
Received: 20 May 2015 Revised: 23 December 2016 Accepted: 3 March 2017
DO
I: 10.1111/exsy.12213
AR T I C L E
An ontology to document a quality scheme specification of a
software product

María Julia Blas | Silvio Gonnet | Horacio Leone
INGAR, National University of Technology,

CONICET, Santa Fe 3000, Argentina

Correspondence

María Julia Blas, INGAR, National University of

Technology, CONICET, Avellaneda 3657,

Santa Fe 3000, Argentina.

Email: mariajuliablas@santafe‐conicet.gov.ar

Funding Information

CONICET, Grant/Award Number: PIP 112‐
20110100906; Universidad Tecnológica

Nacional, Grant/Award Number: PID 25/

O144 and PID 25/O156
Expert Systems. 2017;e12213.
https://doi.org/10.1111/exsy.12213
Abstract
Pressman's (2010) definition of software quality is the conformance to explicitly stated

functional and performance requirements, explicitly documented development standards, and

implicit characteristics that are expected of all professionally developed software. The achieve-

ment of quality is a complex activity that is related with the process quality and product

quality. However, still, it is not clear how product quality should apply in the development

process. Frequently, the development team does not know what characteristics influence a

specific entity and how these characteristics compose the quality of the product. This lack

of knowledge reflects the need to define some document that serve as a valid quality specifi-

cation that should be evaluated along the development process. This contribution addresses

this need by introducing an ontology for document a quality scheme based on the product

quality model of ISO/IEC 25010. The proposal follows this model with aims to clarify the

properties that are normally present in a product and its meaning. The ontology incorporates

the metric concept to represent the way in which quality should be measure. The ontology

was implemented using Protégé, and it was evaluated using a set of metrics that estimate

the required structural characteristics.

KEYWORDS

knowledge representation, ontology, quality model, requirement engineering, software engineering,

software quality
1 | INTRODUCTION

Software quality is the degree to which software possesses a desired

combination of attributes (IEEE STD. 1061, 1998). However, the

complex nature of software makes achieving this property a

complicated issue. Moreover, the delimitation of what defines an

adequate level of quality in a software system is a highly context‐

dependent question (Kitchenham & Pfleeger, 1996). This problem

changes with the product and perspective of the stakeholders. As

long as each stakeholder group has its own perspective on what is

important, software product quality can easily become an area of

problems and conflict.

More generally, software quality encompasses many different

product and process factors (Pressman, 2010). System quality

attributes have been of interest to the software community at least

since the 1970s (Bass et al., 2012). In the past few years, this interest

has increased and a lot of research work has been done in this area.

The understanding of software priorities in industrial contexts
wileyonlinelibrary.com/journal/e
(Barney & Wohlin, 2009; Barney et al., 2014) and the study of com-

putational technics to develop quality evaluation methods (Papas &

Tjortjis, 2014) are examples of these researches.

Everyone involved in the software engineering process is responsi-

ble for quality (Pressman, 2010). Achieving quality attributes must be

considered throughout design, implementation, and deployment (Bass

et al., 2003). However, maintaining the traceability of this attributes

in the development process is very difficult. Frequently, the attributes

get lost between different stages because there is no mechanism that

supports the quality decisions made in the previous phases. Or worse,

the development team does not know which attributes are related

and how they impact in the overall quality of the software product.

So the precise knowledge of software quality is usually not available

until very late (usually during operations and maintenance) in the

software life cycle (Khoshgoftaar, Liu, & Seliya, 2004). In this context,

software quality is still considered to be one of the most important

concerns of software production teams (Ampatzoglou, Frantzeskou, &

Stamelos, 2012). The quality specification of software products is a
Copyright © 2017 John Wiley & Sons, Ltdxsy 1 of 21

http://orcid.org/0000-0001-9629-6763
mailto:mariajuliablas@santafe-conicet.gov.ar
https://doi.org/10.1111/exsy.12213
https://doi.org/10.1111/exsy.12213
http://wileyonlinelibrary.com/journal/exsy

2 of 21 BLAS ET AL.
valuable addition to functional specification because it allows clarifying

product properties such as learnability and availability (Van Zeist &

Hendriks, 1996). Then, a documentation mechanism that provides the

basic quality information to define a quality document could become

a feasible solution to the quality specification problem of the software

community.

To this purpose, this paper presents an ontological approach that

helps in the specification of a quality scheme based on the quality

model defined in ISO/IEC 25010. The proposed ontology is based on

the combination of three semantic models: quality semantic model,

metric semantic model, and software semantic model. The quality

semantic model represents the product quality model presented in

the standard ISO/IEC 25010. The metric semantic model represents

the main concepts associated with the definition of a metric. Finally,

the software semantic model represents the content of a software

product and links the quality attributes with the metrics. Each model

is complemented with a set of Semantic Web Rule Language (SWRL)

rules that enrich its definition. The SWRL is used to express rules in

the form of an implication between an antecedent (body) and

consequent (head; Horrocks et al., 2004). The incorporation of

these rules in each ontology definition allows to predict new

knowledge and verify the integrity of the instances created from

it. The proposed ontology is implemented in Web Ontology

Language (OWL) 2 (W3C OWL, 2012). The final model is

complemented with a set of questions that helps to explore a set

of defined instances. These questions allow using the quality

schemes instantiated in order to know which are the main quality

artifacts, metrics, and subcharacteristics used in a specific context.

All the questions were implemented in SPARQL (Harris, Seaborne,

& Prud'hommeaux, 2013).

The major contribution of this proposal is to introduce into the

software engineering community a new mechanism that allows

developers to specify a quality document for a specific software

product. The information included on this new document will be

based on a defined set of quality aspects identified on the require-

ments specification. Those aspects will be mapped to characteristics

of a quality model that contextualizes the relationships between

quality concepts. By mean of the final ontology instantiation, the

development team will know which elements must be created in

order to treat quality properties and, therefore, will increase the

visibility and understanding of the different quality aspects. Also,

the final customer could be aware of the strategies used to guaran-

tee its satisfaction. Then, the use of the ontological approach

proposed in the development process will give multiple benefits,

not only to the development team but also to the final customer.

The existence of a single document that defines all quality aspects

related to a software product will help to manage quality.

The remainder of this paper is organized as follows. A back-

ground of software quality evaluation and ontology engineering is

given in Section 2. Sections 3, 4, and 5 present the semantic

models. Section 6 describes the final ontology, specifying the imple-

mentation and verification process carried out. Section 7 shows the

application of the proposed ontology in a case study and analyses

the resultant quality scheme. Finally, Section 8 is devoted to

conclusions.
2 | BACKGROUND AND MOTIVATION

The quality of a software system is directly related to the ability of the

system to satisfy its functional, nonfunctional, implied, and specified

requirements (Albin, 2003). This ability can be evaluated in any product

that results of some activity of the development process. An interme-

diate product is any model, specification, document, or source code

that is prepared or created in support of constructing an executable

system (Albin, 2003). The result of evaluating this type of products

provides a reasonable prediction of some of the target system's quality

attributes. Researchers have work on this topic over different interme-

diate products. According to Dargan, Campos‐Nanez, Fomin, and

Wasek (2014), it is possible to predict the performance of a software

system using the requirements document. In other work, Roshandel,

Medvidovic, and Golubchik (2007) show a way to predict reliability

by mean of the architectural design. Related works on this research

area are presented in the literature (Bogado, Gonnet, & Leone, 2014;

Meiappane, Chithra, & Venkataesan, 2013; Rech & Bunse, 2008).

However, all these researches are applied to a defined set of quality

attributes. The use of an attribute set hides the overall quality aspects

that impact in the software product and leaves out the existing rela-

tionships between attributes.

In this context, the use of quality models is a good proposal. A

standard taxonomy of quality attributes that serves as a framework

for system specification and testing is called quality model (Albin,

2003). Numerous models have been developed to support software

quality (Milicic, 2005). Examples of these models include McCall qual-

ity model, Boehm's quality model, Dromey's quality model, and ISO

9126. All these models are discussed in Al‐Badareen, Selamat, Jabar,

Din, and Turaev (2011). More recently, a new standard (ISO/IEC

25010) has been developed as an evolution of ISO 9126. Boukouchi,

Marzak, Benlahmer, and Moutachaouik (2013) compared this new

model with the previous ones. Because the quality is related to all

the activities of the development process, the first specification must

be elaborated after the elicitation process (when the architectural

design has place). That is, software architect can use a quality model

to develop a quality specification for a software product. This specifi-

cation can be used as a base to estimate and evaluate a specific com-

ponent of the software product (i.e., the architectural design) and to

know how it adjusts to the desired quality level. Then, the specifica-

tion involves the adoption of a coherent set of properties that must

be present in the system and that can be predicted by the compo-

nents. However, this type of specification only includes properties

that previously must be understood by the architect. Ideally, a quality

specification must have the set of attributes of interest and the way

in which these attributes must be measured. The use of metrics to

develop strategies for improving quality of the end product is a good

practice (Pressman, 2010).

A software metric is a measure of some property of a piece of

software code or its specifications (El‐Haik & Shaout, 2010). Software

metrics can be classified into three categories: product metrics,

process metrics, and project metrics (Kan, 2003). Product metrics

describe the characteristics of the product. Process metrics can be

used to improve software development and maintenance. Project

metrics describe the project characteristics and execution. Specifically,

BLAS ET AL. 3 of 21
software quality metrics refer to end‐product metrics or in‐process

metrics. This type of metrics is useful to register the current quality

state of an end product or process associated to the software.

Although a lot of metrics have been proposed over the years, the main

source of this content corresponds to the ISO 9126 standard (ISO/IEC

TR 9126‐2, 2003; ISO/IEC TR 9126‐3, 2003). Then, quality models and

software metrics are related only when a specific software product is

considered.
2.1 | Quality scheme foundations

In the traditional development process, software requirement specifi-

cation (SRS) is the artifact that establishes all the software product

requirements. By using its content, the development team can isolate

the defined quality properties and use them in order to specify the

way in which these properties should be evaluated in the software

product. This specification is called Quality Scheme (QS). A QS is a

set of triplets over a software product definition where each element

is composed by a software attribute, a software metric that should

be used to its measurement, and a quality subcharacteristic that should

be evaluated over it. That is, QS connects quality properties and soft-

ware metrics over a software product taken as a base of the SRS. For

example, think of an online toy store as a software product. Then,

two software attributes can be measured to evaluate the software

product data: “Secure Access” and “Secure Storage.” In order to define

a QS, a software metric must be defined for each identified software

attribute, for example, “Number of Unauthorized Access” and “Number

of Access.” Also, each identified software attribute must be associated

with a quality subcharacteristic, for example, “Confidentiality” and

“Integrity.” So the following set of triplets can be used to describe part

of QS proposed for the online toy store: QSonlinetoystore = {(Secure

Access, Number of Unauthorized Access, Confidentiality); (Secure

Storage, Number of Access, Integrity)}.

Given that this artifact is obtained as an outcome of the devel-

opment process, a QS can be used, improved, and traced while the

development process is carried out. Then, the QS can be used as a

support document to manage quality. However, its definition must

follow specific concepts and relationships. Therefore, its structure

could not be left up to the team expertise. Instead of documenting

the concepts in the traditional way, this paper proposes use of

ontologies to represent the quality scope using a set of defined

elements and relationships.
2.2 | Ontologies to support quality schemes

An ontology is an explicit specification of a conceptualization, that is,

an abstract, simplified view of the world that includes the objects, con-

cepts, and the relationships between them in a domain of interest

(Gruber, 1993). Its definition allows an unambiguous specification of

the structure of knowledge in a domain, enables knowledge sharing

and reuse and, consequently, makes automated reasoning about ontol-

ogies possible (Orgun & Meyer, 2008).

The use of ontologies to support different aspects of software

engineering has increase in the last years. A lot of the research work

done refers to the elicitation process (Al Balushi, Sampaio, &
Loucopoulos, 2013; Couto, Ribeiro, & Campos, 2014; Jwo & Cheng,

2010; Pires et al., 2011) and to the specification of ontologies for inter-

mediate products (Abebe & Tonella, 2015; De Graaf, Liang, Tang, Van

Hage, & Van Vliet, 2014). Other works focus on the development of

tools based on ontologies that help to support the development pro-

cess (García‐Peñalvo, Colomo‐Palacios, García, & Therón, 2012;

Henderson‐Sellers, 2011; Reinhartz‐Berger, Sturm, & Wand, 2013).

In this context, ontologies are a good mechanism to specify the set

of concepts and relationships required in the software product quality

domain (i.e., the QS domain).

The software product quality domain consists of three different

and independent domains: quality model domain, software metric

domain, and software product domain. Given that a unique conceptual-

ization of all of these domains does not exist, a new ontology must be

created. Each identified domain represents a specific aspect of the

QS. Considering that there are ontologies to characterize the software

metric domain, the approach proposed in this paper comprises the rep-

resentation of each domain as an individual semantic model that, subse-

quently, is linked to the others by means of relationships. According to

this modular design strategy, each semantic model can be built leaving

aside the conceptualization of other domains. Then, the domains can be

treated individually. This gives multiple advantages. First, the available

ontologies of specific domains can be used or adapted to the purposes

of the QS representation. This is the case of the software metric

domain. Several authors have proposed semantic models for this

domain across the years (Bertoa, Vallecillo, & García, 2006;

Kitchenham, Hughes, & Linkman, 2001; Martin & Olsina, 2003; Olsina

& Martín, 2003). Although these models are useful, its conceptualiza-

tion does not reflect the required content. Then, in order to build the

software metric ontology, the existing models were used as guidelines

of the ontology development process. The same approach was used

to the software product ontology. As opposed, when a domain does

not have related ontologies, the modular strategy allows to define

new semantic models using the representation needed. The ISO/IEC

25010 quality model belongs to this domain type. Given that the soft-

ware product quality model specification included in the standard has

recently emerged, semantic models of this domain are still under devel-

oping. Therefore, in order to conceptualize this domain, this work

makes an exhaustive analysis of the standard to build a new ontology

of the quality domain.

Another advantage of dividing the final model in three ontol-

ogies is reutilization. The approach proposed allows to reuse the

developed models in different context, for example, (a) software

product model can be used as part of a software description; (b)

software metric model can be used as support model in measure-

ment process to know which properties should be obtained for an

specific metric; and (c) quality model ontology can be used as tool

in the quality management process, highlighting the characteristics

and their relationships.

The final document created by following the proposed method will

be an instantiation of ontology elements that reflect the quality

requirements of the software product. This instantiation must follow

all the mandatory relationships between concepts. However, in some

cases, not all components will be created. The instantiation of all the

components included in the quality model ontology will only take place

4 of 21 BLAS ET AL.
if the SRS identifies requirements for all the quality aspects considered.

Actually, the generation of this document type must be done using

ontology tools. In the future, this creation process will be supported

by a software tool based on ontologies developed specifically with

aim to help in the quality management activity.
2.3 | Semiformal ontologies and completeness

Ontologies can be classified using several dimensions (Roussey, Pinet,

Kang, & Corcho, 2011). Following the classification based on the

degree of formality proposed by Hadzic, Chang, Dillon, Kacprzyk, and

Wongthongtham (2009), ontologies can be classified in four types:

highly informal, semi‐informal, semiformal, and rigorously formal. An

ontology is highly informal if is expressed in natural language. Usually,

the term definitions used in this type of ontologies are ambiguous due

to the ambiguity of natural language. Semi‐informal ontologies try to

solve this problem by restricting and structuring the natural language.

Then, this type of ontologies is expressed in a restricted and structured

form of natural language in order to improve clarity. When the

language used to express the ontology is not natural language, the

ontology can be considered semiformal or formal. Semiformal ontol-

ogies are expressed in an artificial and formally defined language.

Rigorously formal ontologies provide meticulously defined terms with

formal semantics, theorems, and proofs of properties such as sound-

ness and completeness.

According to Gómez‐Pérez, Fernandez‐Lopez, and Corcho

(2010), an ontology is sound if and only if it does not allow deducing

invalid conclusions. Furthermore, an ontology is complete if and only

if it allows deducing all the possible valid conclusions starting from

the ontology vocabulary and applying the deduction rules permitted.

The proof of these two properties can be only done in formal

ontologies. The lack of formality in other ontology types makes it

impossible to prove the completeness of the proposed model. Then,

neither the completeness of an ontology nor the completeness of its

definitions can be proved. However, the incompleteness of an indi-

vidual definition can be proved, and therefore, the incompleteness

of the ontology can be deduced if at least one definition is missing

in the established reference framework (Gómez‐Pérez et al., 2010).

This reference framework can be, for example, the requirements

specifications or the real world. Using this approach, an ontology is

complete if and only if all that is supposed to be in the ontology

is explicitly stated in it (or can be inferred) and each definition is

complete (all the entities of the world required are explicitly

represented or can be inferred using other representations and

axioms).

As already stated, the designed ontologies were described using

OWL and SWRL. Considering that both languages are artificial and

formally defined languages, each of the semantic models proposed

belong to the semiformal ontology category. Then, the proof of com-

pleteness can be only done following the incompleteness approach

mentioned above. Therefore, the completeness of the semantic

models is evaluated by checking the existence of all the entities

required (given by its domain description) over the ontology

definition.
3 | QUALITY ONTOLOGY

A quality model is a model with the objective to describe, assess, and/

or predict quality (Deissenboeck, Juergens, Lochmann, & Wagner,

2009). Software architect can use a quality model to develop quality

specifications for different components of a software product. Then,

software quality models are a well‐accepted means to support quality

management of software systems.

Many models have been proposed to support stakeholders in

dealing with software quality. However, by novelty and completeness,

the product quality model presented in ISO/IEC 25010 (ISO/IEC

25010, 2011) is the most rigorous and complete of all. Although the

standard has the difficulties and ambiguity of all documents written

in natural language, the conceptualization using ontologies provides

the semantic context needed to overcome these problems. Then, this

quality model was taken as foundation of this work.

The ontology proposed enriches the ISO/IEC 25010 quality defini-

tion by showing how the concepts relate to other concepts and reveal-

ing the implicit relationships between concepts.
3.1 | Domain description

The ISO/IEC 25010 is a quality standard developed by ISO (Interna-

tional Organization for Standardization) and IEC (International

Electrotechnical Commission) as part of the SQuaRE series of

International Standards (SQuaRE, 2005). This standard belongs to the

“Quality Models Division” and is called “System and Software Quality

Models” because it defines two different and complementary quality

models applicable to software systems: a quality in use model and a

product quality model.

The product quality model identifies the main characteristics of a

software product in different levels of hierarchy (Figure 1). It is

composed of eight characteristics that are further subdivided into

subcharacteristics, trying to relate static properties of software and

dynamic properties of the computer system. A characteristic repre-

sents an external quality view (i.e., a property that can be seen by

the user). The model identifies as quality characteristics the following

properties: portability, reliability, usability, compatibility, functional

suitability, performance efficiency, security, and maintainability. Each

characteristic is divided in a set of subcharacteristics that references

to properties that can be evaluated when the software is used as a part

of a system. By example, the characteristic “functional suitability” is

divided into three subcharacteristics: functional correctness, functional

appropriateness, and functional completeness. Each subcharacteristic

is decomposed in attributes. An attribute is an entity that can be

verified or measured in the software product. Attributes are not defined

in the standard, as they vary between different software products.

The characteristics and subcharacteristics' hierarchies provide a

consistent terminology for specifying, measuring, and evaluating

system and software product quality. They also provide a way to

recognize the quality properties and compare it with the stated quality

requirements to see its completeness. The value of each of these

characteristics comprises the total quality of the system. However,

the standard does not specify how to the quality should be considered

along the hierarchy level.

FIGURE 1 Product quality model proposed in ISO/IEC 25010, adapted from ISO/IEC 25010 (2011)

BLAS ET AL. 5 of 21
3.2 | Semantic model

The representation of the product quality model presented in

the previous section was made following the taxonomy defined in

ISO/IEC 25010 (Figure 1). Only the quality properties detailed were

included.

Table 1 resumes the set of transformations made. Each character-

istic was transformed in a concept (#T1). The same transformation was

used for subcharacteristics (#T2). In both cases, the quality concepts

represent individual properties that must be linked between them.

Then, its transformation to ontology concepts allows to show its

essence giving a way to relate them using relationships. Relationships

between these concepts were modeled defining links between

them (#T3). This definition took the form “is‐decomposed‐in.” For

example, the characteristic functional suitability is related with

subcharacteristics functional appropriateness, functional complete-

ness, and functional correctness. Therefore, this concept must have

three relationships: “is‐decomposed‐in‐functional‐completeness,” “is‐

decomposed‐in‐functional‐correctness,” and “is‐decomposed‐in‐

functional‐appropriateness.” Also, other concepts were included in

the model with the aim to help in the understanding of it. The first
TABLE 1 Mapping between ISO/IEC 25010 quality elements and ontolog

Transf. # ISO/IEC 25010 quality elements Type of compon

T1 Characteristic type Concept

T2 Subcharacteristic type Concept

T3 Decomposition of each characteristic
into subcharacteristic elements

Relation

T4 Characteristic and subcharacteristic
definition

Concept

T5 Characteristic and subcharacteristic
hierarchies

Relation

T6 Quality model Concept

T7 Decomposition of quality model into
characteristic elements

Relation

T8 Source, characteristic description,
and subcharacteristic description

Property
concepts included were “Characteristic” and “Subcharacteristic”

(#T4). These definitions were linked with the related concepts using

an “is‐a” relationship (#T5). By means of this classification, the different

concepts (that represent quality elements of ISO/IEC 25010) are

grouped in different categories (which give a concepts' typification).

In order to organize all the concepts, the “Quality Model” concept

was also included as part of the semantic model (#T6). The relationship

of this concept with each characteristic was made by defining a new

relationship that took the name “contains,” for example, “contains‐

performance‐efficiency” (#T7). Also, the incorporation of the Quality

Model concept helps with the definition of a quality scheme. As a

quality scheme involves a set of quality subcharacteristics defined

by a quality model, the schemes created using the quality model of

ISO/IEC 25010 (defined in the Quality ontology) will respond to its

definition. Therefore, the Quality Model concept englobes all the

quality properties defined in a specific scheme. Once the main con-

cepts were defined, a set of properties was included in the model with

the aim to refine the represented semantic. These properties include

characteristic description, subcharacteristic description, and source

(#T8). All of them are defined as strings.
y components

ent Example

The “compatibility” characteristic becomes the “compatibility”
concept.

The “interoperability” subcharacteristic becomes the
“interoperability” concept.

The relation between the “compatibility” characteristic and
“interoperability” subcharacteristic becomes the
“is‐decomposed‐in‐interoperability” relation.

The “characteristic” definition becomes the “characteristic”
concept.

The relation between the “compatibility” characteristic and
“characteristic” concept becomes the “is‐a” relation.

The “quality model” definition becomes the “quality model”
concept.

The relation between the “quality model” concept and
“compatibility” characteristic becomes the
“contains‐compatibility” relation.

The “description” attribute related with a “characteristic”
definition becomes the “description” property of the
“characteristic” concept.

6 of 21 BLAS ET AL.
Figure 2 shows the ontology developed. The type of representa-

tion used is similar to the proposed in Gómez‐Pérez et al. (2010).

The light gray nodes are the concepts whereas the white nodes

refer to the relationships. The arrow head indicated the direction

of the relationship. The empty arrows model the relation is‐a,

disjoint, and complete. The dark gray boxes model the data type of

the attributes.
FIGURE 2 Quality ontology
The ontology definition includes the specification of some SWRL

rules related to the contains relationship. These rules allow defining

new links between concepts at abstract level (which are derived from

the explicit relationships established). That is, according to #T1, #T2,

and #T3 (Table 1), each specific characteristic is related with its

subcharacteristics by an is‐decomposed‐in relationship. Then, each

characteristic contains to all its subcharacteristics (no matter the

BLAS ET AL. 7 of 21
subcharacteristic type). So the contains relationship is a new relation

that can be derived by using the is‐decomposed‐in relationship.

Equation 1 describes an example SWRL restriction, where “?x” and “?

y” refer to individuals (i.e., concept instances), “Security()” represents

the security characteristic concept, and “isDecomposedInIntegrity()”

relates two individuals by means of the specific established relation-

ship. Then, the equation shows that all instance of security character-

istic decomposed in an integrity subcharacteristic must contain

this subcharacteristic. Similar restrictions were added to the model

to make that all characteristics contain the appropriate set of

subcharacteristics. Also, the “belongs” relation was specified using

SWRL. Given a contains relationship (i.e., a link between a quality

characteristic and subcharacteristic), a belongs relationship must be

created in order to represent the belonging of the subcharacteristic

to the characteristic. Then, these two relations are inverses.

Security ?xð Þ∧isDecomposedInIntegrity ?x; ?yð Þ→contains ?x; ?yð Þ; (1)

The semantic model specified along with the set of SWRL rules

proposed helps to instantiate the lower level quality concepts (i.e.,

characteristic type and subcharacteristic type identified in Table 1)

and then derivate the missing relationships at upper level (i.e., between

characteristic and subcharacteristic definitions—Table 1).

In order to prove the completeness of the model, the list of terms

defined in ISO/IEC 25010 along with the domain description of the

software product quality model was used. An exhaustive test was

performed to check the presence of all the concepts required as part

of the model. A table with two columns was designed in order to be

used across the test. Each term defined in ISO/IEC 25010 was

included as a row of the first column. Once all the terms were listed,

each concept of the semantic model was added to some row of the sec-

ond column according to the criteria “represents‐the‐first‐column‐

term.” At the end of the test, all rows of the table have two elements.

Then, all ISO/IEC 25010 terms were represented as part of the

semantic model.
FIGURE 3 Metric base ontology
4 | METRIC ONTOLOGY

A lot of research work has been done in order to contribute in the

measure of the software product quality. As part of the SQuaRE

series, ISO and IEC propose a measurement reference model and a

guide for measuring the quality characteristics defined in Quality

Model Division: ISO/IEC 25020. However, this standard only sets

the requirements for the selection and construction of quality mea-

sures but does not describe which metrics should be applied in dif-

ferent cases (ISO/IEC 25020, 2007). Although ISO/IEC 25023

(called “measurement of system and software product quality”) will

define metrics to measure software products quality, this standard

is not available yet. However, because this standard will revise ISO

9126‐2 and ISO 9126‐3, the structure of the metric concept used

on these standards can be taken as reference.

For these reasons, the metric ontology proposed in this work

focuses in the traditional metric definition (Fenton & Bieman, 2014;

Kan, 2003; Pressman, 2010) incorporating some concepts related to

the current normative.
4.1 | Domain description

A product metric gives the properties of the software product at any

point of its development. According to ISO 9126, a metric is basically

defined by the specification of its name, purpose, application method,

measurement formula, interpretation, scale type, measure type, input

to measurement, and target audience. The identification of the metric

is given by its name. For this reason, the metric name must be related

with the information obtained when the metric is applied. The purpose

of the metric basically is expressed as the question to be answered by

the application of the metric. The metric application method provides

an outline of application whereas the measurement formula stipulates

the mathematical expression used for the calculation and explains the

meanings of the used data elements. The interpretation of the

measured value supplies the range and preferred values. The scale type

defines the dimension of the metric. Scale types used are nominal

8 of 21 BLAS ET AL.
scale, ordinal scale, interval scale, ratio scale, and absolute scale. The

measure type involves the specification of the way in which the metric

is obtained. Types used are size type, time type, and count type. The

input to the measurement process refers to the source of data used

in the measurement. Finally, the target audience identifies the users

of the measurement results.

Although all this concepts define a metric, only a set of them was

used as part of the metric ontology. The selection was made taking

into account the final objective: document the metrics related with

different quality attributes that should be used to evaluate a specific
FIGURE 4 Metric ontology (final)
software product. In order to do this, the input to measurement and

the target audience are concepts not represented in the model. The

reason to exclude the input to measurement involves to the need to

know in which stage of the development process the metric will

be applied. The documentation activity only represents the way to

calculate and estimate the value of the measure. The specific source

of information is not important in the context of this activity because

the measurement process is not executed. This characteristic is only

useful when the metric is used in a specific context (which happens

when the process of measurement has place). On the other hand, the

BLAS ET AL. 9 of 21
target audience is also a concept that shows a dependencywith the use of

themetric. Somemetrics can be used by not identified audience, orworst,

none of the identified audiences really uses the metric. The rest of the

concepts were taken as they are defined to compose the semantic model.
4.2 | Semantic model

The development of the metric ontology was made in two phases.

First, the development focused on the modeling of a base ontology.

Then (in phase two), the focus was improving this ontology by refining

some of the concepts previously identified.

Figure 3 shows the base ontology developed using as basis of the

concepts identified in ISO 9126 and the approach presented in García

et al. (2006). All the concepts refer to the characteristics detailed in the

previous section, adding a few details in some on them. The attributes

also represent properties of the main concepts. These elements have

been modeled using the string data type.

However, the base ontology model is not complete. Some of its

concepts are too general whereas some of its attributes are more

important than what in the beginning seemed to be. Because of this,

the model was refined. Figure 4 shows the final metric ontology.

The improvements performed were substitution of the “unit” attribute

by the “Unit” concept, modification of the “Scale” hierarchy, and

incorporation of the “Equation” concept.

The identification of unit as a metric attribute brings two

problems. First, a unit can be assigned into a metric with categorical

scale. Second, a metric may have an adimensional unit. In order to fix

these issues, the unit attribute was substituted by a new set of

concepts, which derives from the Unit concept. The proposal of

Rijgersberg, Wigham, and Top (2011) was taken as reference for this

improvement process. The incorporated concepts include Simple Unit

and Derived Unit. A “Simple Unit” represents a base unit (i.e., a unit

that can only be obtained by definition). A “Derived Unit” represents

a unit that is obtained operating other units. The operations used for

the derivation can be simple or complex. A “Derived Unit By Simple

Operation” represents units of operations that have only one variable

argument. This category includes power and root operations (“Derived

Unit By Power Operation” and “Derived Unit By Root Operation,”

respectively). Although mathematically, both operations are binary,

the context of software metrics usually uses these operations as a

mechanism to modify one variable by a numerical factor. For example,

a metric that measures the structural complexity of a software module

can be defined as S(i) = fout
2(i), where fout(i) is the module's expansion

that is another metric. For this reason, the metric ontology represents

these units as part of the hierarchy of simple operations. Finally, a

“Derived Unit By Complex Operation” represents units of operations

that have two variable arguments. This category involves sum, subtrac-

tion, multiplication, and division operations (“Derived Unit By Sum,”

“Derived Unit By Subtraction,” “Derived Unit By Multiplication,” and

“Derived Unit By Division,” respectively). Given that an adimensional

unit can only be derived by a division operation, the “Adimensional

Unit” concept derives from the “Derived Unit By Division” concept.

All this new hierarchy of concepts is included in the semantic model

using two relationships: “is‐measured‐in” and “has‐as‐unit.” The first

one represents the need of units in numerical scales whereas the
second one is a derivative relation that only exists if the term is simple

or complex or if the metric has a “Numerical Scale” concept assigned

(see Equation 2). The Numerical Scale concept is useful to describe the

numerical nature of the value obtained from the evaluation of a metric.

The hierarchy derived from the “Scale” concept (from the base ontol-

ogy) was alsomodified in the final ontology using the approach described

at Olsina andMartín (2003). Concepts and attributes were added, includ-

ing “Discrete Numerical Scale” and “Continuous Numerical Scale” to rep-

resent specific types of numerical scales. The incorporation of this last

concept brings with it the integration of the “Range” hierarchy in attempt

to model the collection of valid values in a continuous scale. The Range

hierarchy includes concepts tomodel lower and upper limits (“MinRange”

and “MaxRange,” respectively) and intervals (“MinMaxRange”).

The final refinement of the base ontology refers to the incorporation

of the Equation concept to the semantic model. Because the “Measure-

ment Function” concept represents a mathematical formula composed

of mathematical terms, operators, and variables, the final ontology pro-

pose a collection of concepts tomodel more appropriately this definition.

To this purpose, the Equation concept was included. All measurement

function is an equation composed of different types of terms (“Term”

concept). Each term can be represented as a simple or complex mathe-

matical operation with its arguments (“SimpleTerm” and “Complex Term,”

respectively). However, a term of an equation can be an expression that

refers to ametric. Indirect metrics use othermetrics to its own calculation

process. For this reason, the “Metric” concept is included in the Term

hierarchy. As complement of these concepts, the final ontology includes

the “Operation” hierarchy with the objective to model the most frequent

operations used in metrics. The main concepts proposed by Castro, Rico,

and Castro (1995) were used as reference model for the final specifi-

cation. The properties detailed in concepts “Simple Operation” and

“Complex Operation” allow differentiating the specific type of operation.

The metric ontology's definition included some SWRL rules

related with derivation of knowledge (Equations 2–4). These rules

are useful to reason on individuals. Equation 2 describes an example

rule that refers to one previously mentioned property: a unit must be

assigned into a metric only if its scale is numerical, then the unit will

be the one specified in the scale. Specifically, “?m” refers to an instance

of Metric, “?s” refers to an instance of “NumericalScale,” and “?u” refers

to an instance of Unit. Then, if a metric “?m” and a numerical scale “?s”

are related by the “isDimensionedIn” relationship as long as the numer-

ical scale “?s” and unit “?u” are linked by the “isMeasuredIn” relation-

ship, a new relation between the metric “?m” and the unit “?u” must

be established: “hasAsUnit,” In this case, the SWRL rule allows estab-

lishing a new relation between instances of specific concepts.

Metric ?mð Þ∧NumericalScale ?sð Þ∧isDimensionedIn ?m; ?sð Þ
∧isMeasuredIn ?s; ?uð Þ∧Unit ?uð Þ→hasAsUnit ?m; ?uð Þ;

(2)

Range ?r1ð Þ∧rangeDefinition ?r1; ?d1ð Þ∧Range ?r2ð Þ
∧rangeDefinition ?r2; ?d2ð Þ∧equals ?d1; ?d2ð Þ

→equalThanRange ?r1; ?r2ð Þ;

(3)

Equation ?e1ð Þ∧equationFormula ?e1; ?f1ð Þ∧Equation ?e2ð Þ
∧equationFormula ?e2; ?f2ð Þ∧equals ?f1; ?f2ð Þ
→equalThanEquation ?e1; ?e2ð Þ:

(4)

10 of 21 BLAS ET AL.
A similar case is given in the “equal‐than” relationships. In order to

identify equality between different instances of the same concept, the

model includes SWRL rules that derivate the equal‐than relations

(equal‐than‐unit, equal‐than‐scale, equal‐than‐equation, and equal‐

than‐range). These relations have the property of be reflexive, sym-

metric, and transitive. Its definition can be derived from the attributes

related with the different instances. Then, these SWRL rules were

added to the model in order to generate consistent individuals. Also,

its incorporation allows a later comparison between different individ-

uals that have the same properties. Equations 3 and 4 show as example

the “equal‐than‐range” and “equal‐than‐equation” inference rule.

Equation 3 uses “?r1,” “?r2,” “?d1,” and “?d2” in order to refer individ-

uals (i.e., concept instances). A similar definition is used in Equation 4

with “?e1,” “?e2,” “?f1,” and “?f2.” The predicates “Range()” and “Equa-

tion()” represent, respectively, the range and equation

concept modeled in the metric ontology. The “rangeDefinition()” and

“equationFormula()” elements formalize the “rangeDefinition” and

“equationFormula” links proposed in the semantic model in order to

establish a relation between individuals. Finally, “equalThanRange()”

and “equalThatEquation()” are new relations between the existent indi-

viduals that can be derived using the proposed associations. Equation 3

shows that if the ranges ?r1 and ?r2 have the definitions ?d1 and ?d2

respectively and both definitions are equal, then the ranges ?r1 and ?r2

are equal. A similar approach is proposed in Equation 4 in order to deter-

mine if two equations are equal. Other SWRL rules were added to enrich

operations types, adimensional units, and range delimitations. For space

reasons, these rules are not included in the paper. The set of terms

described in this work only refers to the set of rules presented. For these

rules, an exhaustive definition of terms is not required.

The approach used to evaluate completeness over quality ontology

was also used in metric ontology. However, given that there is none list

of terms applicable to the domain, the model was check using literature

(García et al., 2006;Olsina&Martín, 2003; Rijgersberg et al., 2011). Again,

details about the check process are beyond the scope of this paper.

5 | SOFTWARE ONTOLOGY

The software ontology was developed in order to represent a software

product specification. The main purpose of this ontology is to model

the domain of software systems products including all the components

than usually are develop along the development process.
FIGURE 5 Software ontology
5.1 | Domain description

A software product is a set of computer programs, procedures, and

possibly associated documentation and data, designed for delivery to

a specific user. It always includes the development of one or more

computer programs. The development process carried out for the

construction of each computer program usually involves the creation

of different artifacts. An artifact is a product produced during the

development of software that contains information of some part of

it. Some artifacts help to describe the function, architecture, and

design of the software whereas others are concerned with the process

of development itself. All artifacts can be divided in a set of entities. An

entity is an object that can be characterized by measuring its attributes.

Therefore, an attribute is a measurable physical or abstract property of

an entity. Formal definition specifies that an attribute is an inherent

property or characteristic of an entity that can be distinguished quanti-

tatively or qualitatively by human or automated means.

5.2 | Semantic model

Each of the main concepts identified in the software domain was

transformed into an ontology concept. Concepts include “Software

Product,” “Computer Program,” “Artifact,” “Entity,” and “Attribute.” The

links between the concepts were modeled as relationships. The name

of these relationships describes theway inwhich the concepts are related

(e.g., “is‐divided‐in” between the Artifact and Entity concepts). To allow a

correct identification of the instances derived from a concept, the model

includes some ontology attributes labeled as “name” and “type” according

to the case (i.e., “attributeName” and “attributeType” for the Attribute

concept). Figure 5 shows the semantic model developed.
6 | FINAL ONTOLOGY: INTEGRATION OF
THE SEMANTIC MODELS

The ontologies described in Sections 2, 3, and 4 represent different

related domains. To document a quality scheme for a software product

is necessary to unify these domains in a single model that represents

the relationships between them.

Figure 6 shows how the main concepts of each ontology are

related. An attribute of a software product needs to be described by

a quality subcharacteristic and has to be measured by a metric. In this

FIGURE 6 Relations between concepts of quality, metric, and
software ontologies

BLAS ET AL. 11 of 21
sense, the three elements define one specification of the set of

triples included at quality scheme. Therefore, for each quality

subcharacteristic, the capability of a software product is determined

by a set of internal attributes that can be measured.

To define a quality scheme for a software product is necessary to

specify which artifacts have to be evaluated. Not all the artifacts gener-

ated in the development process have to be evaluated in terms of the

product quality. Only the artifacts related with final product (directly

or indirectly) should be associated with quality subcharacteristics and

metrics. Two or more artifacts may have the same quality scheme.

However, they also may have different quality schemes assigned. The

differences depend on the stage of the development process in which

the quality scheme of the artifact is specified. If its specification is made

in early stages (as a first approach to the quality evaluation), the scheme

probably will not incorporate all the quality features required. In con-

trast, if the quality specification is madewith the creation of the artifact,

the scheme probably will be attached to the vision of the developer.

None of these situations is ideal. In fact, the recommendation is to

specify one quality scheme in early stages of the development process

and then refine it as the process is carried out. A quality scheme devel-

oped following this mechanism will be much more specific than one

developed according the other options. In this context, a single quality

scheme for a software product may be derived by unifying all the qual-

ity schemes defined for its artifacts.

6.1 | Implementation

The designed ontologies were implemented using Protégé.1 Protégé is

an extensible tool that provides a plug‐and‐play environment, which

makes it a flexible base for rapid prototyping and application develop-

ment (Knublauch et al., 2005). Protégé ontologies can be exported into

different formats including Resource Description Framework (RDF)

Schema and OWL. Ontologies defined in OWL 2 provide classes,
1Available at: http://protege.stanford.edu/
properties, individuals, and data values, which are primarily exchanged

as RDF documents.

Figure 7 resumes the implementation process carried out to. In

order to obtain the final ontology, the domain ontologies developed

were implemented in OWL format. Each semantic model was built

individually in order to maintain the original designs. All the elements

defined in the ontologies were specified in English and Spanish to

allow multiple language support. Also, an annotation component

was included for each defined element with the purpose to describe

themodeled concept. The implementations made for the domain ontol-

ogies were imported in a new document with aim to model the final

ontology. This new model requires the creation of the relationships

defined in the final ontology (Figure 6) to relate the semantic models.

Figure 8 shows the final ontology implemented over the logical

view window of Protégé. The selected class (shown in the left side

of the view) corresponds to the Attribute concept whereas the

sections presented in the right side of the view show the properties

related with this concept. Over the annotation, section two proper-

ties are used. The label property represents a synonymous (in other

language, in this case, Spanish) of the concept modeled whereas the

comment property represents a colloquial definition of the concept.

Both properties are based on the string data type. On the other hand,

in the description section, the set of axioms that specify the concept

is included. Each “Equivalent to” axiom represents one link from the

“Attribute” class to another class or data type, that is, the relationships

modeled in order to relate the concept with the rest of the ontology's

concepts. For example, the “isDescribedBy” relationship relates the

Attribute concept with the Subcharacteristic concept whereas the

attributeName relationship relates the Attribute concept with the

string data type. The axioms included in this section match with the

links modeled for the Attribute concept in Figures 5 and 6.

The SWRL rules defined in the ontologies were specified using

Protégé. Figure 9 shows the rules implemented over the window of

Protégé. The first rule is equivalent to the SWRL rule exemplified in Equa-

tion 1 but instead of describing the security characteristic, it describes the

reliability characteristic. The rest of the rules are applicable to other aspects

of the Quality ontology and to the description of the Metric ontology.
FIGURE 7 Implementation process carried out to build the final
ontology

http://protege.stanford.edu

2Available at: http://oops.linkeddata.es/

FIGURE 8 Final ontology implemented over the logical view window of Protégé

FIGURE 9 SWRL rules implemented using Protégé. SWRL, Semantic Web Rule Language

12 of 21 BLAS ET AL.
6.2 | Detection of modeling problems

The ontology evaluation process is an important activity that allows

the detection of potential problems derived by a lack of modeling

experience. This process includes the verification, validation, and

assessment of the ontology developed. The verification activity refers

to the correct implementation (i.e., if the ontology has been correctly

developed). The detection of problems in the model can be realized

as part of this activity, along with the fix of the problems detected.
In order to verify the final ontology to guarantee its correctness

over the common modeling errors, each of the domain specific ontol-

ogies developed must be evaluated. The verification was made using

“OOPS!” tool.2 OOPS! (OntOlogy Pitfall Scanner) is a web application

that helps to detect some of the most common pitfalls that appear

when ontologies are developed. Its purpose is to help developers dur-

ing the diagnose activity of the validation process by describing the

http://oops.linkeddata.es

BLAS ET AL. 13 of 21
problems detected in a specific ontology. Because not all pitfalls are equally

important, the tool attached an importance level to each problem. There

are three possible levels: critical, important, and minor. A critical pitfall is

one that is crucial to correct or, otherwise, it could affect the consistency,

reasoning, and applicability of the ontology. An important pitfall is one that,

though not critical for ontology function, it is important to correct. Finally, a

minor pitfall is not really a problembut its correctionwill improve the ontol-

ogy. For each detected problem, the tool also shows an example and indi-

cates which part of the semantic model is the one that causes the issue.

The reparation activity of the validation process is not supported by the

tool. The problems indicated as troubles should be fixed by the developer

(taking into account the description of the problem detected).

The verification of the ontologies developed was made using the

OWL documents. Figure 10 shows the list of pitfalls and elements

detected as problems in the metric (Figure 10a), quality (Figure 10b), and

software (Figure 10c) ontologies, respectively. As it can be seen, in all

cases, the pitfalls detected were classified with a minor importance level.

In all the ontologies, the “missing inverse relationships” problem

(pitfall identified as P13) was detected. However, this issue is not a real

problem. The need of inverse relationships in an ontology is related to

the nature of the represented domain. In the software and metrics

domain, the relationships between concepts are unidirectional and,

therefore, is not necessary to define inverse relationships in the ontol-

ogy. The same occurs in the product quality model defined by ISO/IEC

25010. But, in this case, some relationships require both navigability

senses and, therefore, some inverse relationships were specified. An

extra pitfall was detected in the metric ontology. The problem refers

to the creation of an element that is isolated from the others. Specifically,
FIGURE 10 Pitfalls detected by the OOPS! tool in the ontologies develop

TABLE 2 Set of metrics applied to the final ontology to estimate its comp

Definition Abbrev.

Number of classes NOC Count of t

Number of relations NOR Count of t

Number of root classes NORC Number of

Number of leaf classes NOLC Number of

Relationship richness RR = |P|/(|H| + |P|) Variety of
|P| as the n
|H| as the n

Inheritance richness IR = |H|/|NOC| Average nu
|NOC| as t
|H| as the n

Depth of the subsumption hierarchy DOSH Length of t
class in a

Attribute richness AR = |NAT|/|NOC| Average nu
|NAT| as th
|NOC| as t
this issue is related to the “Operation” concept. The Operation concept is

a representation that englobes all the mathematical operations that usu-

ally are used in the metrics contexts. However, the links between the

operations and its arguments were modeled between each specific oper-

ation and the term and unit corresponding. Therefore, the main concept

is only used tomodel the common characteristics of different operations.

The lack of connections with other concepts is not a real problem.

The verification of the final ontology also was performed using

OOPS!. However, because its OWL file only saves the classes, object

properties, and data properties defined in the final ontology, the infor-

mation associated with the imported ontologies is not available to

evaluation. Therefore, the tool only examines the relationships defined

in order to relate the three developed models. For this reason, each

domain ontology was evaluated individually. The result of this verifica-

tion only showed the pitfall of missing inverse relationships. As in the

previous cases, this pitfall is not a real problem because the relation-

ships defined do not require bidirectional navigability.
6.3 | Evaluation

It is difficult to quantify the quality of domain ontologies due to the

absence of a formal method that allows its evaluation. A lot of research

work on this area focus on the analyses of the structural dimensions of

the ontology (e.g., number of classes, relations, and instances defined),

given a way to estimate the complexity of the semantic model. In order

to evaluate the complexity of the final ontology, the set of metrics used

by Vegetti, Leone, and Henning (2011) was selected. These metrics

(Table 2) are used to estimate the structural characteristics of the ontol-
ed. OOPS!, OntOlogy Pitfall Scanner

lexity in terms of structural characteristics

Description Value

he number of classes defined in the ontology. 87

he number of relationships defined in the ontology. 140

classes without super classes. 15

classes without subclasses. 72

relationships in the ontology. Consider
umber of noninheritance relationships.
umber of inheritance relationships.

68/140 = 0.485

mber of subclasses per class. Consider
he total number of classes
umber of hierarchical relations.

72/87 = 0.827

he longest path from a given class C to the root
given ontology subsumption hierarchy.

5

mber of attributes per class. Consider
e number of attributes for all classes.
he number of classes.

32/87 = 0.367

TABLE 3 Set of queries developed to obtain information about the composition of a quality scheme

Ans. Id. Question

Metric Q1 Which metrics are useful to evaluate the “X” quality characteristic?
Q2 Which metrics are useful to evaluate the “Y” quality subcharacteristic?
Q3 How many different metrics have been related with the “X” quality

characteristic?
Q4 How many different metrics have been related with the “Y” quality

subcharacteristic?

Characteristic, subcharacteristic,
or quality scheme

Q5 To which quality characteristic is associated the “Z” metric?
Q6 How many times has related the “Z” metric with the “X” quality

characteristic?
Q7 To which quality characteristic is more often associated the “Z” metric?
Q8 To which quality subcharacteristic is associated the “Z” metric?
Q9 How many times has related the “Z” metric with the “Y” quality

subcharacteristic?
Q10 To which quality subcharacteristic is more often associated the “Z” metric?
Q11 Which is the quality scheme related to the “V” artifact of the “W” software

product?
Q12 Which is the quality scheme related to the “W” software product?

Artifact or computer program Q13 To which artifact has been associated the “Z” metric?
Q14 To which computer program has been associated the “Z” metric?
Q15 How many artifacts have been associated the “Z” metric?
Q16 How many computer programs have been associated the “Z” metric?

FIGURE 11 SPARQL query that models the question Q1

TABLE 4 Functional requirements, quality goals, and specific quality
requirements related with the online toy store

Functional
requirement Quality goal

Quality requirement
(subcharacteristic)

Log‐in Secure access and user
validation

Authenticity
Integrity

Friendly interface User interface aesthetics
Learnability

Create account Communication between
other systems

Interoperability

Friendly interface User interface aesthetics
Learnability

Secure access and user
validation

Authenticity
Integrity

Search for toys Communication between
catalogues at any time

Interoperability
Availability

Fast responses Time behavior
Friendly interface User interface aesthetics

Learnability

Checkout Fast communication
between other systems

Time behavior
Interoperability

Reliable and secure
payment operations

Confidentiality

Friendly interface User interface aesthetics
Learnability

14 of 21 BLAS ET AL.
ogy. It is important to note that quantitative measurement of complexity

can help ontology development but it cannot be used to prove complete-

ness, coherence, correctness, and reusability features.

The results of applying these metrics to the final ontology are

summarized in the “Value” column. Given that each individual domain

ontology contains 42, 40, and 5 classes (respectively for quality, metric,

and software ontologies), the total count of classes in the final ontol-

ogy is 87. These 87 classes are divided in 72 leaf classes and 15 root

classes. On the other hand, the final ontology contains 140 relations,

from which 72 correspond to hierarchical relationships and 68 to other

types of relationships. By computing the other metrics, the final ontol-

ogy has an IR of 0.827 which together with the DOSH value indicate

that the proposed ontology is of a vertical nature. This means that

represents knowledge of a specific domain, allowing to instantiate

schemes that fit to the quality specification. In consequence, the value

of AR gives as average 0.367 attributes per concept. This average

shows that the attributes of the ontology are one of the characteristics

that allow restricting the domain. Finally, the RR is very close to the

average. A value of 48.5% implies that the number of hierarchical

relationships is a bit greater than the number of the other kind of asso-

ciations. In this sense, the ontology maintains an adequate balance

between inheritance relations and associations.

6.4 | SPARQL queries

SPARQL (SPARQL Protocol and RDF Query Language) is a semantic

query language for databases, able to retrieve and manipulate data

stored in RDF format (and therefore OWL 2 documents). The results

of SPARQL queries can be result sets or RDF graphs.

In order to obtain information about the composition of a

quality scheme, a set of questions was designed and implemented.

Sixteen questions were developed. Each question was classified in

one category according to the type of answer expected. The catego-

ries used are metric, characteristic, subcharacteristic, or quality

scheme, and artifact or computer program. Table 3 resumes the

questions developed.
New questions can be added to the set of proposed queries if and

only if themodel has the information required to reply them. In other case,

the model should be restructured in order to include the missing content.

FIGURE 12 Software product representation of the online toy store using the final ontology developed

BLAS ET AL. 15 of 21
With aims to enrich the final ontology, each question was imple-

mented as a query using SPARQL language. Figure 11 shows as exam-

ple the SPARQL query that models the question Q1. The query

contains three main clauses: SELECT, WHERE, and FILTER. The

SELECT clause defines three variables (?metricname, ?metricpurpose,

and ?metricindividual) from which a valid RDF triple could be created

in the WHERE clause. In the first line of the WHERE clause for all

the individuals, its type is retrieved. Then, in the second line, only for

the individuals in which the contains relationship exists, the set of

subcharacteristics contained is retrieved. The third line obtains the

attributes associated with the subcharacteristics found previously,

whereas the fourth line obtains the metrics that measure the attributes

found. Finally, in the fifth and sixth lines, the name and the purpose of

each metric found are retrieved. The FILTER clause helps with the

search specifying the type of characteristic to evaluate.
FIGURE 13 Software product and quality model representation of the onl
The rest of the questions were transformed in SPARQL queries in

the same way that Q1.
7 | CASE STUDY: INSTANTIATING THE
FINAL ONTOLOGY

In order to exemplify the creation of a quality scheme using the

ontology developed as support mechanism, a case study is pre-

sented. The case study proposed is based on a simplified version

of an online toy store (an e‐commerce web‐based application). This

case is introduced in previous study (Castillo, Losavio, Matteo, &

Boegh, 2010) with aim to obtain a common terminology to develop

models associated with requirements, aspects, and quality of a soft-

ware product.
ine toy store using the final ontology developed

FIGURE 14 Quality scheme developed by the instantiation of the final ontology in order to describe the for online toy store case study

TABLE 5 Description of the instance “%ExpiredSession”—indirect metric instantiation

Element Class Object properties

%ExpiredSessions Indirect metric isCalculatedBy Session/ExpiredSessions
isDimentionedIn %Scale

Session/ExpiredSessions Measurement function hasDefinition FormulaExpiredSessions

FormulaExpiredSessions Complex term hasAsUnit %Unit
hasAsFirstArgument Session
hasAsSecondArgument Expired Session
hasAsComplexOperator Division

%Unit Adimensional unit complexArgument1 Session unit
complexArgument2 Session unit

Session unit Simple unit

%Scale ContinuousNumericalScale hasRange [0,1]

Division DivisionOperation

Session Direct metric (see Table 6)

ExpiredSession Direct metric (see Table 7)

[0,1] MinMaxRange

16 of 21 BLAS ET AL.

BLAS ET AL. 17 of 21
7.1 | Description

In the online toy store, the customers (web user) can buy a toy online

by registering an account and specifying a log‐in. The software system

must provide a set of options to browse through the toy store online

catalogue. The customers can add or remove toys to its shopping car

by using a selection mechanism.

When a customer wants to checkout, its goal is to buy the current

contents of their shopping car (including paying for the content and

arranging the delivery of the toys). A customer that has generated an

order can check its status and even can cancel it (only if it has not been

processed).

Besides the functional operations, the demands of the customers

include secure transactions, fast processing, and easy browsing

through the catalogue and also require that the system operates

365 days of the year.
7.2 | Functional requirements and quality goals

Castillo et al. (2010) identifies the main functional concerns and

related quality goals of the online toy store from the case study

description. Their work also defines specific quality requirements

related with each quality goal identified. However, the defined qual-

ity requirements refer to the quality model proposed in ISO/IEC

9126‐1 (i.e., the quality standard used as base of ISO/IEC 25010).

Therefore, the definition of the specific quality requirements was

modified in order to refer to the quality model of ISO/IEC 25010.

Table 4 summarizes the functional requirements, quality goals, and

quality requirements identified.
TABLE 6 Description of the instance “Session” used in “%
ExpiredSession”—direct metric instantiation

Element Class Object properties

Session Direct metric isObtainedBy Count during
execution

isDimentionedIn ContinuousScale
hasAsUnit Session unit

Count during
execution

(see Figure 14)

ContinuousScale (see Figure 14)

Session unit (see Table 5)

TABLE 7 Description of the instance “ExpiredSession” used in “%
ExpiredSession”—direct metric instantiation

Element Class Object properties

ExpiredSession Direct metric isObtainedBy Count during
execution

isDimentionedIn ContinuousScale
hasAsUnit Session unit

Count during
execution

(see Figure 14)

ContinuousScale (see Figure 14)

Session unit (see Table 5)
7.3 | Quality scheme

In order to represent the quality scheme of the online toy store

using the ontology developed, it is necessary to explicit its composition

in terms of software product (i.e., using the elements defined in the

software ontology). With aim to capture the quality requirements iden-

tified, only the attributes related with these requirements are included.

The limitation in a unique artifact was adopted in order to obtain a

smaller quality scheme. However, the ontology allows defining multiple

artifacts in relation to one computer program. Figure 12 illustrates the

instantiation made to represent the case study. The diagram only

includes instances of classes and object properties.

Because each quality requirement identified refers to a specific

subcharacteristic and each subcharacteristic belongs to a specific

characteristic, the instantiation of the quality ontology was a simple

step. After that, the specification of the isDescribedBy relationships

was done (in order to relate the quality subcharacteristics with

the software attributes). The quality concepts incorporated to the soft-

ware scheme (illustrated previously) are shown in Figure 13.

For each attribute identified, the final quality scheme must

incorporate a software metric that represents the way in which the

attribute should be measured. In order to evaluate the software

quality, the metrics must be expressed with the concepts prescribed

in the metric ontology. Figure 14 shows the quality scheme of the

online toy store with the metrics for each attribute. The figure

includes a complete description of the “Number of Correct Access”
software metric (instance #CorrectAccess) to show how a metric

should be described. The rest of the descriptions are not present

in the diagram in order to maintain its clarity. However, with the

purpose of describe an indirect metric, Tables 5, 6, and 7 exemplify

the representation of the components used for describe the

“Percentage of expired sessions” metric (instance %ExpiredSessions).

The case study quality scheme was implemented using Protégé as

an instance of the ontology implemented.
7.4 | Executing queries over the quality scheme

Using the quality scheme of the online toy store implemented in

Protégé, a set of SPARQL queries was executed in order to show

how the specification responds to the questions.

The selected queries were taken from two different groups in

order to show different types of answers (metric and characteristic,

subcharacteristic, or quality scheme). Specifically, the queries Q1, Q3,

Q8, and Q11 were selected as examples. Figure 15 shows the param-

eters used in each question and the result of its execution over

Protégé. Although Q3 shows a quantity, Q1, Q8, and Q11 show the

instances that answer to the criteria indicated in the questions. For

example, the answer to the question Q8 refers to an instance of the

“User Interface Aesthetics” concept that is related with an instance

of the Metric concept named “Interface Novelty.”

The main purpose of the queries is to allow extract information

about the composition of the quality scheme developed for a spe-

cific software product. The result of these queries can be used as

a reference to build new quality schemes or to improve the existing

ones taking into account the composition of other schemes. In this

way, the realization of quality schemes not only improves the overall

FIGURE 15 SPARQL queries execution over the quality scheme of the online toy store

18 of 21 BLAS ET AL.
quality of the product but also helps the developers to understand

which software aspects are directly related to quality.
7.5 | Discussion

The case study shows how a QS can be built using the requirements

specification of a software product (in this case, an online toy store).

From the functional requirements (Table 4), by specifying quality goals,
a set of quality subcharacteristics is defined. Each subcharacteristic

identified refers to a concept of the quality model ontology. Then,

using the final ontology elements, an appropriate QS is instantiated

(Figure 14).

By having the QS mechanism, software quality can be docu-

mented uniformly along all the development process. Now, the quality

specification is visible to all the stakeholders. So the use of quality

schemes as a documentation technique will improve the quality

BLAS ET AL. 19 of 21
understanding of all the participants. During maintenance phase, a QS

will give a support document that will help to analyze the changes

impact over the quality properties specified. Then, benefits in this type

of mechanism are multiple, helping to improve the development pro-

cess. The absence of QS will cause a wrong track of quality require-

ments, confusing the development team over its traceability.

8 | CONCLUSIONS AND FUTURE WORK

Documentation is an integral part of a software system. It contains the

information that is necessary to effectively and successfully develop,

use, and maintain a system. In practice, however, the creation of appro-

priate documentation is largely neglected (Bayer & Muthig, 2006).

In this paper, an ontology to document quality schemes is pro-

posed. The final model represents a specific domain that focuses on

the evaluation of a software product quality. One instantiation of this

semantic model gives a quality scheme for a specific software product.

The created scheme can be used as a document that specifies the mea-

surement mechanism that should be applied over different artifacts

through the development process.

In addition, a case study has been presented. This case study is

based on the specification of a quality scheme to an online toy store.

The instantiation of the concepts proposed in the ontology for the

definition of the quality scheme is one of the main results obtained.

The execution of some SPARQL queries over the quality scheme

created shows how information contained in this type of document

is useful. This document can contribute to the understanding of the

main quality aspects associated with a specific software product and

to develop of new ways to measure these quality aspects.

The implementation of a tool that automates the elaboration of

the quality schemes is the next step in this direction. The ontology

designed can be taken as base of this tool, using an ontology‐based

approach. The main purpose of this tool should be the creation,

storage, modification, and query of the existent quality schemes. With

this technological support, the development team could easily under-

stand the quality aspects related with a specific software artifact and

see how the quality should be measured.

In the future, quality in use can be added to the final ontology in

order to analyze other aspects of the software product. The ontology

can be adapted to other types of quality models because the quality

semantic model is an independent model. All the specific characteris-

tics defined in the quality in use model should be modeled as a new

semantic model and, then, replace the quality semantic model with this

new specification (maintaining the relationships between different

models). By simply changing the quality model ontology, the approach

proposed allows to reuse the existing models and, then, define a new

type of document in order to specify other quality properties. As the

metric concept is modeled in universal way, a metric can be defined

to any type of quality property. Then, the independence of the

semantic models gives modularity over the ontological approach.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support received from

CONICET (PIP 112‐20110100906) and Universidad Tecnológica

Nacional (PID 25/O144 and PID 25/O156).
REFERENCES

Abebe, S., & Tonella, P. (2015). Extraction of domain concepts from the
source code. Science of Computer Programming, 98(4), 680–706.

Al Balushi, T., Sampaio, P., & Loucopoulos, P. (2013). Eliciting and prioritiz-
ing quality requirements supported by ontologies: A case study using
the ElicitO framework and tool. Expert Systems, 30, 129–151.

Al‐Badareen, A., Selamat, M., Jabar, M., Din, J., & Turaev, S. (2011).
Software quality models: A comparative study. Software Engineering
and Computer Systems, Communications in Computer and Information
Science, 179, 46–55.

Albin, S. (2003). The art of software architecture: Design methods and
techniques (1st ed.). John Wiley & Sons.

Ampatzoglou, A., Frantzeskou, G., & Stamelos, I. (2012). A methodology to
assess the impact of design patterns on software quality. Information
and Software Technology, 54(4), 331–346.

Barney, S., Mohankumar, V., Chatzipetrou, P., Aurum, A., Wohlin, C., &
Angelis, L. (2014). Software quality across borders: Three case studies
on company internal alignment. Information and Software Technology,
Special sections on International Conference on Global Software Engineer-
ing – August 2011 and Evaluation and Assessment in Software Engineering
– April 2012. 56, p. 20–38.

Barney, S., & Wohlin, C. (2009). Software product quality: Ensuring a
common goal. Trustworthy Software Development Processes, Lecture
Notes in Computer Science, 5543, 256–267.

Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice
(3rd ed.). Addison‐Wesley Professional.

Bayer, J., & Muthig, D. (2006). A view‐based approach for improving soft-
ware documentation practices. 13th Annual IEEE International
Symposium and Workshop on Engineering of Computer Based Systems,
2006. P.10.

Bertoa, M. F., Vallecillo, A., & García, F. (2006). An ontology for software
measurement. In Ontologies for software engineering and software
technology (pp. 175–196). Berlin Heidelberg: Springer.

Bogado, V., Gonnet, S., & Leone, H. (2014). Modeling and simulation of
software architecture in discrete event system specification for quality
evaluation. SIMULATION, 90, 290.

Boukouchi, Y., Marzak, A., Benlahmer, H., & Moutachaouik, H. (2013).
Comparative study of software quality models. IJCSI International
Journal of Computer Science Issues, 309–314.

Castillo, I., Losavio, F., Matteo, A., & Boegh, J. (2010). REquirements,
aspects and software quality: The REASQ model. Journal of Object
Technology, 9(4), 69–91.

Castro, E., Rico, L., & Castro, E. (1995). Estructuras aritméticas elementales y
su modelización. Grupo Editorial Iberoamericana, p. 45–79.

Couto, R., Ribeiro, A., & Campos, J. (2014). Application of ontologies in
identifying requirements patterns in use cases. 11th International Work-
shop on Formal Engineering approaches to Software Components and
Architectures (FESCA). 147, p. 62–76.

Dargan, J., Campos‐Nanez, E., Fomin, P., & Wasek, J. (2014). Predicting
systems performance through requirements quality attributes model.
Procedia Computer Science, 28, 347–353.

De Graaf, K., Liang, P., Tang, A., Van Hage, W., & Van Vliet, H. (2014). An
exploratory study on ontology engineering for software architecture
documentation. Computers in Industry, 65(7), 1053–1064.

Deissenboeck, F., Juergens, E., Lochmann, K., & Wagner, S. (2009). Soft-
ware quality models: Purposes, usage scenarios and requirements.
ICSE Workshop on Software Quality 2009 (WOSQ '09). p. 9–14.

El‐Haik, B., & Shaout, A. (2010). Software design for six sigma: A roadmap for
excellence (1st ed.). John Wiley & Sons.

Fenton, N., & Bieman, J. (2014). Software metrics: A rigorous and practical
approach (3rd ed.). Boca Raton: CRC Press.

García, F., Bertoa, M., Calero, C., Vallecillo, A., Ruíz, F., Piattini, M., &
Genero, M. (2006). Towards a consistent terminology for software
measurement. Information and Software Technology, 48(8), 631–644.

20 of 21 BLAS ET AL.
García‐Peñalvo, F., Colomo‐Palacios, R., García, J., & Therón, R. (2012).
Towards an ontology modeling tool. A validation in software engineer-
ing scenarios. Expert Systems, 39, 11468–11478.

Gómez‐Pérez, A., Fernandez‐Lopez, M., & Corcho, O. (2010). Ontological
engineering: With examples from the areas of knowledge management,
e‐commerce and the semantic web (1st ed.). Springer London.

Gruber, T. A. (1993). A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5(2), 199–220.

Hadzic, M., Chang, E., Dillon, T., Kacprzyk, J., & Wongthongtham, P. (2009).
Ontology‐based multi‐agent systems. Germany: Springer Berlin
Heidelberg.

Harris, S., Seaborne, A., & Prud'hommeaux, E. (2013). SPARQL 1.1 Query
Language. W3C recommendation, 21.

Henderson‐Sellers, B. (2011). Bridging metamodels and ontologies in soft-
ware engineering. Journal of Systems and Software, 84(2), 301–313.

Horrocks, I., Patel‐Schneider, P., Boley, H., Tabet, S., Grosof, B., & Dean, M.
(2004). SWRL: A semantic web rule language combining OWL and RuleML.
W3C member submission, 21, 79.

IEEE Standard 1061:1998, IEEE Standard for a Software Quality Metrics
Methodology – Description.

ISO/IEC 25010:2011, System and software quality models.

ISO/IEC 25020:2007, Measurement reference model and guide.

ISO/IEC TR 9126‐2:2003, Software engineering ‐ Product quality ‐ Part 2:
External metrics.

ISO/IEC TR 9126‐3:2003, Software engineering ‐ Product quality ‐ Part 3:
Internal metrics.

Jwo, J., & Cheng, Y. (2010). Pseudo software: A mediating instrument for
modeling software requirements. Journal of Systems and Software,
83(4), 599–608.

Kan, S. (2003). Metrics and models in software quality engineering (2nd ed.).
Addison‐Wesley Professional.

Khoshgoftaar, T., Liu, Y., & Seliya, N. (2004). A multiobjective module‐order
model for software quality enhancement. IEEE Transactions on
Evolutionary Computation, 8(6), 593–608.

Kitchenham, B. A., Hughes, R. T., & Linkman, S. G. (2001). Modeling
software measurement data. IEEE Transactions on Software Engineering,
27(9), 788–804.

Kitchenham, B., & Pfleeger, S. (1996). Software quality: The elusive target.
IEEE Software, 13, 12.

Knublauch, H., Horridge, M., Musen, A., Rector, R., Stevens, N., Drummond,
P.…Wang, H. (2005). The Protégé OWL experience.Workshop on OWL:
Experiences and Directions, 4th International Semantic Web Conference.

Martin, M., & Olsina, L. (2003). Towards an ontology for software metrics
and indicators as the foundation for a cataloging web system. Proceed-
ings of the 2003 international conference on Web engineering, July 14–18,
2003, Oviedo, Spain, pp. 103–113.

Meiappane, A., Chithra, B., & Venkataesan, P. (2013). Evaluation of
software architecture quality attribute for an internet banking system.
International Journal of Computer Applications, 62(19), 21.

Milicic, D. (2005). Software quality models and philosophies. Software
Quality Attributes and Trade‐Offs, 3–19.

Olsina, L., & Martín, M. (2003). Ontology for software metrics and indica-
tors. Journal of Web Engineering, 2(4), 262–281.

Orgun, M. A., & Meyer, T. (2008). Introduction to the special issue on
advances in ontologies. Expert Systems, The Journal of Knowledge
Engineering, 25(3), 175–178.

Papas, D., & Tjortjis, C. (2014). Combining clustering and classification for
software quality evaluation. Artificial Intelligence: Methods and
Applications, Lecture Notes in Computer Science. pp. 273–286.

Pires, P., Delicato, F., Cóbe, R., Batista, T., Davis, J., & Song, J. (2011).
Integrating ontologies, model driven, and CNL in a multi‐viewed
approach for requirements engineering. Requirements Engineering,
16(2), 133–160.
Pressman, R. (2010). Software engineering: A practitioner's approach (7th ed.).
McGraw‐Hill.

Rech, J., & Bunse, C. (2008). Evaluating performance of software archi-
tecture models with the Palladio component model. IGI Global. p.
95–118.

Reinhartz‐Berger, I., Sturm, A., & Wand, Y. (2013). Comparing functionality
of software systems: An ontological approach. Data & Knowledge
Engineering, 87, 320–338.

Rijgersberg, H., Wigham, M., & Top, J. (2011). How semantics can improve
engineering processes: A case of units of measure and quantities.
Advanced Engineering Informatics, 25(2), 276–287.

Roshandel, R., Medvidovic, N., & Golubchik, L. (2007). A Bayesian model for
predicting reliability of software systems at the architectural level.
Quality of Software Architectures; Software Architectures, Components
and Applications: QoSA. pp. 108–126.

Roussey, C., Pinet, F., Kang, M., & Corcho, O. (2011). An introduction to
ontologies and ontology engineering. Ontologies in Urban Development
Projects, Springer London, 1, 9–38.

Software Product Quality Requirements and Evaluation SQuaRE (2005)
Guide to SQuaRE, 1o Ed.

Van Zeist, R., & Hendriks, P. (1996). Specifying software quality with the
extended ISO model. Software Quality Journal, 5(4), 273–284.

Vegetti, M., Leone, H., & Henning, G. (2011). PRONTO: An ontology for
comprehensive and consistent representation of product information.
Engineering Application of Artificial Intelligence, Elsevier, 24, 1305–1327.

W3C OWL Working Group (2012). OWL 2 web ontology language docu-
ment overview. [Online] Available from: http://www.w3.org/TR/
owl2‐overview/ [Accessed January 26, 2015].

María Julia Blas received her Information Systems Engineering

degree from Universidad Tecnológica Nacional (UTN), Santa Fe,

Argentina, in 2014. She is currently a PhD student in Information

Systems Engineering at Universidad Tecnológica Nacional (UTN).

She also has a Research Fellowship from the National Council

for Scientific and Technical Research of Argentina (CONICET),

to work at Instituto de Desarrollo y Diseño (INGAR). Her

research interests focus on software quality evaluation using

software architecture.

Silvio Gonnet received an Engineering degree in Information Sys-

tems from Universidad Tecnológica Nacional (UTN), Santa Fe,

Argentina, in 1998 and obtained his PhD degree in Engineering

from Universidad Nacional del Litoral (UNL) in 2003. He currently

holds a Researcher position at the National Council for Scientific

and Technical Research of Argentina (CONICET), to work at

Instituto de Desarrollo y Diseño (INGAR). Also, he works as an

Assistant Professor at Universidad Tecnológica Nacional. His

research interests are in models to support the design process,

software architectures, and semantic web.

Horacio Leone is a full Professor at the Department of Information

Systems Engineering of the Facultad Regional Santa Fe,

Universidad Tecnológica Nacional (Santa Fe, Argentina). He also

holds a Researcher position at the National Council for Scientific

and Technical Research of Argentina (CONICET), working at

Instituto de Desarrollo y Diseño. He obtained his PhD degree in

Chemical Engineering from Universidad Nacional del Litoral (Santa

Fe, Argentina) in 1986 and was a Postdoctoral Fellow at the

http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/owl2-overview

BLAS ET AL. 21 of 21
Massachusetts Institute of Technology (1986–1989). His current

research activities focus on software architectures, models for

supporting the design process, semantic web applications to sup-

ply chain information systems, and enterprise modelling. He has

supervised several PhD students.
How to cite this article: Blas MJ, Gonnet S, Leone H. An

ontology to document a quality scheme specification of a soft-

ware product. Expert Systems. 2017;e12213. https://doi.org/

10.1111/exsy.12213

https://doi.org/10.1111/exsy.12213
https://doi.org/10.1111/exsy.12213

