woman, and it could be

gross or subtle. Stimuli were constructed and validated in a previous study [22].

In that original report, the videos lasted 5000 ms and error onset always oc-

curred 200 ms before the end of each video i.e., the time at which the last move

to complete the Tango step began. However, in the present study we consid-

ered only 2000 ms from the second to the fourth second. This window excludes
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the last segment associated to EEG activity during error perception, which

guarantees that potential between-group differences would be specifically due

to Tango observation, and not to confounds inherent to stimulus categorization

(i.e., error detection). Furthermore, in our previous study [22], we found that

expertise-related differences in an ongoing wave indexing anticipatory activity

(predictions) started at 4600 ms after video onset but not before this time point.

Therefore, by selecting a segment not containing the last second of the video,

where those differences were observed, we ensured that any early modulations

in brain activity related to error prediction would also be excluded. Note that

this creates stringent measurement conditions, given the difficulties of finding

relevant network metrics to discriminate groups based on a two-second signal.

Also, while our previous study included three groups (näıve, beginner, and

expert dancers), only the latter two were considered here. This way we ensured

that our comparison would be driven by the samples amount of training rather

than the development of visuo-motor skills. Unlike näıve subjects, beginners

share basic procedural and declarative knowledge with experts but they lack

long-lasting practice. In other words, as beginners possessed task-relevant visuo-

motor knowledge, they afforded a more suitable baseline to assess training-

induced changes. Note that Tango dancing expertise involves exposure to both

motor and visual aspects of this style. Indeed, acquiring dance expertise requires

not only the long-lasting practice of specific movements but also an increased

visual exposure to them [28, 29, 30]. Thus, relative to beginners, experts are

likely to have developed both higher motor expertise and increased task-relevant

visual skills (e.g., through observational learning). Accordingly, both aspects

could jointly contribute to any observed effect.
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EEG recordings

Participants sat in a dimly lit, electrically shielded room. During the action

observation task, EEG activity was recorded with a Biosemi 128-channel Ac-

tive Two system (Amsterdam, NLD). The sampling rate was set at 1024 Hz,

and signals were band-pass filtered between 0.1 and 100 Hz. Data were filtered

off-line between 0.3 and 40 Hz and down-sampled to 512 Hz. During recording,

the reference was set as default to link mastoids. Two bipolar derivations mon-

itored vertical and horizontal ocular movements. Artifacts such as oculo-motor

or muscle activity were rejected offline through Independent Component Analy-

sis (ICA) and visual inspection. Only artifact-free segments were used to obtain

the functional networks (trial rejection rates were 22% for experts and 21% for

beginners). The number of rejected ICA components was not statistically dif-

ferent between groups (p-value > .05). Note that finding group differences in

smaller EEG channel systems is a challenging issue. In this main document we

show results for the set of 128 electrodes. Results obtained from the set of 20

electrodes of the 10-20 systems are shown as Supplementary Material.

Eye-tracking recording and analysis

Eye movements were recorded to ensure that between-group differences in EEG

activity could not be explained by discrepancies in their eye movement pat-

terns [31]. Eye movement data were recorded using an Eye-Link 1000 system (SR

Research, Ontario, Canada). The data were fed directly into the EEG through

a digital-to-analog converter card in the Eye-Tracker, and the analog signal was

input preceding the digitization of the EEG data by a Biosemi measurement sys-

tem. The EEG and eye movements were synchronized, and the sampling rate

was equivalent for both. The eye tracker was calibrated at 13 points spanning

the central part of the screen, where the stimuli were presented. Before detect-

ing saccades, voltages in the extra analog channels in each dataset were rescaled
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to pixels. An adapted version of the algorithm of Engbert and Kliegl [32] was

implemented to detect the saccades from the continuous eye movements. We set

the relevant parameters based on the literature and on inspection of the raw

data, including the minimum duration of the (micro)saccade (3 ms), the velocity

threshold (6 times the mean velocity), and the minimum inter-saccadic interval

(50 ms). All saccades were considered in the analysis, including microsaccades.

We estimated saccades at time T in non-overlapping bins of 75 ms for each

subject as the sum of saccades initiated in that bin divided by the total number

of saccades performed in the time window of interest, and then we normalized

the trace. To ensure that ocular patterns were similar across subjects, we per-

formed a Wilcoxon test within each bin. Importantly, the number of saccades in

each participant remained largely constant throughout the video segment used

to construct the networks. The Wilcoxon test revealed a non-significant effect of

group (p-value > .05), indicating comparable eye-tracking patterns irrespective

of expertise.

Data analysis

Data were analyzed through a novel statistical framework for devised to exam-

ine sequences of networks [1]. Functional networks were constructed consider-

ing a time window of 2 to 4 seconds during video observation. The Spearman

(rank) correlation matrix was calculated for each of the 400 hundred trials. The

networks were constructed by framing each electrode as an individual node.

EEG signals were obtained from each electrode for every trial in each subject.

These signals were used to construct an association matrix between pairs of

electrodes. This matrix represents the strength of the association between each

pair, which can be quantified by different metrics of functional coupling, such as

the rank correlation coefficient between the EEG signals of the electrodes, which

we adopted in the present study. The matrix was then thresholded to generate
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binary networks by using two criteria. First, we used a fixed correlation thresh-

old affording networks with varying numbers of links. Second, we established

a fixed number of links, in which case a specific threshold was chosen for each

trial; in other words, a link between a pair of electrodes was added if thresholds

exceeded a given value in each case.

Having determined the network criteria, for each subject (say, subject E1) we

obtained a network per trial, leading to a full sample of networksGE1
1 , GE1

2 . . . , GE1
t .

In what follows, expert and beginner Tango dancers are represented by E and B,

respectively. Each group will be next characterized by its functional networks,

GE1
1 , . . . , GE1

t , GE2
1 , . . . , GE2

t , . . . GEn
1 , . . . , GEn

t ,

and

GB1
1 , . . . , GB1

t , GB2
1 , . . . , GB2

t , . . . GBn
1 , . . . , GBm

t .

Figure 1 illustrates the temporal evolution of functional networks in each group

based on the 20 electrodes of 10-20 system. Here, we show 20 electrodes only

for visual issues. Note that each subject has its own central network, and there

is large variability between trials.

As shown in [1], key properties of networks can be captured by introducing a

natural distance between graphs to establish their mean and dispersion, and to

implement classification methods. In the present analysis, the central (subset)

network or average network is defined as the one that minimizes the edit distance

between all empirical networks,

Ĉ� = argmin
H∈G

1

�

�∑

i=1

d(Gi, H),

where G is the space of networks and d is the edit distance between two networks.

Given two networks G1, G2, the edit distance is given by the minimum num-

ber of links we have to add and subtract in order to transform G1 into G2. More

precisely, if Tij is the inversion operator of the link (i, j), which interchanges 1
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]

Fig 1: Brain functional networks.
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with 0 on the (i, j) entry of the adjacency matrix of the graph, and A1, A2 are

the adjacency matrices of G1 and G2 (respectively), the distance is defined as

d(G1, G2) = min{k : Ti1j1Ti2j2 . . . TikjkA1 = A2}. (2.1)

With this distance definition, the central network can be ascertained as the net-

work that contains only links that are observed more than half of the times [1].

Once the central network is calculated, the diversity or dispersion of the pop-

ulation of networks σ̂ is computed as the average edit distance between the

empirical networks and the central network.

σ̂ :=
1

�

�∑

i=1

d(Gi, S
∗). (2.2)

where S∗ is the central network.

The central network and the dispersion coefficient defined above are a nat-

ural extension of traditional one-dimensional measures. The nearest neighbors

method based on the distance defined in eq. 2.1 was applied for supervised

classification. A training sample comprising half of the networks was used for

classifying the rest of the networks (test sample). The performance of the clas-

sification method was evaluated by the receiver operating characteristic (ROC)

curve.

Finally, to test for between-group differences in terms of network probability

law (H0 : P (GE = Gi) = P (GB = Gi) for all networks Gi), we used the

projective method described in [1]. Briefly, we chose a random direction in the

Euclidean space containing the space of networks, and then we projected the

graphs on that direction. A (one-dimensional) Kolmogorov-Smirnov test was

performed on this random direction. To improve statistical power, we repeated

the procedure 100 times and studied the percentage of rejected tests. Under

the null hypothesis, we expect to obtain a 5% of rejected tests at a significance

threshold of .05.
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Supplementary Analyses

Note that our functional connectivity analysis was performed on broadband

data. However, it is also interesting to assess whether variability in brain func-

tional networks for experts and beginners also differs upon consideration of other

frequency bands. To this end, we conducted an additional analysis on four other

bands of interest (8-40 Hz, 8-12 Hz, 12-30 Hz, 30-40 Hz).

Finally, to better illustrate how variability behaves across groups, we zoomed

in on a portion of the data. We focused on fronto-occipital connections, which

can exhibit a differentially fast coupling in experts, favoring early prediction

of upcoming movements. Specifically, for each trial within each group, we com-

puted the proportion of links connecting distant electrodes from frontal to occip-

ital (PF−O) regions and studied its distribution. We tested equal distributions

with the Kolmogorov test for all the numbers of links and correlation thresholds

studied.

3. Results

A comparison between both groups revealed small central network differences

for a correlation threshold of up to .95 (Figure 2A). However, an analysis with a

fixed correlation threshold of 250 links showed fewer connections in the experts

central network (Figure 2B). The latter result reflects the fact that links in

the expert group were mostly the same across subjects, because only recurrent

links appear in the central network. This suggests that experts more frequently

activated the same type of (sub)networks, while beginners recruited more diverse

ones. Hence, the central network of experts was more robust and featured less

variability.

Moreover, the networks engaged during video observation were more similar

among experts than beginners. Consistent with our hypothesis, the variability

of the networks (eq. 2.2) of the expert group was smaller than the one from
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beginners.

This was observed through both analysis criteria (Figures 2C and 2D), which

supports the idea that experts have developed more focused and systematic

predictions for Tango dance observation [22]. The reduction of variability is also

evident when we zoom in to a portion of the data indexed by long-range fronto-

occipital connections (See Supplementary Results and Figure A2). Accordingly,

their networks would feature less variability since they would be calling on

similar processing mechanisms. This is compatible with the idea that experts

are more precise in action execution, so that exposure to repeated or similar

stimuli would yield less variability.

We also compared the network distribution in each group. Both the corre-

lation threshold and the fixed-number-of-links criteria yielded similar results

(Figures 3A and 3B). Interestingly, task-relevant networks derived from Tango

observation significantly differed in their graph distribution for experts and be-

ginners. Specifically, we tested the hypothesis that both groups had the same

functional networks probability law by generating 500 random directions. Nearly

100% of the tests showed that this was not the case, obtaining a p-value < 10−20.

Finally, ROC spaces were generated to determine the maximum sensitivity and

specificity to classify experts and beginners. Classification was almost perfect

based on both the correlation threshold (Figure 3C) and the number-of-links

(Figure 3D) criteria. As Figure 3 further shows, this was true considering differ-

ent correlation thresholds or numbers of links. This last result is in accordance

with the second hypothesis posed in the Introduction.

Importantly, when the analyses were performed with the set of 20 electrodes

from the 10/20 system, variability, testing, and classification results remained

largely the same (see Figure A1 in the Appendix). This finding provides strong

support for both of our hypotheses.
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]

Fig 2: Network statistics: Central network for: (A) the fixed correlation cri-
teria and (B) the fixed number of links criteria. (C) Network variability as a
function of the correlation threshold. (D) Network variability as a function of
the number of links fixed in all networks.
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]

Fig 3: Network testing and classification: Percentage of projective tests re-
jected at a significance level of 5% as a function of (A) the correlation threshold,
and (B) the number of links. The null hypothesis tested is that both beginners
and experts have the same network probability law. Receiver operating charac-
teristic space (sensitivity vs. 1-specificity) for classifying experts and beginners
using (C) a fixed correlation threshold criterion, or (D) a fixed links criterion.
Results for different values of the correlation threshold and the number of links
are shown.
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Supplementary Results

Figure A2 illustrates a network with 12 links, four of which connect frontal

and occipital regions. In this example, the proportion of PF−O equals 1/3. The

PF−O distributions are significantly different between groups (Kolmogorov tests,

all p-values < 10−6). In particular, the standard deviation of the PF−O differs

between experts and beginners when considering the networks constructed either

with the fixed correlation (panel C) or with the number of links criterion (panel

B). Beginners show increased variance in their functional networks, sometimes

expressed with a small PF−O and sometimes with a larger one. Panels D and

E correspond to the histograms of PF−O (analyzing all trials in each group) for

networks featuring 60 (fixed) links (panel C). Values plotted in the histograms

correspond to the filled symbols shown in panel C, as indicated by the solid

(experts) and dotted (beginners) arrows.

Figure A3 depicts network variability for experts and beginners as a func-

tion of the correlation threshold and the number of links in the four frequency

bands of interest (8-40 Hz, 8-12 Hz, 12-30 Hz, 30-40 Hz). Importantly, the main

result remained across all bands studied: networks still showed less variability

in experts than in beginners.

4. Discussion

In this study, we applied a novel graph-theory approach [1] to examine whether

EEG functional networks derived from the observation of actions for which the

observers have expertise, could discriminate between groups with different levels

of expertise in performing those actions. The functional organization of task-

relevant networks significantly differed between experts and beginners. Impor-

tantly, expertise-dependent effects were captured by considering EEG activity

recorded in a very short time window (2000 ms). To our knowledge, this is the

first study to show expertise-dependent changes in functional network properties
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derived from EEG data.

More specifically, we found that networks in expert Tango dancers exhib-

ited less variability and a more robust functional architecture. This pattern

suggests that the development of style-specific knowledge leads to a more ef-

ficient organization of task-related mechanisms. Such an interpretation aligns

well with reports showing that experts exhibit less variability across repeated

skilled movements [33] and greater activation in networks subserving their exe-

cution [34, 35].

Our careful sampling procedure allowed us to rule out broad cognitive or

affective factors as possible confounds, a problem that has undermined previous

studies on expertise effects. Indeed, both groups were matched for demographic

variables (gender, age, education, handedness) as well as affective (empathy)

and cognitive (executive functioning) skills. Thus, the observed differences seem

reasonably attributable to their levels of expertise.

Ample evidence from studies in monkeys and humans [18, 36, 37, 38, 39] shows

that when participants observes an action, the neural circuits subserving the ex-

ecution of that action are automatically engaged (for a review, see [40]). In brief,

these studies indicate that action-related representations stored in the primary

motor and somatosensory cortices become active by both action-execution and

action-observation conditions, suggesting that the observer recruits simulation

mechanisms which contribute to understanding others behaviors. Furthermore,

people are more accurate in comprehending actions that are present in their own

motor repertoire as compared to those actions that are not [41], and this ability

is known to increase with expertise [42]. Our findings corroborate the relevance

of action observation tasks to track plasticity effects due to long-lasting train-

ing [21, 22, 43, 44] and further show their impact on functional connectivity [45].

Furthermore, our findings align well with sparse yet robust evidence of expertise-

induced changes on functional brain networks. For instance, in a comparison

between expert and less experienced improvisers, the former exhibited lower ac-
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tivity in fronto-parietal association areas involved in musical creativity, as well as

greater functional connectivity among prefrontal, premotor, and motor regions

during improvisation [46]. Also, relative to non-musicians, musicians perform-

ing an audiovisual task displayed greater connectivity within a more distributed

auditory cortical network and enhanced network-level processing efficacy [47].

Moreover, as compared with novice controls, grandmaster and master level Chi-

nese chess players exhibited enhanced integration between the caudate nucleus

(an area recruited by professional chess players during quick generation of the

best next move) and the default mode network (characterized by deactivation

during goal-directed behavior and increased activity in chess-relevant domains,

such as self-referential processing and theory of mind). Finally, Wang et al. [48]

found that taxi drivers, as compared to nondrivers, evince stronger functional

connectivity between high-order (fronto-parietal) and sensory (primary visual)

resting-state networks, suggesting better integration capacities across process-

ing levels in the former group. Interestingly, a recent study [49] showed that taxi

drivers are characterized by reduced variability of functional connectivity within

brain areas involved in the vigilance network. According to the authors, this de-

crease may indicate more stable functional interactions within vigilance-related

regions subserving a core cognitive ability necessary for driving. Overall, these

studies provide strong evidence that functional brain connectivity is reorganized

due to field-specific expertise, further suggesting that training-related modula-

tions reflect more efficient interaction within relevant brain areas. Furthermore,

in line with our findings, one of these studies [49] suggests that reduced vari-

ability in functional connectivity networks may reflect the effects of long-term

training. In line with previous literature, the present data further nurture the

view that sustained practice in a specific domain hones the efficiency of relevant

neural resources, further showing that this is true even when a spectatorial role

is assumed.

The robustness of our results was confirmed by the excellent classification rate
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we obtained. In this sense, the method developed in [1] shows great potential,

as it allows analyzing networks without “network mining” techniques, such as

looking for differences in local network properties (with the statistical problems

involved). In this first application to EEG data, the method yielded consistent

results for the 128-channel montage and the 20-channel montage corresponding

to the 10/20 system. By obtaining very similar patterns independently of the

number of EEG sources, our study jointly highlights the sensitivity of functional

network analysis to capture expertise effects and the suitability of our novel

approach to such an end. Future implementations of this framework could yield

even more robust results (for example, by comparing task-relevant networks

against resting-state data).

Finally, although functional networks derived from high-density EEG record-

ings have provided a reliable means to investigate brain network configurations,

they require a channel-level connectivity analysis with limited spatial resolution

(as compared to that provided by other neuroimaging techniques). Furthermore,

although action observation tasks are suitable to capture experience-dependent

effects, more ecological approaches are needed to translate laboratory work into

realistic everyday settings. Promisingly, functional near-infrared spectroscopy

(fNIRS) has recently proven to be a powerful means to quantify dance training-

dependent effects in brain activity during the online performance of a dance

simulation gameplay [50, 51]. For instance, measures of pre-post dance training

effects with this technique indicate that motor-skill learning suppressed activity

in the frontopolar cortex (FPC), a region involved in prospective memory and

top-down regulation [51]. This finding suggests that the FPC might change its

activity in response to improvements in motor performance and could reliably

index acquired motor automaticity. Based on our current findings, we hypothe-

size that high-performance dancers would show relatively small variance in FPC

activity, as compared to low-performance dancers. Future studies using comple-

mentary fNIRS measures could extend our knowledge about the neurofunctional
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dynamics of networks sensitive to expertise effects.

5. Conclusion

In conclusion, the present study shows that task-based EEG functional net-

works are sensitive to field-specific expertise. We suggest that these differences,

reflected in terms of network variability, reveal the impact of long-lasting train-

ing on brain functional connectivity. Promisingly, we have further shown that

this effect can be captured and measured with graph-theory tools. This way,

our study opens new avenues to investigate experience-dependent functional

plasticity via action observation paradigms.
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7. Appendix

]

Fig A1: Twenty electrode networks: (A) Central network of experts and
beginners dancers for a correlation threshold of .95. (B) Network variability. as
a function of the correlation threshold and the number of links. (C) Percentage of
projective tests where H0 was rejected at a significance level of 5%. (D) Receiver
operating characteristic space for classifying experts and beginners. The results
shown on the left (right) column corresponds to the fixed correlation threshold
(fixed number of links) criterion.
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]

Fig A2: Twenty electrode networks: (A) Scheme of a network with 12 links,
four of which connect frontal and occipital regions. The proportion of PF−O

equals 1/3. Standard deviation of the PF−O when considering the networks
constructed either with the fixed correlation (B) or with the number of links
criterion (C). Histograms of PF−O for networks featuring 60 links of the group
of experts (D) and beginners (E). Values plotted in the histograms correspond
to the filled symbols shown in C.
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]

Fig A3: Twenty electrode networks: Network variability across frequency
bands. Comparison between experts and beginners in terms of correlation
threshold and number of links in four separate frequency bands (8-40 Hz, 8-
12 Hz, 12-30 Hz, 30-40 Hz).
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