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T
he application of agricultural machinery in precision agriculture 
has experienced an increase in investment and research due to 
the use of robotics applications in the machinery design and task 
executions. Precision autonomous farming is the operation, guid-
ance, and control of autonomous machines to carry out agricul-
tural tasks. It motivates agricultural robotics. It is expected that, 
in the near future, autonomous vehicles will be at the heart of all 

precision agriculture applications [1]. The goal of agricultural robotics is more 
than just the application of robotics technologies to agriculture. Currently, most 
of the automatic agricultural vehicles used for weed detection, agrochemical 
dispersal, terrain leveling, irrigation, etc. are manned. An autonomous perfor-
mance of such vehicles will allow for the continuous supervision of the field, 
since information regarding the environment can be autonomously acquired, 
and the vehicle can then perform its task accordingly.

Unmanned Robotic Service Units 
in Agricultural Tasks 
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The most important current abili-
ties of automatic agricultural vehicles 
can be grouped into four categories: 

 ■ guidance (i.e., the way the vehicle 
navigates within the agricultural 
environment) 

 ■ detection (the extraction of biologi-
cal features from the environment)

 ■ action (the execution of the task for 
which the vehicle was designed, 
e.g., radicchio harvesting [2])

 ■ mapping (the construction of a 
map of the agricultural field with 
its most relevant features) [3]. 
However, those four cores are not 

independent. For safe and successful 
navigation, the vehicle has to know its 
position within the field and the ele-
ments from the surrounding environ-
ment (mapping); bad detection could 
lead to an incomplete or unreliable 
map. Furthermore, if the elements 
from the environment are not prop-
erly located within the map, an ag-
ricultural vehicle may not be able to 
execute its tasks successfully. In addi-
tion, an incomplete map should not be 
used for navigation purposes because 
of the risk of collision. As can be seen, 
the knowledge regarding the location 
of a vehicle within the environment 
and the location of the elements in 
an environment plays a crucial role in 
an automatic agricultural vehicle de-
sign. Slaughter et al. [3] propose the 
main abilities for designing robotic 
vehicles for weed control only, with-
out addressing the localization issues 
associated with such a design.

This article is aimed at presenting 
the four abilities mentioned previous-
ly for the design and implementation 
of an automatic agricultural vehicle for 
precision agricultural tasks. Special 
attention is given to the importance of 
a localization system for performing 
such agricultural tasks. In addition, 
the current open issues in robotics 
applied to agricultural environments 
(such as an automatic agricultural ve-
hicle’s interaction with field workers 
and priority task management) are 
also presented.

Agricultural Service Units
Growth in the world population has 
led to the need for an increasing level 

of sophistication in precision agricul-
ture for both environment preserva-
tion and production optimization [4]. 
This need, in turn, has created a re-
quirement for new methods, tools, and 
strategies for agricultural processes. 
Robotics and artificial intelligence 
achievements offer new solutions in 
precision agriculture to processes 
related to seeding, harvesting, weed 
control, grove supervision, chemical 
applications, etc. [4], to improve pro-
ductivity and efficiency [2].

A service unit is an automatic ve-
hicle for main or secondary tasks 
in the agricultural environment [3], 
[5], [6]. The relation between its four 
most important abilities—mentioned 
previously— is shown in Figure 1.

The guidance needs information re-
garding the surrounding environment 
(mapping) and the features currently 
detected (detection). For example, for 
seeding or harvesting, the service unit 
must be aware of the presence of trees 
or moving obstacles in its navigation. 
Thus, a map of the environment will 
allow a service unit to navigate safely, 
and the detected features will allow 
appropriate planning for performing 
actions (e.g., terrain leveling, chemi-
cal spreading, etc.). During mapping, a 
map of the surrounding environment 
is built and maintained to aid the navi-
gation (guidance) process. Such a map 
is composed of the features or mea-
surements acquired from the environ-
ment (detection) and the information 
regarding the location of the service 
unit within such a map (for guidance 
and action). The detection is the acqui-
sition of information directly from the 
agricultural environment. This infor-
mation is used at the mapping stage to 
build and maintain an updated map of 
the surrounding environment to guide 
the navigation process (guidance) or 
to perform a given action (e.g., weed 
detection, grove maturity inspection, 
or agrochemical disposal). Finally, 
the action stage represents the way 
the service unit interacts with the ag-
ricultural field. Such an action can be 
performed on the basis of a guidance 
process (e.g., harvesting or seeding), 
detection (e.g., weed removal), or 
mapping (e.g., agrochemical disposal 

based on previously acquired treetop 
information).

Despite the relation shown in 
Figure 1 between the four main imple-
mentations of a service unit, such 
stages are intrinsically related to the 
localization problem. If the service unit 
has a bad localization system, then the 
vehicle’s knowledge of its own location 
within the environment is not reliable 
(thus, it would not be able to perform 
path-following, path-tracking, or trajec-
tory-tracking activities). Autonomous 
navigation without a precise knowledge 
about the actual position in the agricul-
tural field is dangerous for the vehicle’s 
integrity and, more importantly, could 
represent a risk for field workers. Addi-
tionally, the vehicle will not be able to 
perform any action associated with the 
agricultural task. For example, it will 
not be able to spread herbicides over 
selected trees or supervise a specific 
portion of a grove. If the localization 
system fails or is inaccurate, such an 
inaccuracy is propagated to the four 
abilities of the service unit, as will be 
shown later in this article. Each stage 
shown in Figure 1 and the localization 
problem are explained in more detail in 
the following sections.

Guidance
Control and motion-planning strate-
gies applied to service units are aimed 
at driving the vehicle within the ag-
ricultural field for specific purposes, 
closely related to the action stage. 
For example, studies [7], [8] show the 
implementation of a multimachinery 
path-planning technique. The plan-
ning is done for one vehicle—which 
is considered the leader—and the rest 
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FiGure 1 – relation between the four most 
important implementations of a service unit.
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of the vehicles follow it, maintaining 
their relative distances. Noguchi et al.  
[9] present a master–slave naviga-
tion system for general operations 
within a farm. In such a system, the 
master vehicle may or may not oper-
ate autonomously, although the slave 
vehicle always follows autonomously. 
A stable path-tracking controller for 
navigation between furrows of a grove 
is presented in [4]. Hagras et al. [10] 
present an online learning algorithm 
for agricultural machinery. It consists 
of implementing a life-long learning 
strategy. However, no analysis is pre-
sented regarding the robustness of 
the proposal to environment or task 
changes. A path-planning technique 
based on a gridded map of the agri-
cultural environment is presented 
in [7]. The technique uses the grid 
information to plan feasible and opti-
mal paths from the vehicle’s starting 
position to a given destination in the 
environment. With the same insight, 
a three-dimensional (3-D) path plan-
ning for agricultural field machinery is 
presented in [11]. Despite the fact that 
the aforementioned works are exam-
ples of guidance applications of agri-
cultural machinery, they are aimed at 
controlling the vehicle’s motion prob-
lems in farms. Figure 2 summarizes 
the guidance stage in a service unit.

The planning stage in Figure 2 is 
associated with the action in Figure 1. 
Thus, the planning is related to the fol-
lowing question: How does the service 
unit drive to fulfill its agricultural pur-
pose? For example, a service unit for 

weed detection in a field is shown in 
[3] and [12], whereas a service unit for 
treetop volume estimation is shown 
in [13] and [14]. Despite the nature 
of the vehicle, an unmanned service 
unit’s motion usually fits one of the 
following two types: path following or 
trajectory following (including trajec-
tory-tracking strategies) [15], [16]. The 
main difference between them is that 
path-following strategies do not have 
time constraints in the execution of 
the task. An example of a  path-follow-
ing case by an unmanned service unit 
with a previous path-planning process 
using environmental information is 
shown in [17], whereas an example of 
the trajectory-following case for a har-
vesting process is shown in [7]. Clear-
ly, to navigate in an environment, the 
vehicle needs information regarding 
its location in the field (localization 
system stage in Figure 2). In addition, 
the localization system is used by the 
sensors for a correct localization of 
the extracted features within the map. 
It is worth mentioning that the map is 
used at the planning stage to plan fea-
sible and safe paths or trajectories for 
the navigation process. 

The controller stage represents 
the control strategy used for driv-
ing the vehicle following the previ-
ously defined trajectory or path. For 
example, a nonlinear controller for 
path tracking is proposed in [15], 
whereas a fuzzy-based controller for 
driving following a path within an ag-
ricultural environment is proposed in 
[18]. These are examples of controller 

design techniques. As the vehicle’s 
model is highly nonlinear, both in 
kinematics and dynamics behavior, 
most control solutions are based on 
nonlinear design. Compensating for 
some effects that are present in agri-
cultural applications, such as sliding 
of the vehicle, also relies on nonlinear 
design. The trajectory- and path-fol-
lowing control design is still an active 
area of research. As expected, the 
control commands are directly sent 
to the vehicle. The controller should, 
in all cases, include emergency stops 
and obstacle avoidance or other safe-
ty autonomous operations to protect 
the vehicle’s and operator’s integrity.

Detection
The detection of the agricultural fea-
tures is directly related to the purpose 
of the service unit design and the sen-
sors incorporated on it. The detection 
stage in Figure 1 is aimed at answering 
the following two questions: Which is 
the biological feature of interest? How 
is such a feature extracted/detected? 
Artificial vision cameras, range lasers, 
and ultrasonic devices are widely used 
for acquisition of features [19]–[22]. 
In particular, image acquisition and 
processing is being increasingly ap-
plied in precision agriculture [23], [24]. 
Although most of the implementations 
are used for weed detection [25]–[27], 
artificial vision systems are also used for 
navigation. Such a case is shown in [28], 
wherein an autonomous robot used the 
Hough transform to navigate between 
the furrows of an olive grove. In a previ-
ous work of the authors [29], a monocu-
lar vision system was used to acquire 
stem information from an olive grove, 
based on support vector machines (this 
classification uses a linear kernel, which 
was previously trained with a positive 
image set—with olive stems—and a neg-
ative set—without olive stems). Subra-
manian et al. [30] integrate a range laser 
scanner with a vision system to obtain 
histograms of the environment. Such a 
histogram is a range-laser-based meth-
odology for processing environmental 
information (it stores geometrical infor-
mation in the form of angle and range 
histograms [31]). Hence, the histograms 
allow for a collision-free navigation of 
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FiGure 2 – architecture of the guidance stage in a service unit.
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the agricultural machinery. Ultrasonic 
sensors have also been used to measure 
the range. For example, Zhao et al. [32] 
present a system to measure the har-
vest area by using ultrasonic sensors 
positioned at both sides of the harvest 
header—to detect the crops—and a GPS 
for machinery positioning.

The separation of weeds from crops 
is currently a main topic of study. 
Jones et al. [33] use a vision-based 
system to discriminate between the 
crops and the weeds for possible her-
bicide applications. The authors use 
a binary representation of the image 
that, after applying the Hough trans-
formation, allows the differentiation of 
the weed from the crop in each furrow 
([25] shows a similar approach). Gee 
et al. [26] and Piron et al. [27] used 
perspective and 3-D information with 
the same objective: weed discrimina-
tion. Weed discrimination is an impor-
tant issue in an agricultural process 
and should be understood correctly 
to support the process in herbicide 
application decisions, harvest plan-
ning, crop volume estimation, etc.

In a grove, the size, disposition, ma-
turity, volume, width, and height of the 
trees are important pieces of informa-
tion [5], [10], [14], [24] that can be used 
to optimize the agricultural process. 
Zaman and Schumann [14] propose an 
ultrasound-based tree-volume mea-
surement system that is limited by the 
height of the trees, whereas in [5], a 
light detection and ranging (LiDAR) 
system is used to estimate tree crops 
without extracting other features 
from the trees. Such information can 
be used for optimizing herbicide dis-
posal. Figure 3 summarizes the detec-
tion stage in a service unit.

The sensors incorporated on a ser-
vice unit acquire information about 
the surrounding environment. The 
acquired data are processed for ex-
traction of biological features (such 
as crop maturity estimation [34], nor-
malized difference vegetation index, 
foliage density [5], weed disposition 
[3], [35], etc.; see Figure 3). As stated 
in the “Guidance” section, the infor-
mation extracted from the environ-
ment can then be used for guidance 
purposes. In addition, the information 

acquired from the environment is used 
for building (or completing) a georef-
erenced map of the agricultural field 
(as shown in [13], [29], and [32]). Nev-
ertheless, exteroceptive sensors have 
drawbacks that should be taken into 
account while designing the detection 
stage of a service unit. Table 1 sum-
marizes the pros and cons of the most 
common sensors used in service units.

Action
The action stage in Figure 4 defines 
the purposes of the service unit in 
an agricultural field. It is aimed at an-
swering the following question: What 
does the service unit do in the agri-
cultural environment? At first sight, 
the action stage can be assumed to 
be separate from the detection stage. 
However, in some applications, the 
detection stage is the action stage. 
For example, a service unit for weed 
detection is presented in [35]; the pro-
posed service unit for tree detection 
and treetop volume estimation in a 
grove is implemented in [5]; and the 
service unit is used for cherry detec-
tion in [36].

Nevertheless, there are cases 
where the action stage is different 
from the detection stage. Such a case 
shown in [2], wherein the service unit 
is used for radicchio harvesting. With 
the same insight, the service units are 
used in [37] for gardening within green-
houses. The agricultural vehicle is 
used for agrochemical disposal (such 

as herbicide spreading) in [38]. For ex-
ample, Figure 5 shows a schematic of 
a service unit for grape harvesting. A 
vision system is used for both detec-
tion of grapes and vehicle navigation. 
A manipulator mounted on the top of 
the vehicle reaches the grapes, grasps 
them, and deposits them in a tank. 
Thus, the action stage is performed by 
the manipulator and not by the vehi-
cle. Despite how the action stage is per-
formed by a service unit, Figure 4 shows 
a summarized (and generalized) archi-
tecture of such stage.

The sensors on the vehicle acquire 
the environmental information, which, 
once processed, allows the extraction of 
biological features. As shown in Figure 4, 
the biological features extracted are used 
for mapping and action planning. The lat-
ter stage is directly related to the service 
unit agricultural task. Thus, if the agri-
cultural task is related to the vehicle’s 
navigation, then in the action planning 
stage in Figure 4, the set of actions to be 
executed by the service unit to fulfill the 
task is planned. For example, in [39], the 
service unit estimates wind velocity us-
ing a laser scanner and by positioning 
the service unit between two or more 
trees of a grove. Thus, the action in this 
case is to estimate wind and position the 
service unit. Therefore, a controller is in 
charge of the command motion genera-
tion to drive the vehicle for positioning in 
front of trees (hence, the wind-estimation 
process can be executed). In contrast, in 
[30], an artificial vision system is used 
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FiGure 3 – architecture of the detection stage of a service unit.
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for planning feasible paths among fur-
rows within an agricultural field. A path-
following controller is then used to drive 
the service unit. In addition, in [40], a ro-
bot manipulator is used to handle heavy 
materials in agricultural environments. 
Therefore, the action planning is per-
formed for the manipulator, and the 
controller drives the robot manipulator 
instead of the vehicle, shown as dashed 
black line in Figure 4. Nevertheless, the 
vehicle does not remain in an open-loop 
situation, since the guidance stage  gen-
erates the control commands for driving 
the vehicle.

Mapping
The mapping stage is present in the 
three stages mentioned previously (see 

Figures 2 and 4). The mapping stage 
concerns the way the service unit in-
terprets the surrounding environment 
and stores information regarding such 
an interpretation. As shown in Figure 6, 
the biological features extracted from 
sensor information (and the processed 
data) are used to generate a map of the 
surrounding environment. For example, 
remote sensing for mapping soil prop-
erties is used in [41]; information on 
treetops within a georeferenced map 
of the grove used for the experimenta-
tion is determined in [5]; with the same 
insight, ultrasonic sensors for estimat-
ing the treetop volume and distance 
between the trees in a grove are used in 
[14]. The information acquired in [14] 
is stored in a georeferenced map of the 

environment. In addition, a weed con-
trol system that is able to discriminate 
and localize weed within an agricultural 
field is shown in [42]. Regardless of the 
nature of the map (i.e., it can be topo-
logical, geometrical, hybrid, etc.), the 
environmental information is localized 
within the map in the localization sys-
tem stage (Figure 6). With the available 
map information, the aforementioned 
abilities of a service unit (see Figures 
2–5) can be used. It is worth mentioning 
that the aim of building and maintaining 
a map of an agricultural environment is 
to use it for improving the performance 
of the service unit in the execution of 
its assigned tasks. Thus, in works such 
as [42] and [28], wherein the navigation 
of the service unit within the agricul-
tural field is purely reactive (its motion 
or action is not planned), the use of a 
mapping stage is unnecessary.

The Importance of the 
Localization System
As stated in the “Agricultural Service 
Units” section, an error—and its associ-
ated covariance—in the localization sys-
tem propagates to the four abilities of a 
service unit: guidance, detection, action, 
and mapping. Therefore, in some cases, 
the task performance of the service 
unit may become unreliable. Several ap-
proaches can be used as a positioning 
system, such as odometry.

Although an odometry-based po-
sitioning system is the most primitive 
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FiGure 4 – architecture of the action stage of a service unit. 

taBlE 1–Pros and cons oF EXtErocEPtIVE sEnsors In sErVIcE unIts.

sEnsors Pros cons

Lidar and range laser 
sensors

they cover a wide range of measurement (from 4 to 30 m) with a 
very high accuracy (e.g., !0.02 cm in 30 m). they can be mounted 
on rotating platforms for 3-d acquisition. they are able to perform 
in both greenhouses and open fields. Some sensors are resistant 
to hostile climate conditions (direct sunlight, high temperatures, 
relative humidity, etc.). their measurements can be used to model 
shapes and morphologies of plants.

occasionally, they are sensitive to colors. their prices are dependent 
on accuracy. they require further processing for the extraction of 
agricultural information. Sensitive features (such as texture of plants 
and fruits, maturity information, and colors) cannot be acquired by 
using range laser sensors.

artificial vision systems 
(monocular, stereo, and 
multispectral cameras)

they provide the most important information about a grove (texture 
and color of plants and fruits, allow weed detection, maturity 
inspection, plant disposition, foliage estimation, etc.). in a stereo 
configuration, 3-d information can be acquired (as in the previous 
item) with color information.

artificial vision systems (monocular, stereo, time-of-flight cameras, 
etc.) are sensitive to saturation due to lighting conditions. therefore, 
operating the sensor under direct sunlight is not recommended. 
additionally, when acquiring 3-d information, the range is very limited 
compared to Lidar or range laser sensors. the 3-d vision systems 
can measure up to 10 m with a very reduced field of view. they 
require advanced processing algorithms and special hardware for data 
acquisition.

range sonar sensors the price of sensors is low. they are immune to hostile climate 
conditions; they are not affected by colors or sunlight and have 
high durability.

their dispersion is too high, with low accuracy for higher ranges. 
Since one range sonar sensor acquires one single measurement, range 
sonar sensors are usually arranged in a matrix configuration. their 
range varies, although they do not reach the ranges of Lidar or laser 
sensors.
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approach, it is widely used in robotic 
applications. The main drawback of 
odometric systems is that their errors 
are also cumulative (i.e., as the vehicle 
drives within the environment, its posi-
tioning errors increase without bound). 
Figure 7 shows a case in which an 
odometry-based positioning is not reli-
able for navigation of the service unit.

Figure 7(a) shows an olive grove en-
vironment. Figure 7(b)–(d) shows three 
snapshots of the map obtained by the 
service unit as it navigates through 
the furrows of the environment. The 
red dots represent the detected olive 
stems obtained by the range laser scan-
ner mounted on the service unit (as 
shown in [29]); the path traveled by the 
vehicle—estimated by dead-reckoning 
sensors (i.e., odometry)—is shown as a 
solid blue line. As can be seen in Figure 
7(b)–(d), when the service unit turns 
180° within the same furrow, the cumu-
lative error in the positioning system 
becomes more evident, causing a bad 
reconstruction of the environment.

An inertial module unit (IMU) can 
be used to enhance an odometric sys-
tem. The integration and fusion of IMU 
measurements in an odometric system 
decreases the error in the estimation 
of vehicle’s position [43], [44] when 
using odometry. However, the IMU sig-
nal requires further processing to filter 
chassis vibrations and spurious mea-
surements [45]. Nevertheless, the error 
obtained by using an IMU is conditioned 
by the accuracy of the IMU (e.g., to es-
timate position from an accelerometer, 
two integrations are needed, and the 
error in the acceleration is then accu-
mulated two times). However, the IMU 
has been shown to be effective for de-
tecting slipping situations [46]. Further 
improvement in the positioning system 
is achieved by using GPS receivers.

The field of precision agriculture 
has experienced increased growth 
since the implementation of GPS in 
agricultural machinery [5], [47]–[49]. 
The combination of GPS information 
with computer processing has allowed 
for the possibility of optimization of 
the agricultural process. For example, 
Norremark et al. [12] and Vougioukas 
et al. [50] show a path-planning tech-
nique for agricultural machinery that 

uses GPS information and georefer-
enced maps to calculate the best path 
for seeding or harvesting, minimiz-
ing the complexity of the mechanical 
movements. With the same insight, a 
path-planning algorithm for nonplanar 
terrains is shown in [11]. Thuilot and 
Cariou [51] present an automatic guid-
ance system for a tractor following a 
set of waypoints and using a differen-
tial GPS as the only positioning sensor. 
However, relying only on GPS mea-
surements for positioning presents 
difficulties in groves where dense tree 
canopies may block the GPS signal. 
Works such as [4], [6], [42], and [49] 
enhance the navigation system by us-
ing real-time kinematics (RTK) devices 
and exteroceptive sensors, such as ar-
tificial vision systems and range lasers.

The use of differential GPS or RTK 
devices has secondary problems in the 
design of a service unit: they increase 
its cost, which may prevent large-
scale use of autonomous service units 
in the field of precision agriculture. 
However, it is worth mentioning that a 
bad positioning system will propagate 
its position error—and its associated 
covariance—to all the information ac-
quired by the sensors on the vehicle. 
For simplicity, let us assume the co-
variance propagation model shown 
in (1) [52]. Pf is the covariance matrix 
associated with the detected feature 
according to the sensor’s position 
within the environment, Hv is the Ja-
cobian matrix of the motion model of 
the sensor (or the vehicle) and Hv

T is 
its transpose, Hf  is the Jacobian ma-
trix associated with the mathematical 
model of the detected feature, and R is 

the covariance matrix associated with 
the feature extraction procedure.

 .P H P H H RHf v v v
T

f f
T= +  (1)

In (1), Pv is the covariance matrix of 
the localization system implemented 
on the vehicle. If we assume two local-
ization systems (Pv,1 and Pv,2) imple-
mented on the same vehicle, such that 
P Pv, v,1 2*  (where * stands for positive 
semidefinite and ,P P 0v, v,1 2 * ), then us-
ing the results shown in [53], we can 
see that P H P H H RHf, v v, v

T
f f

T
1 1 *= +

.H P H H RH Pv v v
T

f f
T

f, ,2 2+ =  Considering 
that the determinant of a covariance 
matrix is associated with the volume of  
uncertainty of such a matrix [53], we can 
see that P H P H H RHf, v v, v

T
f f

T
1 1 $= +  

.H P H H RH Pv v, v
T

f f
T

f,2 2+ =  Thus, the 
volume of uncertainty associated with 
Pf,1 is bigger than the one associated 
with .Pf,2  Hence, we can see that, if Pv,1 
and Pv,2 are two different GPS receiv-
ers, the precision of mapping in GPS-
based localization systems relies on 
the accuracy of the GPS sensor used.
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FiGure 6 – architecture of the mapping stage of a service unit.
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FiGure 5 – Schematic of a service unit for 
harvesting grapes.
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As can be seen in (1), the accuracy 
of the four stages of a service unit im-
plementation (shown in Figure 1) has a 
lower bound established by the accura-
cy of the positioning system (in case the 
feature extraction procedure cannot be 
further improved). Therefore, minimiz-
ing Pv in (1) would lead to a minimiza-
tion of the propagation errors. With this 
insight, the simultaneous localization 
and mapping (SLAM) algorithm can be 
used to further reduce such propaga-
tion of the positioning errors.

The SLAM algorithms minimize 
the estimation errors in both the 
localization and the mapping pro-
cesses [29], [52]. A SLAM algorithm 
concurrently estimates both the 
pose (position and orientation) of a 

vehicle and the map of the environ-
ment in which the vehicle is located. 
The sensors mounted on the vehicle 
extract features from the surround-
ing environment. Those features are 
then located within a map, which 
is maintained and updated by the 
SLAM algorithm. One of the main ad-
vantages of SLAM algorithms is that 
they can optimally perform in places 
where other positioning systems fail 
and can be used to further improve 
GPS-based localization systems.

SLAM: A Solution for Occluded GPS
GPS-based localization systems be-
come inaccurate when GPS receivers 
are blocked by dense foliage. Thus, 
mapping and guidance applications 

like the ones shown in [5] and [54] 
would become unachievable. A SLAM 
algorithm can use exteroceptive sen-
sors (such as the SLAM implementa-
tions shown in [29] and [55]) and can 
be enhanced by using a GPS-based 
localization system [56]. One of the 
main advantages of the SLAM algo-
rithm is that it minimizes the errors 
in the estimation of both the pose and 
the map [29], [52], [55]. However, two 
of the main drawbacks are its high 
computational cost (which can be 
drastically reduced by using optimiza-
tion criteria such as the ones shown in 
[29] and [57]) and meticulous design 
to avoid inconsistency and divergence 
in the estimation process. Such prob-
lems can be avoided by using GPS 
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FiGure 7 – an example of a bad positioning system. (a) the olive grove environment where the experimentation was carried out. (b)–(d) Snap-
shots of the reconstruction of the environment based on the positioning information. the solid blue line is the path (estimated by the odometry) 
traveled by the vehicle, whereas red dots represent the detected stems.
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measurements from time to time to 
ensure convergence of the estimation 
process. The latter does not contra-
dict the benefits of using SLAM algo-
rithms as positioning methods, since 
GPS measurements are not mandatory 
at each sampling time [52], [56].

Several approaches can be used 
to overcome the shortcomings of the 
SLAM algorithm, such as using the ex-
tended Kalman filter (EKF) [52], [56] 
or the extended information filter (EIF) 
[29], including Gaussian-based filters, 
the particle filter [58], [59], etc. For 
example, a hybrid SLAM algorithm for 
farms is presented in [60], whereas 
an optimized EIF for real-time imple-
mentations in groves is presented in 
[29]. The features acquired from the 
environment are part of the map built 
by the SLAM process, and they are 
corrected and updated as the SLAM 
algorithm is executed. For instance, 
the stems of trees as features from the 
environment are used in [29], although 
other features can be used instead.

Considering the optimized EIF-
SLAM formulation shown in [29], let 

tp  and tX  be the SLAM system state 
and its associated information matrix. 

tp  contains both the estimation of the 
pose of the vehicle in an agricultural 
field v,tp^ h and the features extracted 
from the environment (the map, m,tp ) 
[see (2)].
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In (2), suffix t represents the sampling 
time, v,tX  is the information matrix 
associated with ,v,tp  m,tX  the informa-
tion matrix associated with ,m,tp  and 

vm, vm,
T

t tX X=  are cross-information 
matrices. It can be shown that 0t (X  
( tX  is positive definite) [29]. Consider-
ing the relation between the EIF and 
the EKF ( ,Pt t

1X= -  where Pt is the cova-
riance matrix associated with the EKF 
system state) and taking into account 
the convergence theorem for the EKF-
based SLAM algorithm (it establishes 
that ,lim P 0t t ="3  i.e., the volume 
of uncertainty associated with the 
estimated process decreases as time 
tends to infinity), we can find that [29]

 | | .lim limP 1 0
t

t
t tX

= =
" "3 3

 (3)

Then, according to (3), it is possible to 
see that limt t 3X ="3  (the informa-
tion matrix diverges as time tends to 
infinity). Therefore, the estimation pro-
cess performs properly [29], [52]. The 
latter means that the SLAM algorithms 
allows for the maximization of the in-
formation matrix associated with the 
EIF-SLAM system state, which, in turn, 
means that the volume of uncertainty 
associated with the estimation of the ve-
hicle’s pose [see (1)] can be minimized 
by the implementation of a SLAM algo-
rithm in the service unit.

It should be noted that as new fea-
tures are detected, they have to be 
properly added into the SLAM system 
state and its information (or covari-
ance) matrix [52], [56]. Figure 8 shows 
an experimental result of implement-
ing the EIF-SLAM shown in [29] in a 
service unit operating within an olive 
grove [shown in Figure 7(a)] for super-
vision purposes. As previously stated, 
the features acquired from the environ-
ment correspond to stems associated 
with trees in the grove. The solid black 
line is the path followed by the vehicle 
(and estimated by the SLAM algorithm); 
the solid magenta line is the path previ-
ously planned by the service unit; the 
red crosses are the estimated locations 
of the trees detected from the environ-
ment; and the blue triangles are the dif-
ferential GPS locations of the trees and 
used for comparison purposes. The con-
sistency tests of the EIF-SLAM algorithm 
mentioned herein are shown in [29].

Unmanned Service Unit in  
Olive Groves: A Case Study
The development of autonomous ter-
rain vehicles for agriculture is still in 
the research and experimental stages, 
with practically no commercial ve-
hicles on the market. Some experi-
mental vehicles have been presented 
in the literature, such as the ATI plat-
form developed at the Aalborg Uni-
versity in Denmark for weeding and 
spraying [61] or the HortiBot project 
by the Aarhus University, Denmark, 
for high-tech weeding in organic farms 
(http://www.hortibot.dk/). In this sec-
tion, an experimental autonomous 
service unit developed recently at the  
Institute of Automatics, Universidad 

Nacional de San Juan, Argentina, for 
intensive agriculture applications 
is described. The vehicle shown in 
Figure 9 has been implemented on the 
basis of a standard utility four wheeler 
for agricultural applications. The aim 
of the project was to offer autonomy 
to the commercial vehicle by provid-
ing the  abilities of guidance, action, 
detection, and mapping. The primary 
application of the vehicle is to capture  
vegetation information to construct 
georeferenced maps of the crop.

The general functional structure 
of the vehicle is shown in Figure 10 
[29]. The vehicle is equipped with 
sensors for navigation, such as odom-
etry encoders and IMU, stereo vision 
camera, laser range sensors, and RTK 
GPS, as well as sensors for capturing 
vegetation information such as multi-
spectral cameras and laser range sen-
sors. Also, it is equipped with electric 
actuators for acceleration, steering, 
and braking. The vehicle can navi-
gate autonomously or be teleoperated 
and has four states of operation: start 
(initial conditions), normal (executing 
a task), standby (transitory suspen-
sion of operation), and emergency 
(emergency stop). Normal operation 
includes the control algorithms de-
veloped for path following and tra-
jectory tracking. All operations can 
be supervised from a remote station, 
where a human–computer interface is 
developed to facilitate the supervision 
and teleoperation of the vehicle. The 
interface is accessible from the base 
station, at a remote location from the 
vehicle, where the tasks of planning, 
supervision, and teleoperation are ex-
ecuted. The vehicle is operated at an 
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FiGure 8 – olive environment reconstruction 
using the eiF-SLam shown in [29].
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experimental field of olive groves in 
San Juan, Argentina.

The four core abilities mentioned 
in the “Agricultural Service Units” sec-
tion are also present in the service 
unit shown in Figures 9 and 10.

 ■ Detection: This stage is repre-
sented by the two range laser 
sensors, the stereo vision system, 
and the high-level CPU shown in 
Figure 10, which processes the sen-
sors’ information.

 ■ Mapping: This stage is represented 
by the detection ability listed previ-
ously and the localization system 
(the DK-GPS, the internal sensors, 
and the low-level CPU). The high-lev-
el CPU generates a map of the envi-
ronment based on the exteroceptive 
sensors and the localization informa-
tion provided by the low-level CPU.

 ■ Guidance: This stage is represented 
by the low-level CPU (which con-
trols the mechanism of the service 
unit through a CAN bus), the posi-
tioning system (DK-GPS and the in-
ertial sensors). The path controllers 
in the high-level CPU generate the 
driving motion commands based on 
the positioning and environmental 
information acquired by the sensors 
of the service unit (Figure 2). Obsta-
cle avoidance and emergency stops 
are also included in this stage.

 ■ Action: The service unit shown in 
Figures 9 and 10 was designed to 

monitor and supervise a grove. How-
ever, a robotic arm, controlled by a 
high-level CPU, can be mounted on 
the vehicle for manipulation purpos-
es. Additionally, a ground station al-
lows the teleoperation of the vehicle.

New Issues Under Study
Despite the service unit’s abilities, 
some open issues still remain to be 
solved for autonomous vehicles in 
agricultural environments. The tools 
developed within the robotic field can  
be used as proposed solutions to such 
issues and for further improving the 
agricultural process. Nevertheless, 
the goal of agricultural robotics is not 
only to apply robotic technologies 
in the field of agriculture but also to 
use agricultural challenges to develop 
new techniques and systems.

Three open issues are described in 
the following sections. However, sever-
al others are present, particularly those 
strictly related to the nature of an agri-
cultural field (e.g., the tools needed for 
autonomously harvesting a wheat field 
are not the same as those needed for 
harvesting an orange grove).

Service Unit Interaction  
with Field Workers
In the examples mentioned previous-
ly, a service unit was designed for use 
in harvesting, seeding, agrochemical 
dispersal, supervision, mapping, etc. 

However, one question still needs to 
be answered: How does the service 
unit interact with field workers? For 
example, a service unit is designed 
to give assistance to olive field work-
ers. The workers have to load the ser-
vice unit with olives as it navigates 
through the grove. The service unit 
must protect the workers’ safety and 
fulfill its agricultural task.

Several robotic tools can be used 
to solve the problem, such as the 
studies in human–robot interaction, 
cooperative and collaborative work, 
control systems, etc. [62]–[65].

Maneuvering Problems
The width of the furrows is not neces-
sarily ideal for the service unit’s ma-
neuvering abilities [66], [67]. Thus, 
navigation, positioning, orientation, 
and turning maneuvers require spe-
cific strategies that are directly re-
lated to the environment disposition 
and the vehicle’s capabilities. For ex-
ample, industrial olive harvesters are 
only appropriate for olive fields with 
specific width between the furrows 
and height of the treetops.

The kinematic and dynamic restric-
tions of the vehicle also play an impor-
tant role. Service units are not usually 
unicycle-type vehicles. Instead, car-
like configurations are more suitable 
for navigation in an agricultural envi-
ronment [3], [5]. One of the main draw-
backs of such a carlike configuration 
is that the vehicle is not able to turn 
over its point of control; therefore, it 
is restricted by a minimum radius of 
turning. The latter also means that not 
all the points from the environment 
can be reached by the service unit, 
and special care must be taken when 
planning (see the “Action” section) to 
avoid both risk (for the vehicle and 
the field workers) and expenditure of 
valuable resources trying to perform 
an action (e.g., trying to reach a point 
out of the vehicle’s workspace).

Tasks: Which Tasks Should  
Be Performed First?
This issue is closely related to the 
versatility of the service unit and 
consists of having a hierarchical ar-
chitecture based on the priorities FiGure 9 – the aGrobot autonomous vehicle for agriculture.
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and management of tasks. As previ-
ously stated, a service unit is usu-
ally developed for achieving a single 
task [68], [69]. A question arises 
when the service unit has to perform 
two or more tasks at the same time 
(e.g., harvesting and supervision of a 
grove). The system must be able to 
manage the available resources to 
optimize the agricultural tasks it is 
performing while the tasks are being 
executed successfully.

Conclusions
This article surveyed the state of 
the art in unmanned service units 
in agricultural environments and 
presented the four core abilities of 
such vehicles when performing agri-
cultural tasks: detection, guidance, 
mapping, and action.

A detailed analysis of each abil-
ity was given, showing both how the 
four abilities are related to each other 
and how the accuracy of the localiza-
tion system is crucial to ensure the 
success of an agricultural task. It was 
shown that a bad positioning system 
creates an unreliable map,  risky driv-
ing, and the possibility of a failure of 
an agricultural task. In particular, the 
SLAM algorithm was presented as an 
inexpensive solution for the localiza-
tion problem. In addition, a case study 
of an unmanned service unit for olive 
grove supervision was presented.

Hopefully, this article has provided 
sufficient information for an interest-
ed reader to further improve the field 
of unmanned service units to massive 
the use of such vehicles in main and 
secondary agricultural tasks.
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