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ABSTRACT
In this paper we study an n-dimensional generalization of time-
fractional diffusion-wave equation, where the Laplacian operator is
replaced by the ultra-hyperbolic operator and the time-fractional
derivative is taken in the Hilfer sense. The analytical solution is
obtained in terms of the Fox’s H-function, for which the inverse
Fourier transform of a Mittag–Leffler-type function that contains in
its argument a positive-definite quadratic form is calculated.
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1. Introduction

The diffusion-wave equation has been studied by many authors in the fractional cal-
culus context since it was observed that it could interpolate between heat and waves
diffusion processes. Pioneering work on this type of equation may be mentioned:
Fujita,[1] Nigmatullin,[2] Wyss,[3] Schnaider and Wyss [4] and Mainardi.[5] Fundamen-
tally, according author’s knowledge, the generalizations of the heat and wave equations
have been studied in which the time derivative has been replaced by a fractional deriva-
tive of real order following Riemann–Liouville definitions and Caputo definition,[6,7] or
the Hilfer definition, which contains as a particular case both.[8,9] Also one-dimensional
generalizations have been studied in which the ordinary derivative in the space variable
has been replaced by the Riesz derivative (see, e.g. [10]). The n-dimensional generaliza-
tions have been proposed considering fractional power of the Laplace operator on the
space variable.[11] Other n-dimensional generalization, where the Laplacian operator was
replaced by another of elliptic type,[12,13] were also proposed.

On the other hand, in 2003, Nonlaopon and Kananthai [14] proposed and studied an n-
dimensional generalization (but not in the fractional calculus context) of the heat equation
in which the Laplacian operator was replaced by the ultra-hyperbolic operator. Following
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2 G. A. DORREGO

the same idea, Sansanit andKananthai [15] proposed a generalization of thewave equation.
Motivated by worksmentioned in the previous paragraphs themain objective of this paper
is to propose and to solve a Cauchy problem, that contains, as particular case, the equations
studied in [14,15]. For this purpose, we replace the ordinary time derivative by a fractional
derivative of order α (1 < α < 2) and type r (0 ≤ r ≤ 1) in the Hilfer sense and maintain
the ultra-hyperbolic operator in the space variable. The objective of using theHilfer deriva-
tive is to include two Cauchy problems that could arise separately and where the ordinary
time derivative is replaced by Riemann–Liouville and by Caputo fractional derivatives.
To solve the equation, we follow the technique developed by Yakubovich and Luchko , [16]
which consists in applying Laplace and Fourier transform together with the Mellin trans-
form. This technique has proven a powerful tool for solving fractional partial differential
equations, as seen for example in [17–20].

The paper is organized as follows. Section 2 provides the definitions of differential and
integral operators of non-integer order, Mittag–Leffler function, the Laplace transform,
the Fourier transform and Mellin transform. In Section 3 the diffusion-wave equation is
solved and inverse Fourier transform of a Mittag–Leffler-type function which contains in
its argument a positive-definite quadratic form is calculated. Then several special cases are
analysed.

2. Preliminary results

2.1. Mittag–Leffler function

It is known the distinguished role played by theMittag–Leffler function in solving differen-
tial equations of non-integer order. This function is that a generalization of the exponential
function was introduced by the Swedish Mathematician G. Mittag–Leffler in 1903 and is
given by

Eα(z) =
∞∑
n=0

zn

�(αn + 1)
, α, z ∈ C, �(α) > 0. (2.1)

In 1905, Wiman studied the following generalization to two parameters of (2.1) :

Eα,β(z) =
∞∑
n=0

zn

�(αn + β)
, α,β , z ∈ C, �(α) > 0, �(β) > 0. (2.2)

TheMittag–Leffler function has been studied bymany authors who have proposed and
studied various generalizations and applications. A very interesting work that meets many
results about this function is due to Haubold et al .[21]

2.2. Fox’s H-function.

The Fox’s H-function is another of the so-called special functions of the fractional calculus
and contains as particular case the Mittag–Leffler function. The H-function was intro-
duced by Fox [22] as generalizations of the Meijer function. Here we adopt the definition
and properties mentioned in [23] with minimal modifications regarding notation.
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 3

The H-function is defined by means of a Mellin–Barnes-type integral in the following
manner :

Hm,n
p,q

(
z

∣∣∣∣∣(a1,A1), . . . , (ap,Ap)

(b1,B1), . . . , (bq,Bq)

)
= Hm,n

p,q

(
z
∣∣∣∣(ap,Ap)

(bq,Bq)

)
= 1

2π i

∫
C

�(s)z−s ds, (2.3)

where the integrand is

�(s) =
�m

j=1�(bj + Bjs)�n
k=1�(1 − ak − Aks)

�
p
k=n+1�(ak + Aks)�

q
j=m+1�(1 − bj − Bjs)

, (2.4)

where i = (−1)1/2, z �= 0, and z−s = exp[−s{ln |z| + i arg z}], where ln |z| represents the
natural logarithm of |z| and arg z is not necessarily the principal argument.

In (2.4), an empty product is always interpreted as unity; m, n, p, q ∈ N0, with
0 ≤ n ≤ p, 1 ≤ m ≤ q, Ak,Bj ∈ R+, ak, bj ∈ R or C, k = 1, . . . , p; j = 1, . . . , q.

The contour C starting at the point p − i∞ and going to p + i∞ where p ∈ R such that
all the poles of �(bj + Bjs) (j = 1, . . . ,m), are separated from those of �(1 − ak − Aks)
(k = 1, . . . , n).

The integral is convergent in any of the following cases :

(1) C > 0, | arg z| < 1
2πC and z �= 0;

(2) C = 0, pD + �(E) < −1, arg z = 0 and z �= 0

where

C =
n∑
j=1

Aj −
p∑

j=n+1
Aj +

m∑
j=1

Bj −
q∑

j=m+1
Bj

D =
q∑

j=1
Bj −

p∑
j=1

Aj

and

E =
q∑

j=1
bj −

p∑
j=1

aj + p − q
2

.

A more detailed study about the H-function can be seen at [23]. We only mentioned some
properties that will be used in this paper.

2.2.1. Properties of H-function.
•

Hm,n
p,q

(
z
∣∣∣∣(ap,Ap)

(bq,Bq)

)
= Hn,m

q,p

(
1
z

∣∣∣∣(1 − bq,Bq)
(1 − ap,Ap)

)
, (2.5)

D
ow

nl
oa

de
d 

by
 [

G
us

ta
vo

 D
or

re
go

] 
at

 0
2:

36
 0

8 
Fe

br
ua

ry
 2

01
6 



4 G. A. DORREGO

•

Hm,n
p,q

(
z
∣∣∣∣(ap,Ap)

(bq,Bq)

)
= cHm,n

p,q

(
zc

∣∣∣∣(ap, cAp)

(bq, cBq)

)
, c ∈ R

+, (2.6)

•

zρHm,n
p,q

(
z
∣∣∣∣(ap,Ap)

(bq,Bq)

)
= Hm,n

p,q

(
z
∣∣∣∣(ap + ρAp,Ap)

(bq + ρBq,Bq)

)
, ρ ∈ C. (2.7)

2.3. Brief review of fractional calculus

In this section, we make a brief review of definitions about fractional calculus and integral
transforms to be used in this work.

Definition 2.1 (Riemann–Liouville integral): Let f ∈ L1loc[a, b] where
−∞ ≤ a < t < b ≤ ∞. The Riemann–Liouville integral of order ν is defined as

Iν f (t) := 1
�(ν)

∫ t

a
(t − τ)ν−1f (τ ) dτ = (f ∗ jν)(t), ν > 0. (2.8)

where jν(t) = tν/�(ν), t > 0.
When ν = 0, is defined

I0f (t) = f (t)

Definition 2.2 (Riemann–Liouville derivative): Let ν ∈ R such that n − 1 < ν ≤ n,
n ∈ N; f ∈ L1[a, b] and f ∗ jn−ν ∈ Wn,1[a, b]; where −∞ ≤ a < t < b ≤ ∞ and

Wn,1[a, b] =
{
f ∈ L1[a, b] :

dn

dtn
∈ L1[a, b]

}
.

The Riemann–Liouville derivative of order ν is defined by

R−LDν f (t) =

⎧⎪⎪⎨⎪⎪⎩
dn

dtn
In−ν f (t), if n − 1 < ν < n;

dn

dtn
f (t), if ν = n.

(2.9)

Definition 2.3 (Caputo derivative): Let ν ∈ R such that n − 1 < ν ≤ n, n ∈ N, and
f ∈ ACn[a, b]. The Caputo derivative of order ν is given by

CDν f (t) =

⎧⎪⎪⎨⎪⎪⎩
In−ν dn

dtn
f (t), if n − 1 < ν < n;

dn

dtn
f (t), if ν = n.

(2.10)

Where ACn[a, b] = {f : [a, b] → R : dn−1

dxn−1 f (x) ∈ AC[a, b]}, and AC[a, b] is the space of
absolutely continuous functions.
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 5

Definition 2.4 (Hilfer derivative): Letα ∈ R such that n − 1 < α ≤ n, n ∈ N, andβ ∈ R

such that 0 ≤ β ≤ 1; f ∈ L1[a, b] and f ∗ j(1−β)(n−α) ∈ AC1[a, b] where
−∞ ≤ a < t < b ≤ ∞. The Hilfer derivative of order α and type β of f is given by

Dα,β f (t) =
(
Iβ(n−α) d

n

dtn
(I(1−β)(n−α)f )

)
(t). (2.11)

Remark 1: In this paper we take a=0 for lower limit at the Riemann–Liouville fractional
integral (2.8).

Remark 2: Wenote that Definition 2.4 contains as particular cases Definitions 2.2 and 2.3.
Indeed:

• If β = 0, then

Dα,0f (t) =
(
dn

dtn
(In−αf )

)
(t) = R−LDαf (t). (2.12)

• If β = 1, then

Dα,1f (t) =
(
In−α dn

dtn
f
)

(t) = CDαf (t). (2.13)

• If α = n, then

Dn,β f (t) = dn

dtn
f (t). (2.14)

Definition 2.5 (Laplace transform): Let f : R+ → R an exponential order and piecewise
continuous function, then the Laplace transform of f is

L{f (t)}(s) := f̃ (s) =
∫ ∞

0
e−stf (t) dt. (2.15)

The integral exist for Re(s) > 0.

An important property that we use in this work is the Laplace transform of the Hilfer
fractional derivative, which is given by the following lemma.

Lemma 2.6 (cf. [24], Laplace transform Hilfer’s derivative): Let n ∈ N and α ∈ R, such
that n − 1 < α ≤ n and 0 ≤ β ≤ 1; then the Laplace transform of Hilfer derivative is given
by

L{Dα,β f (t)}(s) = sαL{f (t)}(s) −
n−1∑
k=0

sn−k−1−β(n−α) d
k

dtk
I(1−β)(n−α)f (0). (2.16)

Definition 2.7 (cf.[25], Mellin transform): Let f ∈ L1loc(0,∞) TheMellin transform of f (t)
is defined by

M{f (t)}(p) =
∫ ∞

0
tp−1f (t) dt (p ∈ C). (2.17)

The domain of definition of the Mellin transform turns out to be an open strip of complex
number p = σ + it withσ ∈ 〈a, b〉. The largest open strip 〈a, b〉, where the integral converges,
is called fundamental strip.
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6 G. A. DORREGO

Definition 2.8 (cf.[25], Inverse Mellin transform): Let f ∈ L1(0,∞) with fundamental
strip 〈a, b〉. If γ is such that a < γ < b, andM{f (t)}(γ + it) integrable, then the equality

(M−1M(p))(x) = 1
2π i

∫ γ+i∞

γ−i∞
x−pM{f (t)}(p) dp (2.18)

holds almost everywhere. Moreover, if f is continuous, the equality holds everywhere on
(0,∞).

Between the Laplace transform and Mellin transform the following equality is true.

M{f (x)}(p) = 1
�(1 − p)

M{L{f (x)}(s)}(1 − p). (2.19)

Definition 2.9 (Fourier transform): Let f ∈ L1(Rn), the Fourier transform of f is defined
by

F{f (x)}(ξ) = f̂ (ξ) = 1
(2π)n/2

∫
Rn

e−i(ξ ,x)f (x) dx, (2.20)

where ξ = (ξ1, ξ2, . . . , ξn), x = (x1, x2, . . . xn) ∈ Rn, (ξ , x) = ξ1x1 + · · · + ξnxn and dx =
dx1dx2 · · · dxn and the inverse Fourier transform is given by

F−1{̂f (ξ)}(ξ) = 1
(2π)n/2

∫
Rn

ei(ξ ,x)̂f (ξ) dξ . (2.21)

3. Ultra-hyperbolic time-fractional diffusion-wave equation

In this section we solve a Cauchy problem associated with the time-fractional diffusion-
wave equation, which results from replacing the Laplacian operator by ultra-hyperbolic
operator.

Let us consider the following Cauchy problem :

Dα,r
t u(x, t) − c2�u(x, t) = 0, t > 0; x ∈ D,

I(2−α)(1−r)u(x, t)|t=0 = f (x),

∂

∂t
I(2−α)(1−r)u(x, t)|t=0 = g(x).

(3.1)

where Dα,r
t is the Hilfer derivative (2.11) of order 1 < α ≤ 2, and type 0 ≤ r ≤ 1, the

operator � is defined by

� =
(

∂2

∂x21
+ · · · + ∂2

∂x2μ
− ∂2

∂x2μ+1
− · · · − ∂2

∂x2μ+ν

)
, (3.2)

μ + ν = n is the dimension of the Euclidean space Rn, f , g ∈ L1(Rn) and D is defined by

D = {
(x1, . . . xμ, . . . xμ+ν) ∈ R

n : μ + ν = n, x21
+ x22 + · · · + x2μ ≥ x2μ+1 + · · · + x2μ+ν

}
. (3.3)
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 7

To solve the Cauchy problem (3.1), first we apply Fourier transform with respect to the
space variable

Dα,r
t û(ξ , t) + c2(ξ 21 + · · · + ξ 2μ − ξ 2μ+1 − · · · − ξ 2μ+ν)û(ξ , t) = 0. (3.4)

Now, applying the Laplace transform in the time variable to both sides of the above
equation and putting

‖ξ‖2μ,ν = ξ 21 + · · · + ξ 2μ − ξ 2μ+1 − · · · − ξ 2μ+ν , (3.5)

sα ˜̂u(ξ , s) − s1−r(2−α)I(1−r)(2−α)û(ξ , 0) − s−r(2−α) ∂

∂t
I(1−r)(2−α)û(x, 0)

+ c2‖ξ‖2μ,ν ˜̂u(ξ , s) = 0 (3.6)

using the initial conditions

sα ˜̂u(ξ , s) − s1−r(2−α) f̂ (ξ) − s−r(2−α)ĝ(x) + c2‖ξ‖2μ,ν ˜̂u(ξ , s) = 0, (3.7)

˜̂u(ξ , s) = s1−r(2−α)

sα + c2‖ξ‖2μ,ν
f̂ (ξ) + s−r(2−α)

sα + c2‖ξ‖2μ,ν
ĝ(ξ). (3.8)

Taking inverse Laplace transform is that

û(ξ , t) = t(1−r)α+2r−2Eα,(1−r)α+2r−1(−c2‖ξ‖2μ,ν tα)f̂ (ξ) (3.9)

+ t(1−r)α+2r−1Eα,(1−r)α+2r(−c2‖ξ‖2μ,ν tα)ĝ(ξ). (3.10)

Then, by inverse Fourier transform

u(x, t) = F−1{t(1−r)α+2r−2Eα,(1−r)α+2r−1(−c2‖ξ‖2μ,ν tα)} ∗ f (x)

+ F−1{t(1−r)α+2r−1Eα,(1−r)α+2r(−c2‖ξ‖2μ,ν tα)} ∗ g(x). (3.11)

To calculate F−1{t(1−r)α+2r−2Eα,(1−r)α+2r−1(−c2‖ξ‖2μ,ν tα)} y F−1{t(1−r)α+2r−1

Eα,(1−r)α+2r(−c2‖ξ‖2μ,ν tα)} use the procedure followed by Yakubovich and Luchko, [16].
To do this, consider

E(t, ξ ;α,β)
.= tβ−1Eα,β(±D‖ξ‖2μ,ν tα), (3.12)

where D is a positive constant and ‖ξ‖2μ,ν is given by (3.5).
It is known that the Laplace transform of the function E(t, ξ ;α,β)with respect the time

variable t is given by

L{E(t, ξ ;α,β)}(s) = sα−β

sα ∓ D‖ξ‖2μ,ν
. (3.13)

Now we calculate the Mellin transform of E(t, ξ ;α,β) with respect to t using the
relation (2.19). Then

M{E(t, ξ ;α,β)}(p) = 1
�(1 − p)

∫ ∞

0

sα−β−p

sα ∓ D‖ξ‖2μ,ν
ds. (3.14)
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8 G. A. DORREGO

Making the change of variables s = (∓D‖ξ‖2μ,ν)1/2θ , result

M{E(t, ξ ;α,β)}(p) = [∓D‖ξ‖2μ,ν](1−β−p)/α

�(1 − p)

∫ ∞

0

θα−β−p

θα + 1
dθ . (3.15)

Taking θ = t1/α , we have by definition of Beta function,∫ ∞

0

θα−β−p

θα + 1
dθ = 1

α
B
(

β + p − 1
α

,
1 − β − p

α
+ 1

)
. (3.16)

Finally, from (3.14)–(3.16) , we have that

M{E(t, ξ ;α,β)}(p) = [∓D‖ξ‖2μ,ν](1−β−p)/α

�(1 − p)α
B
(

β + p − 1
α

,
1 − β − p

α
+ 1

)
. (3.17)

3.1. Inverse Fourier transform of aMittag–Leffler-type function containing in its
argument a positive-definite quadratic form

Now let us calculate the inverse Fourier transform with respect to the variable ξ of the
E(t, ξ ;α,β) function.

GivenE(t, x;α,β) = F−1{E(t, ξ ;α,β)}(x), then, taking theMellin transformboth sides
with respect to t result

M{E(t, x;α,β)}(p) = F−1{M{E(t, ξ ;α,β)}(p)}(x)

= (∓D)(1−β−p)/α

α�(1 − p)
�

(
β + p − 1

α

)
�

(
1 − β − p

α
+ 1

)
× F−1{(‖ξ‖2μ,ν)(1−β−p)/α}(x). (3.18)

To calculate F−1{(‖ξ‖2μ,ν)(1−β−p)/α}(x) we use a result due to Aguirre (cf.[26], f 2.3)

F{(‖x‖2μ,ν)λ}(ξ) = eνπ i/222λ+nπn/2�(λ + n/2)
�(−λ)

(‖ξ‖2μ,ν)−λ−n/2. (3.19)

This formula is valid if x21 + x22 + · · · + x2μ ≥ x2μ+1 + · · · + x2μ+ν and ξ 21 + ξ 22 + · · · +
ξ 2μ ≥ ξ 2μ+1 + · · · + ξ 2μ+ν .

Then, for λ = (p + β − 1)/α − n/2, we have

F−1{(‖ξ‖2μ,ν)(1−β−p)/α}(x) = iν�(n/2 − ((p + β − 1)/α))

22((p+β−1)/α)πn/2�((p + β − 1)/α)
(‖x‖2μ,ν)(p+β−1)/α−n/2

(3.20)
then, returning to (3.18)

M{E(t, x;α,β)}(p) = (∓D)(1−β−p)/α

α�(1 − p)
�

(
1 − β − p

α
+ 1

)
(3.21)

× iν�(n/2 − ((p + β − 1)/α))

22((p+β−1)/α)πn/2 (‖x‖2μ,ν)(p+β−1)/α−n/2. (3.22)
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 9

Taking inverse Mellin transform results

E(t, x;α,β) = iν(‖x‖2μ,ν)(β−1)/α−n/2(∓D)(1−β)/α

α4(β−1)/απn/2

× 1
2π i

∫ p+i∞

p−i∞
�((1 − β − p)/α + 1)�((1 − β − p)/α + n/2)

�(1 − p)

×
⎡⎣(

‖x‖2μ,ν
4(∓D)tα

)1/α
⎤⎦ pdp = iq(‖x‖2μ,ν)(β−1)/α−n/2(∓D)(1−β)/α

α4(β−1)/απn/2

× 1
2π i

∫ p+i∞

p−i∞
�((1 − β − p)/α + 1)�((1 − β − p)/α + n/2)

�(1 − p)

×
⎡⎣(

4(∓D)tα

‖x‖2μ,ν

)1/α
⎤⎦−p

dp (3.23)

= iν(‖x‖2μ,ν)(β−1)/α−n/2(∓D)(1−β)/α

α4(β−1)/απn/2

× 1
2π i

∫ p+i∞

p−i∞
�(1 − ((β − 1)/α) − (1/α)p)�(1 − ((β + α − 1)/α − n/2) − (1/α)p)

�(1 − p)

×
⎡⎣(

4(∓D)tα

‖x‖2μ,ν

)1/α
⎤⎦−p

dp. (3.24)

From the definition of the H-function, for m=0, n=2, p=2, q=1, and a1 =
(β − α)/α, A1 = 1/α, a2 = (β − α − 1)/α − n/2, A2 = 1/α, b1 = 0, B1 = 1∣∣∣∣∣∣arg

(
4(∓D)tα

‖x‖2μ,ν

)1/α
∣∣∣∣∣∣ <

Cπ

2

with C = (2 + α)/α > 0, we have

E(t, x;α,β) = iν(‖x‖2μ,ν)(β−1)/α−n/2(∓D)(1−β)/α

α4(β−1)/απn/2

× H0,2
2,1

⎛⎝(
4(∓D)tα

‖x‖2μ,ν

)1/α
∣∣∣∣∣∣
(

β − 1
α

,
1
α

)
,
(

β + α − 1
α

− n
2
,
1
α

)
(0, 1)

⎞⎠
= iν tβ−1

(4π(∓D)tα)n/2

[
‖x‖2μ,ν
4(∓D)tα

](β−1)/α−n/2

× 1
α
H0,2
2,1

⎛⎝(
4(∓D)tα

‖x‖2μ,ν

)1/α
∣∣∣∣∣∣
(

β − 1
α

, 1
α

)
,
(

β + α − 1
α

− n
2
,
1
α

)
(0, 1)

⎞⎠
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10 G. A. DORREGO

from (2.5) and (2.6) result

E(t, x;α,β) = iν tβ−1

(4π(∓D)tα)n/2

[
‖x‖2μ,ν
4(∓D)tα

](β−1)/α−n/2

× H2,0
1,2

⎛⎝ ‖x‖2μ,ν
4(∓D)tα

∣∣∣∣∣∣
(1,α)(

1 −
(

β − 1
α

)
, 1

)
,
(
n
2

−
(

β − 1
α

)
, 1

)⎞⎠ .

Now, using (2.7) we have

E(t, x;α,β) = iν tβ−1

(4π(∓D)tα)n/2

× H2,0
1,2

⎛⎜⎜⎝ ‖x‖2μ,ν
4(∓D)tα

∣∣∣∣∣∣∣∣
(
1 +

(
β − 1

α
− n

2

)
α,α

)
(
1 −

(
β − 1

α

)
+ β − 1

α
− n

2
, 1

)
,
(
n
2

−
(

β − 1
α

)
+ β − 1

α
− n

2
, 1

)
⎞⎟⎟⎠ ,

(3.25)

i.e.

F−1{E(t, ξ ;α,β)}(x) = iν tβ−1

(4π(∓D)tα)n/2

× H2,0
1,2

⎛⎜⎝ ‖x‖2μ,ν
4(∓D)tα

∣∣∣∣∣∣∣
(
β − nα

2
,α

)
(
1 − n

2
, 1

)
, (0, 1)

⎞⎟⎠ . (3.26)

Returning to (3.11) and using (3.26) for cases

β = (1 − r)α + 2r − 1

and

β = (1 − r)α + 2r,

we have that the solution of the Cauchy problem (3.1) is

u(x, t) = iν t(1−r)α+2r−2

(4πc2tα)n/2

× H2,0
1,2

⎛⎜⎝‖x‖2μ,ν
4c2tα

∣∣∣∣∣∣∣
(
(1 − r)α + 2r − 1 − nα

2
,α

)
(
1 − n

2
, 1

)
, (0, 1)

⎞⎟⎠ ∗ f (x)

+ iν t(1−r)α+2r−1

(4πc2tα)n/2

× H2,0
1,2

⎛⎜⎝‖x‖2μ,ν
4c2tα

∣∣∣∣∣∣∣
(
(1 − r)α + 2r − nα

2
,α

)
(
1 − n

2
, 1

)
, (0, 1)

⎞⎟⎠ ∗ g(x) (3.27)

provided that x21 + x22 + · · · + x2μ ≥ x2μ+1 + · · · + x2μ+ν .
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 11

3.2. Particular cases

(1) Note that if r=1, the Cauchy problem (3.1) it is expressed in terms of the Caputo
fractional derivative

cDα
t u(x, t) − c2�u(x, t) = 0;

u(x, 0) = f (x),

∂

∂t
u(x, t)|t=0 = g(x)

(3.28)

and then, from (3.27) the solution is

u(x, t) = iν

(4πc2tα)n/2

× H2,0
1,2

⎛⎜⎝‖x‖2μ,ν
4c2tα

∣∣∣∣∣∣∣
(
1 − nα

2
,α

)
(
1 − n

2
, 1

)
, (0, 1)

⎞⎟⎠ ∗ f (x)

+ iν t
(4πc2tα)n/2

× H2,0
1,2

⎛⎝‖x‖2μ,ν
4c2tα

∣∣∣∣∣∣
(
2 − nα

2
,α

)
(
1 − n

2 , 1
)
, (0, 1)

⎞⎠ ∗ g(x). (3.29)

For x21 + x22 + · · · + x2μ ≥ x2μ+1 + · · · + x2μ+ν .
(2) If r=0, the Cauchy problem (3.1) is expressed in terms of the Riemann–Liouville

fractional derivative
R−LDα

t u(x, t) − c2�u(x, t) = 0;

I2−αu(x, 0) = f (x),

∂

∂t
I2−αu(x, t)|t=0 = g(x)

(3.30)

and then, from (3.27) the solution is

u(x, t) = iν tα−2

(4πc2tα)n/2

× H2,0
1,2

⎛⎜⎝‖x‖2μ,ν
4c2tα

∣∣∣∣∣∣∣
(
α − 1 − nα

2
,α

)
(
1 − n

2
, 1

)
, (0, 1)

⎞⎟⎠ ∗ f (x)

+ iν tα−1

(4πc2tα)n/2

× H2,0
1,2

⎛⎝‖x‖2μ,ν
4c2tα

∣∣∣∣∣∣
(
α − nα

2
,α

)
(
1 − n

2 , 1
)
, (0, 1)

⎞⎠ ∗ g(x). (3.31)

Provided that x21 + x22 + · · · + x2μ ≥ x2μ+1 + · · · + x2μ+ν .
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12 G. A. DORREGO

(3) Now, if α ↓ 1 and r=1, the problem (3.1) is reduced to the Cauchy problem
(3.1)–(3.2) of Nonlaopon and Kananthai,[14] and the solution is given by

u(x, t) = iν

(4πc2t)n/2

× H2,0
1,2

⎛⎝‖x‖2μ,ν
4c2t

∣∣∣∣∣∣
(
1 − n

2
, 1

)
(
1 − n

2 , 1
)
, (0, 1)

⎞⎠ ∗ f (x) (3.32)

but, as

H2,0
1,2

⎛⎜⎝‖x‖2μ,ν
4c2t

∣∣∣∣∣∣∣
(
1 − n

2
, 1

)
(
1 − n

2
, 1

)
, (0, 1)

⎞⎟⎠ =
∞∑
p=0

Res

(
�(−p)

[
‖x‖2μ,ν
4c2t

]p)

=
∞∑
p=0

(−1)p

p!

[
‖x‖2μ,ν
4c2t

]p

= exp

(
−‖x‖2μ,ν

4c2t

)
(3.33)

finally results that (3.32) coincides with (3.3) of Nonlaopon and Kananthai,[14]
provided that x21 + x22 + · · · + x2μ ≥ x2μ+1 + · · · + x2μ+ν .

(4) On the other hand, if α = 2 and r take any value, the problem (3.1) is reduced to the
Cauchy problem (8)-(9) when k=1 of Sansanit and Kananthai [15] and the explicit
solution is given by

u(x, t) = iν

(4πc2t2)n/2

× H2,0
1,2

⎛⎝‖x‖2μ,ν
4c2t2

∣∣∣∣∣∣
(1 − n, 2)(

1 − n
2
, 1

)
, (0, 1)

⎞⎠ ∗ f (x)

+ iν t
(4πc2t2)n/2

× H2,0
1,2

⎛⎝‖x‖2μ,ν
4c2t2

∣∣∣∣∣∣
(2 − n, 2)(

1 − n
2
, 1

)
, (0, 1)

⎞⎠ ∗ g(x). (3.34)

For x21 + x22 + · · · + x2μ ≥ x2μ+1 + · · · + x2μ+ν .

Remark 3: An important question about this solution is that it was not given
explicitly in [15].

Disclosure statement

No potential conflict of interest was reported by the author.
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