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Abstract

We propose a probabilistic extension of the matching pursuit adaptive signal processing algorithm introduced by
Mallat and others. In adaptive signal processing, signals are expanded in terms of a large linearly dependent `dictionarya
of functions rather than in terms of an orthonormal basis. Matching pursuit is a simple greedy algorithm for generating
an expansion of a given signal. In probabilistic matching pursuit multiple random expansions are obtained as estimates
for a given signal. The new algorithm is illustrated in the context of signal denoising. Although most of the random
expansions generated by probabilistic matching pursuit are poorer estimates for the signal than those obtained by
matching pursuit, our "nal estimate, obtained as an expected value computed by means of an ergodic average, can
improve the result obtained by MP in some denoising situations. One of the major underlying ideas is a novel notion of
coherence between a signal and the dictionary. Several simulated examples are presented. ( 2000 Elsevier Science B.V.
All rights reserved.

Zusammenfassung

Wir schlagen eine probabilistische Erweiterung des als `Matching Pursuita bekannten, von Mallat und anderen
eingefuK hrten adaptiven Signalverarbeitungsalgorithmus vor. In der adaptiven Signalverarbeitung werden Signale eher
nach einem gro{en `Verzeichnisa linear abhaK ngiger Funktionen entwickelt als nach einer orthonormalen Basis.
Matching Pursuit ist ein einfacher `greedya Algorithmus zur Erzeugung einer Entwicklung eines gegebenen Signals.
Beim probabilistischen Matching Pursuit erhaK lt man mehrfache zufaK llige Entwicklungen als SchaK tzwerte fuK r ein
gegebenes Signal. Der neue Algorithmus wird im Rahmen der SignalentstoK rung illustriert. Obwohl die meisten der durch
probabilistisches Matching-Pursuit erzeugten zufaK lligen Entwicklungen schlechtere SchaK tzungen des Signals darstellen
als die durch herkoK mmliches Matching Pursuit erhaltenen Entwicklungen, kann unsere endguK ltige SchaK tzung, welche wir
als durch ergodische Mittelung berechneten Erwartungswert erhalten, das mit MP erhaltene Ergebnis in manchen
EntstoK rungssituationen verbessern. Eine der wesentlichen zugrundeliegenden ldeen ist ein neues Konzept der KohaK renz
zwischen einem Signal und dem Verzeichnis. Es werden mehrere Simulationsbeispiele vorgestellt. ( 2000 Elsevier
Science B.V. All rights reserved.

Re2 sume2

Nous proposons une extension probabiliste de l'algorithme de traitement de signaux par matching pursuit adaptatif
introduit par Mallat et al. En traitement de signaux adaptatif, les signaux sont exprimeH s en terme d'un large dictionnaire
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de fonctions lineH airement deH pendant pluto( t qu'en terme d'une base orthogonale. Le matching pursuit est un simple
algorithme de Greedy pour geH neH rer une extension d'un signal donneH . En matching pursuit probabiliste, de multiples
extensions aleH atoires sont obtenues comme estimeH es d'un signal donneH . Le nouvel algorithme est illustreH dans le contexte
du deH bruitage de signaux. Bien que la plupart des estimeH es aleH atoires geH neH reH es par le matching pursuit probabiliste sont
des estimeH es moins bonnes que celles obtenues par matching pursuit, notre estimeH e "nale, obtenue comme une espeH rance
calculeH e au moyen d'une moyenne ergodique, peur ameH liorer le reH sultat obtenu par matching pursuit dans certaines
situations de deH bruitage. Une des ideH es majeures sousjacentes est la nouvelle notion de coheH rence entre un signal et le
dictionnaire. Nous preH sentons plusieurs exemples simuleH s. ( 2000 Elsevier Science B.V. All rights reserved.
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0. Notation

The following standard notation will be used:
N"M1,2,3,2N is the set of natural numbers, R is
the set of real numbers, and C is the set of complex
numbers. R`"(0,R) is the set of positive real
numbers.

Given a set S, we denote the countable Cartesian
product of S with itself by SN and we denote the
cardinality of S by DSD.

We use the following standard functions: Given
a real number x, xxy represents the #oor of x, i.e.,
the greatest integer less than or equal to x. We
denote the normal distribution with mean k and
standard deviation p by N(k,p).

The symbol J is used to indicate that two
density functions are equal up to a normalization
constant.

We use the following notation from linear alge-
bra: given a vector v, we denote its components by
[v]

i
or v

i
. An inner product between two members

f and g of a vector space is denoted by S f, gT.
Given a probability space (X,k), the support of

k is the largest measurable subset A-X such that
k(A)"1.

Given a noise signal f"z#pw, the signal to
noise ratio is de"ned as the ratio of signal-to-noise
energy:

SNR"

DDzDD2
DDpwDD2

.

For the simulated examples, f
i
, i"1,2,5 are

signals de"ned in Section 4.4 and each
f
i,j

, i"1,2,5, j"1,2,4 represent the signal f
i

with added noise of `levela j. fM
i,j

and f P
i,j

are the

reconstructions of f
i
by matching pursuit and prob-

abilistic matching pursuit, respectively.

1. Introduction

Probabilistic matching pursuit is a randomiz-
ation of the matching pursuit algorithm for signal
processing introduced by Mallat and others, which
in turn is an adaptive alternative to traditional
signal processing methods. We begin with a brief
overview of the chain of ideas leading from tradi-
tional signal processing to probabilistic matching
pursuit, "rst in the context of signal compression,
and then in the context of denoising. We then
provide a description of the main idea of our paper.
We close the introduction with a detailed overview
of the rest of the paper.

1.1. Signal compression with adaptive expansions

Signal compression is generally performed by
expanding a given signal in a series and then throw-
ing away terms of the series which may be neglect-
ed. The traditional approach uses an orthonormal
basis such as a Fourier or wavelet basis to develop
unique series expansions. In order to further im-
prove signal compression it is natural to search for
adaptive decompositions in which series are ex-
panded in terms of a linearly dependent family of
unit vectors (here called a dictionary) which is in
general much larger than a basis. In this case ex-
pansions are no longer unique, so they may be
adapted in a manner which depends on the given
signal [19,14]. Such adaptive expansions will "t
the underlying signal better, but there is the new
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di$culty of determining which of the many di!er-
ent expansions to use.

In the case of compression, we wish to get the
best approximation by using as few terms as pos-
sible. Therefore, the basic optimization problem we
must solve is the following: given a dictionary
D"Mgc : c3CN, an integer M and a vector f in
the space spanned by D, "nd a sub-collection
I-C with cardinality M and numbers bc such
that DD f!+c|Ibcgc DD is minimized. Given the
generality of the collection D, globally optimizing
the search of vectors in the expansion is an NP-
complete search problem [6]. Various e$cient
suboptimal solutions to this optimization problem
have been proposed. The best wavelet basis
algorithm [22] gives optimal solutions for special
collections of functions. The basis pursuit
algorithm [5] poses the problem as a linear
optimization problem. The matching pursuit (MP)
algorithm, introduced in [6] and [13] and de-
scribed below, is perhaps the simplest general-
purpose adaptive signal processing algorithm.
Numerical comparisons for those three approaches
are presented in [5,14].

In matching pursuit the single dictionary element
which best matches the signal is removed from the
signal, and the process is repeated with the signal
residue from the previous step until a stopping rule
is satis"ed. If by `best dictionary elementa we mean
the one with maximum inner product with the
signal, the residue obtained at each step has
squared norm as small as possible for that step. An
algorithm that operates in this way with minimal
`look aheada is known as a greedy algorithm. The
greedy MP algorithm is simple, fast, and general,
with many interesting applications [12,15,18]. Its
generality is due to the fact that it requires minimal
assumptions on the dictionary vectors, which must
only belong to a Hilbert space. Rates of conver-
gence and other mathematical questions related to
MP are investigated in [7,13].

However, the fact that multiple expansions
are possible with redundant dictionaries gives
us the opportunity of selecting expansions at
random from many di!erent possibilities, an
option which is not available in the case of
orthonormal bases. Random selection of expan-
sions o!ers the following advantages over deter-

ministic selection:

f Random expansions may be generated more
quickly than deterministic expansions.

f Random expansions do not force us to restrict
searches to a discrete subset (a search grid) of
a dictionary.

f The availability of multiple random expansions
permits us to improve results by averaging.

f The probability distributions employed in
random selection are far more #exible than
deterministic selection procedures, and may be
adjusted to take into account empirical observa-
tions or additional knowledge in special-case
situations.

Furthermore, the deterministic choice of expan-
sions is a special case of probabilistic choice, which
means that carefully chosen probabilistic expan-
sions should be at least as good as deterministic
expansions.

The purpose of this paper is to present a prob-
abilistic extension of the MP algorithm which of-
fers some advantages over MP. We have modi"ed
matching pursuit to select dictionary elements at
random from a list of promising candidates
(those above a certain threshold inner product).
Such selection rule gives an algorithm which is easy
to understand and analyze relative to matching
pursuit. This new algorithm was designed as a de-
noising algorithm and is poor as a compression
tool.

1.2. Signal denoising with adaptive expansions

Signal denoising is generally performed in
a manner similar to that of compression, by ex-
panding a given signal in a series and throwing
away the terms that `look likea noise. The correct
selection of stopping rule is critical in denoising: if
we terminate our series too early we may miss
crucial signal features, and if we terminate our
series too late we will include noise in our estimate
of the signal.

For example, signals embedded in Gaussian
noise are well estimated by nonlinear shrinkage of
wavelet coe$cients from an orthonormal wavelet
basis [1]. It has been established in [10] that
this type of denoising outperforms traditional
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estimators. The heuristic behind this approach re-
lies on the fact that all empirical wavelet coe$cients
contribute noise proportional to the variance but
only a few wavelet coe$cients contribute to the
signal. Therefore, it is the property of wavelet basis
to compress the signal information (few coe$cients
are needed to reproduce a large percentage of the
energy of the signal) and the ability to recognize
noise in the wavelet domain that leads to a power-
ful technique for denoising.

Adaptive approximations necessarily o!er a bet-
ter compression of a signal than expansions in
terms of an orthonormal basis. However, in the
presence of noise, estimations by thresholding may
not be improved by an adaptive expansion because
the #exibility of the search may result in a diction-
ary element that correlates well with the noise.
A practical solution to this problem is to de"ne the
noisiness of a signal relative to the given dictionary.
In the context of an orthonormal basis this is
known as coherent basis thresholding (see [14,
p. 465]). In the MP context this idea implies a prac-
tical stopping rule, namely comparing the nor-
malized inner products of the residues with the
averages of the normalized inner products of noise.
Then, given the iterative nature of MP, denoising
is performed by stopping the search for new
components once the next residue of the algorithm
is recognized as noise. The denoised function
is then the expansion of the original noisy
function in terms of the components found (which
are called coherent components). See Section 2.2 for
details.

1.3. Probabilistic matching pursuit

We now describe the main idea of our paper. Let
f
i
"z

i
#pw

i
where the vector z is a given signal

and w
i

are a "nite set of samples from an i.i.d.
sequence of random variables=

i
with distribution

N(0,1). Our intention is to take advantage of the
many representations for z available in the redund-
ant dictionary D. Usually, z is approximated by
a single (coherent) vector c, but we will introduce
a probability space (X,k), the elements of which are
denoted by x, and a family of functionals C

i
on

this probability space. The denoised approxima-
tion to each component z

i
will be given by the

expected value

Ek(Ci
)"PCi

(x) dk(x).

The measure k will be supported in a subset of
vectors of D that resemble characteristics of the
signal and hence o!er the opportunity to reinforce
a good reconstruction. The main ingredient in our
approach is a randomization of the set of labels of
the dictionary which gives a probabilistic way to
distinguish between coherent structure and noise.
These notions are relative to the given dictionary.
The construction of (X,k) is done in Section 3.

Next, we give an argument to explain why an
expected value o!ers a better reconstruction in
certain situations. The reconstruction error is mea-
sured in terms of the relative mean squared error

RMSE(z)"
DDz!Ek(C)DD

DDzDD
,

where DD ) DD is the norm induced by the given inner
product. From convexity of the norm functional
and Jensen's [16] inequality we see that

DDz!Ek(C)DD
DDzDD

"KKEkA
(z!C)

DDzDD BKK)EkA
DDz!CDD

DDzDD B. (1)

When the MP expansion is not optimal (see the
discussion in Section 4) many good quality expan-
sions are available. These expansions are included
in the support of k and the average of their RMSE
appear on the right-hand side of (1). In practical
situations the left-hand side of (1) is considerably
smaller than the right-hand side because the norm
functional is strictly convex and the samples tend to
surround the correct value with similar errors, so
we are averaging approximations which lie roughly
on a sphere surrounding the correct value. This
improvement will be demonstrated with numerical
examples throughout the paper. We report im-
proved performance relative to the performance of
MP denoising; comparison with respect to other
denoising techniques is outside the scope of the
paper. However, note that adaptive denoising im-
proves over denoising with an orthonormal basis
(which in turn improves over traditional es-
timators) if the signal to be analyzed can be more
e$ciently compressed in the dictionary that in the
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given orthonormal basis (see the discussion in
[14, p. 464]).

1.4. Organization of the paper

The matching pursuit algorithm with Gabor dic-
tionaries as discussed in [13,14] is reviewed in
Section 2, where we also indicate the speci"c
Hilbert spaces which will be used in our implemen-
tations, present important de"nitions, and intro-
duce denoising using the MP algorithm. We
introduce our probabilistic extension of MP and
comment on its main features in Section 3. We
describe the computational details of PMP and
analyze its computational cost in Sections 4.1 and
4.2. We discuss potential improvements of the new
method over the MP method for denoising and
study performance in several simulated denoising
tasks in Sections 4.3 and 4.4. Finally, we draw
conclusions on the degree of success of our method
and its future prospects in Section 5.

The appendices provide technical details on
three aspects of the implementation of our algo-
rithm. The rejection method for sampling is pre-
sented in Appendix A, and two methods for
speeding up the algorithm, the Bernoulli shift and
fast formulas for the inner products of Gabor func-
tions, are discussed in Appendices B and C.

2. The MP algorithm

In this section we review the essential aspects of
the matching pursuit algorithm as discussed in
[13]. Let H be a Hilbert space, we de"ne a diction-
ary as a family D"Mgc : c3CN of vectors in H such
that DDgc DD"1. Let V be the closed linear span of the
dictionary vectors. We say that the dictionary is
complete if V"H. MP approximates f by ortho-
gonal projections on elements of D, i.e., given
gc0 3D the vector f can be written as

f"S f, gc0 Tgc0 #Rf, (2)

where Rf is the residual vector left after approxi-
mating f in the direction of gc0 . Clearly gc0 is ortho-
gonal to Rf, so

DD f DD2"DS f gc0 TD2#DDRf DD2. (3)

To minimize DDRf DD we must maximize DS f, gc0 T D over
gc0 3D. In general, it is only computationally feas-
ible to "nd an `almost optimala vector gc0 in the
sense that

DS f, gc0 TD"max
c|Ca

DS f gcTD*a sup
c|C

DS f gcTD, (4)

where Ca-C and a is an optimality factor which
satis"es 0(a)1. The construction of Ca depends
on the dictionary; typically, if the dictionary is
indexed by a set of continuous parameters C, then
Ca will be a discrete grid of some sort in C. For
details we refer to Section 2.1 and [13].

We then continue the matching pursuit by induc-
tion. Let R0f"f. Suppose that we have computed
Rnf, the residue of order n, for some n*0. We then
choose an element gcn 3Da"Mgc : c3CaN which
closely matches the residue Rnf :

DSRnf gcn TD*a sup
c|C

DSRnf gcTD. (5)

The residue Rnf is decomposed as

Rnf"SRnf, gcn Tgcn#Rn`1f (6)

which de"nes Rn`1f, the residue of order n#1. Let
us repeat this decomposition m times. Writing f in
terms of the residues Rnf, n"0,1,2, m and ap-
plying (6) yields

f"
m~1
+
n/0

SRnf, gcn Tgcn #Rmf. (7)

The following theorem is fundamental to the MP
algorithm [13].

Theorem 1. If D is a complete dictionary and if f3H
then

f"
=
+
k/0

SRkf, gck Tgck (8)

and

DD f DD2"
=
+
k/0

DSRkf, gck TD2. (9)

2.1. Gabor dictionaries

Gabor functions are `windoweda trigonometric
functions with in"nite exponentially decreasing
tails. It is useful to consider two kinds of Gabor
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functions: functions which are either continuous
(de"ned on R) or discrete (de"ned on the discrete
subset S of R).

As the window function g(t) we use the nor-
malized Gaussian given by

g(t)"21@4e~nt2. (10)

For any c"(s, u,m)3R`]R2"C, let the Gabor
function gc be given by

gc(t)"
1

Js
gA

t!u

s Be*mt. (11)

The factor 1/Js normalizes gc(t). Here s'0 is
called the scale of the function, u its translation and
m its frequency modulation. gc(t) is centered at the
abscissa u and its energy is mostly concentrated in
a neighborhood of u of size proportional to s. When
f (t) is real we use dictionaries of real time-frequency
functions. For any c"(s, u,m) any phase /3[0,2n),
de"ne

g
(c,()(t)"

K
(c,()

Js
gA

t!u

s B cos(mt#/), (12)

where the positive constant K
(c,() is determined by

the condition DDg
(c,() DD"1. For convenience we use

the notation b"(c,/) and Kb"K
(c,() .

We now de"ne the discrete Gabor functions
which are used in the formalism of Section 3 and in
the software implementation used for the numerical
experiments. In the discrete case f is assumed to be
a signal f (t) supported on a discrete set S"Mt

i
N,

i"1,2,DSD where DSD may be "nite or in"nite.
We equip S with the Dirac discrete measure and we
will consider the space ¸2(S). If DSD"N we use the
notation f

i
"[ f ]

i
"f (t

i
), f"( f

1
,2, f

N
). The

Gabor functions are discretized (see (C.4) in Appen-
dix C) and considered as elements of ¸2(S). Inner
products are given by

S f, gT"+
i|S

f (t
i
) g6 b(ti ). (13)

In Appendix C equations are presented which are
only valid when the points in S are uniformly
spaced and DSD equals in"nity. To make use of
these formulas in practice, f is assumed to be zero
outside a given interval. The dictionary of real
time}frequency vectors is de"ned by D

R
"

Mg
(c,() : (c,/)3K"C][0,2n)N. Matching pursuit

performed with this dictionary decomposes any
real signal f (t) into the sum

f (t)"
=
+
n/0

SRnf, gbn
Tgbn

(t), (14)

where the indices b
n
"(s

n
, u

n
,m

n
,/

n
) are chosen by

maximizing DSRnf, gbn
TD over K. In practice, this

maximization is not feasible and an approximation
scheme as indicated in Eqs. (4) and (5) has to be
used. De"ne the discretized complex dictionary by
Da"Mgc : c3CaN, a subset of the complex Gabor
dictionary where the index set Ca is composed of all
c"(aj, paj*u, ka~j*m), with a"2, *u"1

2
, *m"n,

0(j(log
2

N, 0)p(N2~j`1 and 0)k(2j`1.
In [13] it is proven (in the continuous case) that if
the parameters (s, u,m) are discretized in this way
there exists an a'0 such that the MP algorithm is
sub-optimal with respect to a, i.e., (5) holds. The
reader is referred to [13] for a thorough presenta-
tion of this discretization. It is numerically conve-
nient to perform most of the computations with
complex Gabor vectors. We will work only with the
three parameters c"(s, u,m); explicit use of / can be
avoided by making use of the following de"nition:
given h3H, c"(s, u,m) and Sh, gcT"a#ib and
tan/"b/a we set b"(s, u,m,/). Therefore, we have

Sh, gbT"K
(s,u,m,() Sh, gcT. (15)

Hence, we choose b
n

in (14) in such a way that the
following holds:

DSRnf, gbn
TD"max

c|Ca

(K
(s,u,m,t) DSRnf, gcTD), (16)

where tan(t)"b/a and SRnf, gcT"a#ib.

2.2. MP denoising

In this section we follow [13]. Let f be a vector in
a "nite-dimensional Hilbert space H. Let us denote

j
n
(Rnf )"

DSRnf, gbn
TD

DDRnf DD
. (17)

Note that j
n
(h) only depends upon the position of

h/DDhDD on the unit sphere of the space H. Let= be
a discrete Gaussian white noise. For any n*0, the
average value of j

n
(Rn=) measured with a uniform

probability distribution over the unit sphere, is
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equal to the expected value E(j
n
(Rn=)). Indeed,

after normalization, the realizations of a discrete
Gaussian white noise have a uniform probability
distribution over the unit sphere of H. We de"ne
the coherent structures of a signal f as the "rst
m vectors (gbn

)
0xn:m

that have a higher than aver-
age correlation with Rnf. In other words, f has
m coherent structures if and only if for 0)n(m

j
n
(Rnf )'E(j

n
(Rn=)) (18)

and

j
m
(Rmf ))E(j

m
(Rm=)). (19)

Empirical evidence that this is a well-de"ned rule
(i.e. that (19) actually holds for a "nite m) is given in
[6]. To summarize: MP denoising is performed by
stopping the algorithm when the correlations be-
tween the residuals and dictionary elements are
comparable to the average noise correlations.

The problem of optimally stopping the algorithm
is fundamental. The above rule is an extrapolation
of coherent basis thresholding on orthonormal
basis [14, p. 465] to general dictionaries. This stop-
ping rule is useful in practical situations but it is not
optimal. At present, to the best of our knowledge,
there are no results in the theory of adaptive repres-
entations that can be used to support a better
choice of stopping rule (or choice of thresholding
in other adaptive algorithms). Our probabilistic
version of the MP uses a probabilistic generaliz-
ation of the above rule and will be discussed in
Section 3.

3. Probabilistic MP denoising

In this section a probabilistic extension of MP is
introduced. Notation and de"nitions are taken
from Section 2.1. The goal is to randomize the
parameters b in order to have a probabilistic exten-
sion of the notion of coherence introduced in Sec-
tion 2.2. This is achieved by means of the notion of
probabilistic coherent structure (28). The fact that
MP is a recursive algorithm is re#ected by de"ning
a measure in an in"nite product space through
conditional probabilities. In practice, the number of
components is "nite due to the presence of a stop-
ping time.

3.1. Main dexnitions

For technical reasons we consider the compo-
nents of the c parameters to be limited to bounded
intervals of the real line and the space H will be
"nite dimensional . We denote these intervals by I

i
,

i"1,2,3, and I"I
1
]I

2
]I

3
. Explicitly the inter-

vals are I
1
"[d, b!a], I

2
"[a, b], I

3
"[0, c],

where a(b are real numbers and d and c are
positive real numbers. In applications d will be the
smallest resolution in scale, [a, b] will be the sup-
port of the sampled signal and c the maximum
expected frequency. Given that the number of co-
herent components in one expansion is unbounded,
the correct space for our approach is IN. Hence
a point x3IN is a vector of parameters given by

x"(c
0
,c
1
,2). (20)

For consistency with the notation of Appendix
B we set x

0
"c

0
, x

1
"c

1
, etc. For a given f3H we

next de"ne a probability measure on IN. The con-
struction of this measure relies on the general con-
struction of measures on in"nite product spaces [3,
p. 108] by means of conditional densities which we
will assume factorize as the product of two non-
negative functions

p
n
(x

n
Dx

0
,2, x

n~1
, f )

Jl
n
(x

n
Dx

0
,2,x

n~1
, f )n(x

n
Dx

0
,2, x

n~1
), (21)

where the constant of proportionality is in general
a function of f,x

0
,2,x

n~1
. For clarity of exposi-

tion we present the construction of p
n
in two stages.

Stage I (Construction of n): We introduce a distri-
bution n(x

n
Dx

0
,2,x

n~1
) on the set I. De"ne

n(x
n
Dx

0
,2,x

n~1
)"n(x

n
)"n

s
(s
n
)n

u
(u

n
Ds
n
)nm(mn

Ds
n
),

(22)

where n
s
(s
n
) is the uniform distribution on

[d,(b!a)], n
u
(u

n
Ds
n
) is the uniform distribution on

the discrete set Ma, a#s
n
/2,2, a#Ks

n
/2N with

K"x(b!a) 2/s
n
y and nm(mn Dsn ) is the uniform dis-

tribution on the discrete set M0, n/s
n
, 2n/s

n
,2,

Jn/s
n
N where J"x2s

n
/dy . This distribution is

clearly motivated by the "nite subdictionary de-
scribed in Section 2.1. Once the scale s is sampled
we have a uniform distribution over the discrete
grid. Without loss of generality, we consider the
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Fig. 1. Densities of >(c), >
w
(c), and >

0
(c)"S f

3,1
, g

(c,()T/DD f
3,1

DD.

density n(x
n
) to be properly normalized and will

also use n to denote the induced measure on I. We
use the label c when referring to a generic coordi-
nate x

n
3I.

Stage II (Construction of l
n
): Let w3H be

a sample from (discrete) Gaussian white noise and
de"ne the random variables on the probability
space (I,n)

>
w
(c)"

DSw, g
(c,()TD

DDwDD
(23)

and

>(c)"EA
DSw, g

(c,()TD
DDwDD B, (24)

where the expectation is taken with respect to the
underlying measure of the white noise process.
Thus, the idea is to study the probability distribu-
tion of inner products between Gaussian white
noise and the dictionary elements. Similarly, given
coordinates x

0
,2, x

n~1
, de"ne the following

random variables on (I,n) for the signal f and its
residuals Rnf:

>
n
(c)"

DSRnf, g
(c,()TD

DDRnf DD
. (25)

In Fig. 1 we plotted the densities of >, >
w

and
>

0
for a given signal f. These de"nitions provide

the concepts to decide whether the dictionary can
be used to denoise the given signal. We want to
isolate a subset of I where the corresponding
Gabor functions have high probability of correlat-
ing well with the function and low probability of
correlating well with the noise. To achieve this
de"ne

H(s)"(n(McD>
0
(c)*sN)!n(McD>(c)*sN))

and the coherence threshold parameter o by

o"maxAargAmax
s|(0,1)

H(s)BB. (26)

If such a o does not exist, we consider this fact an
indication that the dictionary is not well suited to
denoise the given signal. It is easy to see that the
possible values of (arg(max

s|(0,1)
H(s))) are given by

points of intersection of the densities of > and >
0
.

This value is not enough to be able to distinguish
signal from noise with high probability. To see this
we introduce the notation

r
n
(o,d)"

n(Mc D>(c)3[o,o#d]N)
n(Mc D>

n
(c)3[o,o#d]N)

. (27)
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Fig. 2. Densities of >(c), >
0
(c)"S f

3,3
, g

(c,()T/DD f
3,3

DD, and o and q.

The ratio r
0
(o,d) can be close to one for some d'0.

This is the case in Fig. 2 where the densities of
> and >

0
(>

0
computed with an example signal

from Section 4.4) are displayed. A con"dence level
g3[0,1] has to be introduced to guarantee that
r
0

remains small. Given g, de"ne the noise threshold
parameter q3[o,1] as the smallest number such
that r

0
(q,d))g for all d'0. Both o and q are

displayed in Fig. 2 for g"0.25. A description of
how to compute this value of g is postponed until
Section 4.4. We remark that when the signal to
noise ratio is large, q is close to o.

For a given residual Rnf, probabilistic coherent
structure is then given by those labels c that
satisfy

DSRnf, g
(c,()TD

DDRnf DD
*q. (28)

Inequality (28) suggests the following de"nition for
l
n
(x

n
Dx

0
,2, x

n~1
, f ). Let

l
n
(x

n
Dx

0
,2, x

n~1
, f )"

DSRnf, g
(xn ,(n )

TD sMYnwqN(xn
)

DDRnf DD
,

(29)

where s
A

is the characteristic function of the set A.

Having completed the construction of l
n
, com-

bining Eqs. (29), (22) and (21) we have constructed
a density p

n
(x

n
Dx

0
,2,x

n
, f ) (up to a constant)

which puts more weight on values of x
n

which
correspond to large inner products.

The densities p
n

de"ne a probability measure
k on IN; the probability space (X,k) mentioned in
the introduction is then (IN,k). The new random
variables to be introduced below are de"ned on this
probability space. Our goal is to compute expected
values of certain functionals de"ned on IN which
will depend on a stopping time ¹ also de"ned on
IN, so ¹(x) will be a nonnegative integer when
x3IN. Given a stopping time ¹(x) (to be de"ned
shortly) de"ne the coherent component functionals
C

t
: IN

PR, (t3Mt
i
N), by

C
t
(x)"

T(x)
+
k/0

SRkf, g
(xk ,(k )

Tg
(xk ,(k )

(t), (30)

where

Rn`1f"f!
n
+
k/0

SRkf, g
(xk ,(k )

T g
(xk ,(k )

(31)

and /
k

satis"es tan/
k
"b/a with SRkf, g

xk
T"

a#ib; hence /
k

becomes a function of f and

S.E. Ferrando et al. / Signal Processing 80 (2000) 2099}2120 2107



x
0
,2, x

k
. The pointwise estimates are given by

expected values

Ek(Ct
)"PCt

(x) dk(x). (32)

The vector approximation is denoted by Ek(C).
We now de"ne the stopping time ¹ : IN

PN. To
simplify, we use the notation introduced in (27),
de"ne

¹(x)"infMn D r
n`1

(q,1)*1N. (33)

In other words, ¹(x) is the smallest integer such
that the probability of "nding probabilistic coher-
ent structures at iteration ¹(x)#1 is smaller than
the probability of "nding noise.

We have found in our numerical experiments
that this stopping time is integrable, hence "nite.
This is the natural stopping rule given the above
formalism. For completeness, we argue now that
the rule can be easily augmented to make it "nite by
simple inspection. To see this, note that without
loss of generality we can take q'0 and a"q in
Eq. (4), it follows from the de"nition of l

n
in (29)

that

DSRnf, g
(xn ,(n )

TD*DDRnf DD q*a sup
c|C

DSRnf, gc,(TD. (34)

Then Theorem 1 is applicable, in particular Eq. (9)
holds. From this equation it follows that
n(McD>

n
(c)3[q,1]N) is zero for some integer n or

DDRnf DD converges to zero. Hence we can
augment rule (34) by requiring to stop as soon as
DDRnf DD2 is smaller than the variance of the noise
process.

The above framework will be called probabilistic
matching pursuit (PMP).

3.2. Extensions and remarks

Next, we comment brie#y on the formalism just
introduced. Speci"c instances of the formal inte-
grals appearing in (32) will be computed by produ-
cing samples from k and then computing an
ergodic average. Sample points xk3IN are gener-
ated by sampling each component xk

n
given the

previous components xk
0
,2,xk

n~1
. From (30) it fol-

lows that only ¹(xk) components are needed. To
sample from the densities given by (21) we have

used the rejection method (Appendix A). It is essen-
tial to use a sampling method that does not require
knowledge of the value of the normalization con-
stants involved.

Given prior information on the frequency and/or
spatial content of the given signal it is possible to
modify the density n( ) ). It is important to notice
that the PMP framework contains (formally) the
MP algorithm as a special case. To see this let n be
a uniform prior over the whole dictionary or "nite
sub-dictionary and let l

n
(x

n
) be a Dirac density

supported in the label that gives the maximum
inner product.

It can be seen that even when the signal-to-noise
ratio is relatively high, the MP stopping rule may
be far from optimal. In practical terms, this means
that the MP algorithm may over"t the underlying
signal. The process of computing averages has the
positive e!ect of suppressing undesirable compo-
nents which were not detected by the stopping rule.
At the same time, noise recognition (the stopping
rule) becomes a more pressing issue in our ap-
proach given that we have to stop the iterations
many times.

4. Performance analysis of PMP

We next describe in detail the basic algorithms
underlying a software implementation of PMP. We
also analyze the expected running time. Then with
simple examples we analyze why and when PMP
improves the estimates given by MP. Numerical
examples of typical denoising tasks are also pro-
vided.

4.1. Description of the algorithm

In this section we provide details on computing
the parameters that specify a model of PMP.
Our implementation of MP di!ers from that of
[13] in that we do not periodize the functions
nor do we add the Dirac and Fourier dictionaries.
Moreover, the implementation described in [13]
maximizes only over DSRnf, gcTD in (16) and
then performs a local optimization in order to
"nd /.
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Our estimates are given by

Ek(Cti
)"PCti

(x) dk(x)

"P
T(x)
+
k/0

SRkf, g
xk

Tg
xk

(t
i
) dk(x)

" lim
K?=

1

K

K~1
+
k/0

C
ti
(xk). (35)

The points xk are sampled from the joint densities

p(x
0
,2,x

n
D f )"

n
<
k/0

p
k
(x

k
Dx

0
,2,x

k~1
, f ). (36)

We need only sample the coordinates xk
0
,2,xk

T(xk)
for each xk. We do this by means of the conditional
distribution method in conjunction with the rejec-
tion method (see [8] and Appendix A). We say that
the kth iteration of PMP has ended when the coor-
dinates xk

0
,2,xk

T(xk)
of the point xk3IN have been

sampled.
To use the rejection algorithm we need to bound

p
n

from above with a density from which we can
sample. Let d

n
be the constant of normalization for

p
n
. We have the obvious inequality

p
n
(x

n
)"d

n
l
n
(x

n
)n(x

n
))d

n
n(x

n
), (37)

so d
n
*1. We are now in a position to describe the

sampling of the coordinate xk
n

given the previous
xk
0
,2, xk

n~1
coordinates. We sample xk

n
by samp-

ling x@"(s@, u@,m@) from n(x) and then we accept
c@"(s@, u@,m@) with probability

c
A
"

DSRnf, g
(s{,u{,m{,({)TDsMYnwqN(x@)

DDRnf DD
. (38)

We continue until acceptance of a proposed coordi-
nate xk

n
"c@ and end the kth iteration if ¹(xk)"n,

where ¹(xk) is given by (33). Otherwise we repeat
the above procedure to sample xk

n`1
.

4.2. Expected running time of the algorithm

Let K be the number of proposals before x
n

is
accepted. It follows from [8, p. 42] that E(K)"d

n
.

Given that the number of computations for each
proposed component is bounded by N, an iteration
of PMP for ¹(x)"P components requires a num-
ber of operations of the order O(+P

i/0
d
n
N) (mak-

ing use of the fast expansions of Appendix C). It is
easy to check that

d
n
)

1

qn(>*q)
. (39)

So, in fact, we can see that if E(¹) denotes the
expected stopping time, one iteration of PMP takes
of the order O(NE(¹)) operations.

The closer the index n of x
n
is to P the slower the

acceptance step becomes because d
n

becomes lar-
ger. This fact is independent of N and can be used
to improve the stopping rule in practical situations.
As described in Appendix B, many of the computa-
tions performed in previous iterations can be
reused in later iterations of PMP. Moreover, there
are several methods to accelerate the rejection algo-
rithm, some of which are mentioned in Appendix A.

4.3. Convexity improvements of PMP

In this section we show with simple examples the
main reason for the improvement in the estimates
given by PMP. This remark also indicates under
which conditions one can expect an improvement
of PMP relative to MP. To better illustrate the
phenomena we consider the functions f

i
i"1,2,3

de"ned in the next section. These functions have no
Gaussian noise added. This fact does not prevent
the application of the PMP algorithm given that we
can take the variance of the Gaussian noise, which
is needed to apply the formalism, as small as we
want because the distribution of > in (24) is inde-
pendent of the variance. The letter f will stand for
any of the three functions f

i
. Given xk, sampled

from k, we denote with f P(xk) the approximation to
f given by the k5) iteration of PMP. We perform the
following numerical experiment: given e'0 we will
stop the approximation of iteration k when

RMSE( f P(xk))"
DD f!f P(xk)DD

DD f DD
)e. (40)

Therefore, we have exchanged (33) with the stop-
ping rule (40). Denote the approximation of PMP
by f P": f P(x) dk(x). Similarly, let fM denote the
approximation of MP obtained by the same stop-
ping rule. In general, if e is small, we have
(DD f!f P(xk)DD)/DD f DD+RMSE( f M)"(DD f!f MDD)/DD f DD
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Table 1
Jensen's inequality with stopping at RMSE"0.2

Signal PMP RMSE Avg. RMSE MP RMSE

f
1

0.109 0.192 0.197
f
2

0.052 0.190 0.181
f
3

0.059 0.190 0.169

Table 2
Jensen's inequality with stopping at RMSE"0.4

Signal PMP RMSE Ave. RMSE MP RMSE

f
1

0.235 0.378 0.358
f
2

0.136 0.375 0.281
f
3

0.164 0.379 0.339

for each xk. As mentioned in the introduction from
Jensen's inequality we have

DD f!f PDD
DD f DD

)P
DD f!f P(x)DD

DD f DD
dk(x) (41)

and the right-hand side is approximately equal to
(DD f!fMDD)/DD f DD. Tables 1 and 2 report the values of
the left-hand side (see the column titled `PMP
RMSEa) and right-hand side (see the column titled
`Avg RMSEa) of (41). We also report the RMSE of
MP (see the column titled `MP RMSEa). These
values give an idea of the percentage of improve-
ment in the RMSE to be expected from PMP and,
most importantly, it indicates that PMP can gener-
ate diwerent expansions that complement each
other to reinforce a better reconstruction.

Now consider a noisy function f"z#pw. When
can we expect the above percentage improvements
to be re#ected in the denoising task? To answer this
question consider the situation where MP delivers
optimal denoised approximations. In particular,
this is the case when z is an element in the diction-
ary or a linear expansion of dictionary elements
z"+b|Bcbgb with Sgb , gb{T+0, b, b@3B. In this
situation one expects that (DD f!f P(x)DD)/DD f DD'
(DD f!fMDD)/DD f DD for most x in the support of k and
hence the PMP denoised approximation may not
o!er an improvement. A numerical example is pre-
sented in Section 4.4. Redundant dictionaries are
not orthogonal and the ideal z considered above
will not be typical in practice. In general, we have
observed that PMP improves over MP when
(DD f!f P(x)DD)/DD f DD+(DD f!f MDD)/DD f DD for most x in the
support of k. The simplest example of this situation
is when z"gb1

#gb2
and DSgb1

, gb2
TD'0. Let us

introduce the following convenient notation for the
residuals R1

i
f"f!Sf, gbi

Tgbi
. MP can give one of

the following two denoised approximations
fP
1
"Sf, gb1

Tgb1
#SR1

1
f, gb2

Tgb2
or fP

2
"Sf, gb2

Tgb2

#SR1
2
f, gb1

Tgb1
. If Sf, gb1

T+Sf, gb2
T both expan-

sions a priori o!er the same quality of reconstruc-
tion, and both will be included in the PMP
reconstruction but only one in the MP reconstruc-
tion. A numerical result for an instance of this
situation is reported in Section 4.4. Notice that
these multiple expansions will not be available in
a dictionary consisting of a single orthonormal
basis.

4.4. Simulated examples

In our numerical experiments we set a"0,
d"1, b"127 and c"2n, i.e., we consider signals
sampled uniformly one unit apart in the interval
[0,127]. The expectation in (24) was computed with
30 averages of samples of Gaussian white noise w.
The value of the parameter g"0.25 (introduced in
Section 3.1) was obtained by studying the e!ect on
the value of o when changing > by >

w
(for many

samples w) in Eq. (26). The underlying functions
which we study in the simulated examples are

f
1
(t)"G

t2, t3[0, b/3),

t2(sin(t/12)#sin(t/4), t3[b/3,2b/3),

!t2#100t, t3[2b/3, b],

(42)

f
2
(t)"g

(30,52,n@5,0)(t)#g
(60,30,n@15,0)(t)

#g
(50,90,n@25,0)(t), (43)

f
3
(t)"sin(t/2)#sin(t/8). (44)

The signals f
i,j

associated with f
i
were obtained by

adding Gaussian white noise with variance such
that the signal to noise ratio is l

j
, j"1,2,4; see

Table 3. The graphs of some of the functions f
i,j

are

2110 S.E. Ferrando et al. / Signal Processing 80 (2000) 2099}2120



Table 3
Signal to noise ratio for noise levels j"1,2,4

NL j 1 2 3 4
SNR l

j
5 2 1.25 1

Fig. 4. f
1

and f
1,4

.

Fig. 3. f
1

and f
1,2

.

given in Figs. 3}8; the original signals f
i
are shown

by the solid line in each of the "gures while the
signals with added noise are shown by the dotted
lines. The density of >

0
(c)"S f

1,3
, g

(c,()T/DD f
3,1

DD is
plotted alongside the density of >(c) and >

w
(c) in
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Fig. 5. f
2

and f
2,2

.

Fig. 6. f
2

and f
2,4

.

Fig. 1. (see Eqs. (24) and (23)). The values of o are
obtained as crossing points in these type of graphs.
It turns out that the values of q are similar in each
of our examples; see Table 4 below.

The reconstructed functions will be denoted by
f
i,j

P and f
i,j

M for methods PMP and M, respective-
ly. The relative mean squared error (RMSE) of the
reconstruction of signal f

i
at noise level j by method
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Fig. 7. f
3

and f
3,2

.

Fig. 8. f
3

and f
3,4

.

X is de"ned by

RMSE( f
i,j

X)"
DD f

i
!f

i,j
XDD

DD f
i
DD

, (45)

where the norms are induced by the inner products.
A detailed list of the RMSEs in each of the cases is
given in Table 5.
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Table 4
q for various signals

Noise level

Signal 0 1 2 3 4

f
1

0.31 0.31 0.31 0.32 0.32
f
2

0.31 0.28 0.30 0.27 0.26
f
3

0.28 0.29 0.29 0.27 0.25

Fig. 9. f
3

and f
3,4

M: MP with automatic stopping rule.

Table 5
Relative mean squared errors in all cases

Signal Method P Method M

f
1,1

0.231 0.314
f
1,2

0.320 0.444
f
1,3

0.366 0.542
f
1,4

0.462 0.629

f
2,1

0.215 0.347
f
2,2

0.343 0.438
f
2,3

0.381 0.522
f
2,4

0.434 0.567

f
3,1

0.245 0.312
f
3,2

0.350 0.437
f
3,3

0.408 0.504
f
3,4

0.478 0.660

It is important to note that the reported relative
mean squared errors for the MP algorithm are
hand-picked to be the best possible (for our imple-
mentation). That is, we have stopped the MP ex-
pansions when it gives the best possible expansion.
This is done to better highlight the improvements
of PMP without having to worry about problems
in the stopping rule of MP.

If, more realistically, MP is stopped automati-
cally as suggested in Section 2.2, then the improve-
ments of PMP over MP are more dramatic. For
example, Fig. 9 illustrates the reconstruction of
f
3,5

by matching pursuit, while Fig. 10 shows the
reconstruction by method A with our automatic
stopping rule. A detailed picture of the progress of

MP in this case is given in Table 6. An improved
version of the automatic stopping rule described in
Section 2.2 stops MP at an RMSE of 0.746 which is
clearly not the best. The automatic stopping rule
for method PMP gives an RMSE of 0.477.

We now give an example of the situation de-
scribed at the end of Section 4.3. Consider the
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Fig. 10. f
3

and f P
3,4

.

Table 6
MP Iterations for f

3,4

Iteration IP MP IP noise RMSE Comment

1 0.455 0.320 0.823
2 0.427 0.313 0.672
3 0.347 0.311 0.609 BEST
4 0.358 0.300 0.704
5 0.333 0.274 0.714
6 0.340 0.270 0.745 STOP
7 0.293 0.277 0.793

functions

f
4
(t)"g

(64,64,n@8,0)(t)#g
(16,120,n@8,n)(t) (46)

f
5
(t)"g

(64,64,n@8,0)(t)#g
(16,56,n@8,n)(t). (47)

The dictionary functions that make up f
4

are nearly
orthogonal. One of these functions is translated
and used to de"ne f

5
, so the quasi orthogonality is

then lost and multiple expansions, of a priori good
reconstruction quality, become available. The
graphs of f

4
and f

5
and its noisy versions are shown

in Figs. 11 and 12. The RMSE obtained from MP
for the noisy functions f

4,1
and f

5,1
are 0.089 and

0.231, respectively. The RMSE obtained from PMP
are 0.170 and 0.198, respectively.

5. Conclusion

We have introduced an extension of the match-
ing pursuit algorithm which randomly generates
multiple expansions of a signal with respect to
a redundant dictionary. Probability is used as
a technique to identify a subset of the dictionary
vectors which potentially o!er a good reconstruc-
tion of the given signal.

Probabilistic matching pursuit really is an exten-
sion of MP in the sense that MP is a special case of
PMP. We have selected a simple method of decid-
ing how to choose the next term of an expansion by
placing a uniform probability distribution on dic-
tionary elements that match the signal above a cer-
tain threshold value. With that simple method, we
have found that each random expansion obtained
has more components than an MP expansion but
the average time for the computation of an expan-
sion is smaller.

Random selection of expansions also provides
us with the opportunity of improving results by
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Fig. 11. f
4

and f
4,2

.

Fig. 12. f
5

and f
5,2

.

averaging. Some conditions under which this is
actually the case are discussed and studied numer-
ically. We conclude that our particular implemen-
tation of PMP is better than MP when MP is not
optimal, which is generally the case when a signal

does not have an e$cient representation in terms of
a small number of dictionary elements.

In summary, adaptive signal analysis o!ers a col-
lection of good quality expansions of a signal, and
we show that better estimates are obtained under
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certain conditions by averaging over a reasonable
random selection of those expansions.

5.1. Future prospects

We suspect that better selection methods can
give clear improvements over MP under all condi-
tions. In particular, we could make better use of
a priori information obtained from initial analysis
of the signal, for example to always select an over-
whelmingly good match from the dictionary, which
would ensure that PMP outperforms MP in all
cases we have examined.

The PMP formalism introduced here gives
strong indication that it is worth studying the de-
generacy implicit in adaptive methods on redund-
ant dictionaries. In particular, the coherent subset
of vectors introduced in the paper can be studied by
means other than the densities introduced here. For
example, simulated annealing could be used to ex-
plore the region.

Appendix A. Rejection method

In our implementations we have used the rejec-
tion method [8, p. 42] to generate samples. Here we
brie#y describe the algorithm.

Suppose we are given densities f, g with asso-
ciated random variables X

f
, X

g
and a constant

d*1 such that

f (x))dg(x) (A.1)

for all x3Rd. Samples x
f

from X
f

can be obtained
as follows: sample, independently, x

g
from X

g
and

u from a random variable uniformly distributed on
[0,1]. Let x

f
"x

g
if

f (x
g
)

dg(x
g
)
*u

otherwise repeat the above. The sequence gener-
ated in this way are then independent samples from
X

f
. To connect this notation with that of (37) we

take p
n
"f, d

n
"d and n"g.

Unless sharp bounds for the densities are avail-
able, the method could be ine$cient. There are
methods of accelerating the algorithm; for instance

[20] proposes combining the usual rejection
method with the Metropolis algorithm. A simple
way to accelerate the rejection algorithm for our
model is to use an empirical (approximate) bound
for (DSRnf, gbTD)/DDRnf DD in combination with the
methods described in [20]. Faster dynamical samp-
ling methods, such us Markov chain Monte Carlo
[11,17], are available but are less reliable.

Appendix B. The Bernoulli shift

Next, we describe another method, based on the
Bernoulli shift, which can be used to reduce the
overall running time of the algorithm. The Be-
rnoulli shift enables one to make use of partial
computations when running the rejection algo-
rithm. Our discussion is applicable to models of
PMP which use the rejection method for sampling.
We begin by indicating why MP can be e$ciently
implemented [14, p. 415]. Given

Rn`1f"Rnf!SRnf, gbn
Tgbn

, (B.1)

the MP algorithm maximizes DSRn`1f, gbTD in
a sub-optimal way. From (16) and by unraveling
(B.1) we see that for doing this computation we
only need to compute Sf, gci T, c

i
3Ca and Sgbk

, gci T,
c
i
3Ca for k"0,2, n. These computations can be

arranged in a way that partial computations
(namely SRn`1f, gci T) can be reused. Details are
given in [13].

Eq. (B.1) can be used in the probabilistic setting
by keeping the values of S f, gbk

T and Sgbi
, gbj

T in
memory where the parameters c

p
"(s

p
, u

p
,m

p
) have

been sampled from n(c) given by (22). Below we
show how this idea can be formalized. We restrict
the presentation to our specialized setting; more
general and extensive discussions are given in [4,2].

Let (X,P) be a probability space and X : XPIN

be a stochastic process with coordinates (X
i
), i3N

where I"I
1
]2]I

3
, and the intervals I

i
were

introduced at the beginning of Section 3. We de-
note the law of X by k"P"X~1. We are interested
in evaluating integrals of functionals along paths of
his stochastic process, i.e., given a real valued func-
tional C on IN we want to evaluate

E(C)"PC(X(u)) dP(u). (B.2)
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We assume that C depends only on a "nite number
of components of X(u) for each u; actually, these
components are 0,2,¹(X(u)). ¹"X is a "nite stop-
ping time on X. At this point we indicate how
this notation relates to that of Section 3. The
space (X,P) is the (formal) probability space
underlying the sampling process by means of the
rejection method. The law of X, i.e., k"P"X~1,
corresponds to the measure on IN mentioned below
Eq. (21).

The process of producing uniformly distributed
random numbers and sampling with the rejection
algorithm is formalized as follows. There exists
a probability space (X@,dj), which in our applica-
tions will be [0,1]4 with the Lebesgue product
measure and Borel sets, and a stochastic process
<"(<

i
) with < : XPX@N. We assume that the co-

ordinates of < are random variables <
i
which are

independent and identically distributed with
measure dj"P"<~1

i
. The space X@N is considered

as a probability space with the product measure
djcN

"P"<~1. The following notation is used be-
low: <(u)"v"(v

0
, v

1
,2), where v

i
"([v]

1
,2,

[v]
4
)3[0,1]4 and X(u)"x"(x

0
, x

1
,2) where

x
i
3I. Finally, the sampling process (implicitly) de-
"nes a function F :X@NPIN

X"F(<) (B.3)

Eq. (B.3) amounts to a representation of X on
(X@N,djcN). It is this fact that allows the use of the
Bernoulli shift. The left shift is de"ned by Hv"z
for v, z3X@N and [z]

i
"[v]

i`1
. The left shift is an

ergodic transformation; this fact justi"es the re-
placement of integrals by limits below:

E(C)"PC(z) dk(z)"PC(X(u)) dP(u)

"PC(F(<(u) dP(u)"PC(F(v) djcN (v)

" lim
K?=

1

K

K~1
+
k/0

C(F(Hkv)). (B.4)

Therefore the computation of (B.4) amounts to
evaluating C at a point F(v)"x0"(x0

0
,2,

x0
T(x0)

,2) and its translates by the shift, i.e.,
xk"F(Hkv).

Now the key idea is that in order to compute

F(Hkv) we may reuse previously computed quantit-
ies which were needed to obtain xj, j"1,2, k!1.
For example, let us see how x0

0
is constructed. If

v
0
"([v

0
]
1
, [v

0
]
2
, [v

0
]
3
, [v

0
]
4
)3[0,1]4 (B.5)

are four random numbers and g
0

represents the
associated random Gabor function. Explicitly,
g
0
"gc0 , c

0
"(s

0
, u

0
,m

0
) and, as described below

(22) s
0
"([v

0
]
1
(b!a!d)), u

0
"(a#Ks

0
[v

0
]
2
/2),

m
0
"Jn[v

0
]
3
/s

0
, with K"x(b!a)2/s

0
y and

J"x2s
0
/dy . Then if DS f, g

0
TD/DD f DD*q and

DS f, g
0
TD

DDfDD
*[v

0
]
4

(B.6)

we let

x0
0
"(s

0
, u

0
,m

0
), (B.7)

otherwise we perform the same computations with

g
1
"gc1 . (B.8)

In general, there exists an integer k
0

such that

x0
0
"(s

k0
, u

k0
,m

k0
). (B.9)

Similar computations will give x0
1
,2,x0

T(x0)
for

a given stopping time ¹. While performing these
computations, the following numbers must be com-
puted:

S f, g
i
T Sg

i
, g

j
T for i, j"0,2, k

T(x1)
, i)j,

(B.10)

where in general k
T(x1)

A¹(x1). Regarding the gen-
eration of random numbers, we only need to gener-
ate k

T(x1)
#1 batches (of size four). Therefore

v"(v
0
,2, v

kT(x1)
,2), where the second set of dots

indicate that those coordinates have not yet been
generated. The next point, x1, is computed by using
Hv"(v

1
,2). The quantities in (B.10) are saved in

memory; we may have to generate v
n

for n'k
T(x0)

only if ¹(x1)'¹(x0). This scheme allows for a sys-
tematic reuse of partial computations involving ex-
pensive function evaluations.

Appendix C. Inner products of Gabor functions

In this appendix we consider the problem of
e$ciently evaluating inner products of Gabor
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Sg
0
, g

1
T"

21@2K
0
K

1
2Js

0
s
1

eC~AB
2A

n
d2AB

1@2
ReAe*((1`(0 )e(*AB`(m1`m0)@2)2@Ah

3A
n(!iAB!(m

1
#m

0
)/2)

idA
;
in

d2AB
#e*((1~(0)e(*AB`(m1~m0 )@2)2@Ah

3A
n(!iAB!(m

1
!m

0
)/2)

idA
;
in

d2ABB. (C.6)

functions. Two di!erent kinds of Gabor functions
are considered: real-valued functions which are
either continuous (de"ned on the real line) or dis-
crete (de"ned on the discrete subgroup dZ of the real
line). In the continuous case exact formulas in terms
of elementary functions are possible, while in the
discrete case only approximations are possible, in
which case we "nd e$cient series approximations.

C.1. Real Gabor functions on R

Real Gabor functions on R are given by Eq. (12),
normalization constants are given by

K
(s,u,m,()"21@2[cos(2(mu#/))e~(sm)2@2n#1]~1@2.

(C.1)

De"ne the following notation:

A"nA
1

s2
0

#

1

s2
1
B, B"

n
AA

u
0

s2
0

#

u
1

s2
1
B,

C"!nA
u2
0

s2
0

#

u2
1

s2
1
B#AB2. (C.2)

The inner product of two such functions is

Sg
0
, g

1
T"

21@2K
0
K

1
Js

0
s
1
A

n
4AB

1@2
eC[cos((m

0
#m

1
)B

#(/
0
#/

1
))e~(m0`m1 )2@4A# cos((m

0
!m

1
)B

#(/
0
!/

1
))e~(m0~m1 )2@4A], (C.3)

where A, B,C are again given by (C.2). The above
formulas may be used as approximations in the
discrete case by considering the discrete sums as the
Riemann sum approximations for corresponding
integrals; however, more accurate evaluations
methods using theta functions are available, and
are explored in the following section.

C.2. Real Gabor functions on dZ

These functions are just samples of the real con-
tinuous Gabor functions at the points dZ:

g
(s,u,m,()(n)"

21@4K
(s,u,m,()

Js
e~n(dn~u)2@s2cos(mdn#/),

s3R`, u,m3R,/3[0,2n). (C.4)

The above expression may be written in terms of
the theta function [21, p. 464]

h
3
(z;t)"

=
+

n/~=

en*n2te2*nz. (C.5)

The inner product of two such Gabor functions is

The series for the latter theta function converges
more rapidly the smaller the value of d2A. This
series may be evaluated to accuracy e in time

O(Jlog e). For many cases, only the leading term
of the series for the theta function is required, in
which case the formulas in the discrete case are
equal to the formulas in the continuous case. As the
variance of the Gaussian envelope of the Gabor
function tends to the mesh width d, more terms of
the theta series are required for accurate approxi-
mation, but this still allows us (for s bounded away
from zero and for "xed d) to evaluate inner prod-
ucts of Gabor functions in constant time.
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