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Reaction invariant-based reduction of the activated sludge model
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A B S T R A C T

In any system, there are some properties, quantities or relationships that remain unchanged despite the
applied transformations (system invariants). For a batch reaction system with n linearly independent
reactions and m components (n<m) there exist linear combinations of the concentrations that are
unaffected by the reaction progress, i.e. so-called reaction invariants. The reaction invariant concept can
be used to reduce the number of ordinary differential equations (ODEs) involved in batch bioreactor
models. In this paper, a systematic methodology of model reduction based on this concept is applied to
batch activated sludge processes described by the Activated Sludge Model No. 1 (ASM1) for carbon and
nitrogen removal. The objective of the model reduction is to describe the exact dynamics of the states
predicted by the original model with a lower number of ODEs. This leads to a reduction of the numerical
complexity as nonlinear ODEs are replaced by linear algebraic relationships predicting the exact
dynamics of the original model.
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1. Introduction

In general, the dynamics of biochemical processes mediated by
pure or mixed microbial cultures is an issue of main concern from
both a theoretical and applied point of view in the biotechnological
and environment-related fields. The activated sludge processes
form a clear example; they are widely used for removal of organic
carbonaceous matter (carbon, C) and nutrients (nitrogen, N, and
phosphorus, P) from municipal and industrial wastewater streams.
In the mixed microbial consortia that constitute the activated
sludge, the interactions established among the different microbial
populations are quite complex. For that reason, structured and
non-structured mathematical models with different degree of
complexity and detail have been developed to represent such
intricate microbiological interactions, and then, to predict the
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process performance under the imposed operating conditions. In
this regard, a task group created under the umbrella of the
International Water Association (IWA) has made significant efforts
to develop mathematical models of the activated sludge process,
which are widely known as the Activated Sludge Model (ASM)
family: ASM1 [1], ASM2 [2], ASM2d [3] and ASM3 [4]. These
models are intended to condensate the present understanding of
the relevant biological and biochemical phenomena taking place in
such complex processes. This model family is considered to be the
state-of-the-art of activated sludge models for research, training
and teaching purposes, albeit in practice they have to be calibrated,
adapted or adjusted to the particular case under study.

However, it is well known that the use of complex/large highly
nonlinear dynamic models is sometimes inadvisable when they
are included into optimization routines or approaches; indeed,
difficulties may arise in determining a large number of parameters
and/or in manipulating a large number of differential equations for
optimization purposes. In such applications, simpler and small or
medium-size models are desired which should be sufficiently
detailed to adequately describe the variables dictating the main
process dynamics.
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In the modeling and simulation field, the terms “model
reduction”, “model order reduction”, “model simplification” and
so on, may in general sound somewhat ambiguous or unspecific;
the definition of these terms depends mainly on the context and
application field in which they are used. In this paper, the term
“model reduction” should be understood as an analytical technique
to represent a dynamic model of a system, named the “original”
model, with a lower number of differential equations to reduce its
numerical complexity but keeping its dynamic behavior. The
“reduced” model should not be understood as a “simplification” of
the original model in terms of the degree of detail for describing
the involved physical or (bio)chemical phenomena.

In general, the complexity of reaction kinetic models depends
on the number of components and chemical and/or biochemical
reactions, and mainly on the nature of the mathematical
expressions that describe the process rates.

The model that describes the dynamics of the reactor system
studied in this work consists on nonlinear ordinary differential
equations (ODEs) representing the mass balances of the chemical
species and microbiological species (biomass). As isothermal
conditions are often assumed, the energy balance can in that case
be ignored. This assumption–isothermal condition–is generally
accepted in activate sludge system modeling, although tempera-
ture corrections are possible using Arrhenius-type equations
(temperature corrections were given with the ASM2d model and
ASM1 was provided with a set of parameters for two different
temperatures).

In any system of physical, chemical or biological nature, or a
combination of them, there are some properties, elements,
quantities or relationships of the system that remain unchanged
despite the transformations applied to it. These properties,
elements, amounts or relationships are called invariants of the
system.

A pioneering work on the fundamental principles on the theory
of invariants was presented by Glenn in 1915 [5], which has been
recently reprinted [6]. Because of the property of the reaction
invariants of being independent of the reaction progress, the
concept of reaction invariants has been successfully used for
design, control, and analysis of processes. Reaction invariants were
first used for studying the dynamics of process systems by
Asbjørnsen and co-workers in several papers on reactor dynamics
and control [7–9], where systematic methods were proposed to
separate the state space of a reacting system into invariants and
variants using linear algebra to perform the transformations,
allowing to handle large chemical systems on computers. Fjeld
et al. [9] have used reaction invariants to reduce the dimensionality
of the system of differential equations describing the dynamics of
processes in continuous stirred tank reactors, and highlighted the
importance of using reaction invariants for the analysis of
eigenvectors, state observability and controllability of the contin-
uous stirred tank reactor. Srinivasan et al. [10] extended this
methodology to include flow invariants for such systems using
nonlinear transformations. Gadewar et al. [11] proposed a
framework for automating the determination of mole balances
around and between plants in complexes �such as petrochemical,
pharmaceutical, specialty chemical, and pesticide manufacturing
complexes� represented as a state-task network, where the
reaction invariants are used for formulating the component
balances. Mole balances for mixing and splitting of component
flows are identified automatically, which provides the structure of
the coupling between plants and a systematic means to identify
options to make or buy intermediates, and thus helping to
determine the number of degrees of freedom for the synthesis of
the process. Waller and Mäkilä [12] recognized that reaction
invariants have their origins in the fundamental laws of
conservation. They illustrated the utilization of the concepts of
reaction invariants and variants in chemical reactor modeling,
simulation and control, through the simulation of an industrial
cement kiln described by a number of partial differential
equations, and showed that the computational burden can be
significantly reduced through use of reaction invariants and
variants. They extended the concept to include enthalpy as a
reaction invariant for liquid systems. They showed that both the
design and implementation of the control of acid-base systems can
be significantly simplified if the synthesis and implementation is
limited to the space of the variants only, which contains the
possible instability and the possible nonlinearities caused by the
chemical reactions. Thus, by use of the chemical reaction invariants
the state space of main concern in control can be considerably
reduced facilitating the design, implementation, and operation of
control systems. In addition, they demonstrated the use of reaction
invariants to control pH when the equilibrium reactions are
assumed to be very fast. For model reduction of reactive distillation
processes with simultaneous phase and reaction equilibrium,
Barbosa and Doherty [13,14], Ung and Doherty [15–17], and
Gadewar et al. [18] have developed and applied a method for
determining the reaction invariants for complex chemistries using
linear transformations through the introduction of a set of
transformed composition variables for the representation of
reactive-phase diagrams, with the purpose of designing and
studying the steady state behavior of reactive distillation systems.
The reaction invariants are used to transform the state of a reactive
distillation to the similar states of a non-reactive system. Because
the balances based on reaction invariants do not have kinetic
reaction rates, it allows simplifying feasibility and column
sequencing strategy for equilibrium reactive distillation systems.
The reaction invariants have also been used for analyzing the
dynamics of reactive separation processes. Grüner et al. [19] have
shown that the dynamic behavior of combined reaction-separation
processes with fast chemical reactions is equivalent to the dynamic
behavior of the corresponding nonreactive problem in a reduced
set of transformed concentration variables �the reaction invari-
ants�; they showed applications for reactive distillation processes,
fixed bed as well as moving-bed chromatographic reactors, and
membrane reactors. Vu et al. [20] reported applications of this
concept for analyzing the dynamics of chromatographic reactors,
and Huang et al. [21] for analyzing the dynamics of reactive
pervaporation processes. Flockerzi et al. [22] provided a systematic
procedure for the computation of reaction invariant compositions,
which are obtained, in this case, from a nonlinear transformation of
the original composition variables. The transformation requires
the choice of a suitable set of reference components; they proved
that such a set always exists. Aggarwal et al. [23] proposed a
modeling framework for stable simulation of multi-phase reactors
operating at thermodynamic equilibrium using the concept of
reaction invariants – which they named invariant inventories or
simply invariants – to reduce the order of the dynamic model,
which can be used to determine system characteristics, explore
parameter sensitivity, and test control system strategies at a low
computational burden. They showed that the feedback control
approach based on the overall inventories of the system (reaction
invariants) can be effectively used for improved performance of
the vapor recovery reactor used in the carbothermic aluminum
reduction and of the gasification reactor used in an integrated
gasification combined cycle (IGCC) power plant. Recently, Srini-
vasan et al. [24] and Rodrigues et al. [25] have addressed the
computation of variant and invariant quantities for open homoge-
neous and heterogeneous reaction systems. They extended the
reaction variants/invariant concept used in the context of batch
processes to consider the effects of inlet/outlet flows, mass transfer
between phases, and convection and diffusion. They showed that
each extent describes uniquely and completely the progress of the
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corresponding process, and that the defined invariants are true
invariants that are identically equal to zero and can be discarded
from the dynamic model. These ideas are intended to improve the
analysis, control, estimation, and optimization of reaction systems.
Stamatelatou et al. [26] proposed a methodology for reducing
dynamic models for multi-step biochemical reaction schemes in
continuous stirred tank reactors. It is based on an invariant
manifold formulation of the model reduction problem that
projects the reactor dynamics on the slow motion invariant
manifold, which is computed by using reaction invariants for
describing the dynamics, and then, the invariance equation is
solved by means of singular perturbation or series solution
methods. They applied the methodology for model reduction of the
anaerobic digestion process to eliminate the fast dynamics of the
acidogenesis step. Cruz Bournazou et al. [27] performed model
reductions of the ASM3 model extended for two-step nitrification–
denitrification for describing the activated sludge process with
nitrate bypass nitrification–denitrification. They applied the
concept of reaction invariants as one of the approaches used to
progressively reduce the fifteen-state variable model to a five-state
variable model under appropriate assumptions and considerations
in a sequencing batch reactor.

The objective of this work is to reduce the number of states
described by ODEs of a discontinuous (batch) bioreactor, where the
microbiological consortia and their multi-step biochemical con-
version scheme for C and N removal from municipal and industrial
wastewaters is represented by the Activated Sludge Model No 1
(ASM1) [1]. The goal is to decrease the degree of numerical
complexity but predicting the exact dynamic behavior of the
original model for further applications in dynamic optimization of
wastewater treatment systems. A systematic methodology is
applied for the reduction of models in batch-type reactor
configurations. The methodology is based on the concept of
reaction invariants. It should be emphasized that the focus is not
on reducing the required computational time (e.g. [28]), but on
reducing the number of ODEs to describe the states of the system
while keeping its exact dynamics.

The paper is organized as follows. The applied general
methodology is presented in Section 2. The stoichiometry and the
process kinetics of the ASM1 model are summarized in Section 3. In
Section 4, the theory of reaction invariants is applied to a simple case
as an illustrative example, where only one reaction invariant is
obtained (case study 1). Afterwards, two more realistic case studies
are considered. Inthecase study2, a reductionof an aerated (aerobic)
batch bioreactor model is performed by proposing three reaction
invariants; in the case study 3, a reduction of a non-aerated (anoxic)
batch bioreactor model is accomplished by considering five reaction
invariants (i.e. the maximum number of reaction invariants possible
for the ASM1 model). Finally, a discussion of results and conclusions
is included in Section 5.

2. Methodology

For a given closed reaction system (i.e. without incoming and
outgoing mass flows), let n be the scalar representing the
(maximum) number of linearly independent (LI) reactions, and
m the number of system components. Then, there are (m-n) linear
combinations of the concentrations of such components that are
unaffected by the reaction rates and, therefore, independent of the
progress of the chemical reactions taking place. These linear
combinations are the reaction invariants; these invariants “capture”
the stoichiometric relationships among the components involved
in the reactions, which are unaffected by the reaction rates [26]. It
should be noted that closed systems are being considered in this
work. For systems with convective mass flows, the system
invariants are obtained by a different methodology since they
depend on the flow rate [10,26]. This issue will be addressed in a
later work.

Let C 2 Rmxn be the matrix of stoichiometric coefficients of the
system of rank n (rk(C) = n). The m rows and n columns represent
the m components and the n reactions, respectively. If x 2 Rm is the
vector of states, x_ the vector of time derivatives of x and r(x) ∊ Rn

the vector of reaction rates, then the system dynamics in a batch
reactor (no inflow and outflow) is described by:

_x ¼ C � r xð Þ ð1Þ
The vector §∊ Rm�n of reaction invariants is obtained by

applying the following methodology. A matrix A ∊ R(m�n)xm has to
be found that meets the condition:

A�C¼0 ð2Þ
and the rank of A is (m-n), i.e. all its rows (row vectors) must be

linearly independent LI:

rkðAÞ ¼ m � n ð3Þ
Let aij be a generic element of the matrix A. The matrix product

(2) determines the following homogeneous linear system of (m-n)�
n equations with (m-n)�m unknowns aij:

Xm
j¼1

aij � cjk ¼ 0; k ¼ 1; . . . ; n; i ¼ 1; . . . ; m � n ð4Þ

The linear equation system (4) is an underdetermined system.
For it to have one unique non-trivial solution (i.e. a consistent
system with one solution or independent system), it is necessary to
choose [(m-n)�m-(m-n)�n] = (m-n)2 variables aij (called the set a).
Let P ∊ R(m�n)nx(m�n)m be the coefficient matrix of the under-
determined linear equation system (4). By applying the Gauss-
Jordan elimination (G-J) method with partial pivoting to the matrix
P, the diagonalized matrix Ptrans∊ R(m�n)nx(m�n)m is obtained and,
consequently, the set a. Afterwards, each aij of a has to be assigned
a scalar value hij (called the set b). However, not any set b leads to
(m-n) LI rows (second condition to be met by the matrix A
according to Eq. (3)). To find a set b that meets this condition, an ad
hoc algorithm has been developed in Matlab, which is provided as
Supplementary material associated with this article.

The linear system Eq. (4) extended with these linear assign-
ments results in the following linear equation system Eq. (5):

Q � w ¼ b ð5Þ
Q ∊ R(m�n)mx(m�n)m is the coefficient matrix of the linear system

obtained by extending P with the variables aij that were assigned,
which must not be singular (det Q 6¼ 0); b ∊ R(m�n)m is the vector of
independent terms formed by the vector null 0 of the homoge-
neous system Eq. (4) and the vector b of scalars hij:

bT ¼ ð0bÞ ð6Þ
w ∊ R(m�n)m is the vector of elements aij of matrix A, i.e. the

vector of unknowns of the linear system Eq. (4):

wT ¼ ða1;1 . . . a1;ma2;1 . . . a2;mam�n;1 . . . am�n;mÞ ð7Þ
The solution of the equation system Eq. (5) is then:

w¼Q�1 � b ð8Þ
Thus, the desired matrix A can be obtained:

wT ¼ a1;1 . . . a1;ma2;1 . . . a2;mam�n;1 . . . am�n;m
� � !

A ¼
a1;1 . . . a1;m
..
.

} ..
.

am�n;1 � � � am�n;m

0
B@

1
CA ð9Þ
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Call § ∊ R(m�n) the vector of reaction invariants and §i represents
each of its elements. Reaction invariants are the linear combina-
tions obtained from the following linear equation system:

§¼A � x ð10Þ
For batch systems, these linear combinations remain constant

before, during and after the reaction [29]. Based on this property,
and letting xin be the vector of initial conditions (at t = 0) of the
state vector x, the (constant) value of each invariant §i is obtained
by replacing in Eq. (10) the initial conditions xin:

&i ¼
Xm
j¼1

aij � xj ¼
Xm
j¼1

aij � xinj ; i ¼ 1; :::; m � n ð11Þ

Since the row vectors of matrix A must be LI, so will the
resulting invariants vector §. The model reduction order s is equal
to the dimension of vector §, in this case (m-n): s = rk(§) = (m-n).
Finally, the algebraic expression corresponding to a given state
variable xk can be obtained from a linear combination §i as:

xj¼k ¼
1
aik

� &i �
Xm
j ¼ 1
j 6¼ k

aij � xj

0
BBBB@

1
CCCCA; i ¼ 1; :::; m � n ð12Þ

In this way, by applying the theory of reaction invariants, the
reduced model is formed by (m-n) state variables expressed
algebraically and n state variables expressed in the (original)
differential form.
Table 1
Petersen matrix for the ASM1 [31]. Process kinetics and stoichiometry for carbon oxid
3. Activated sludge model No 1 (ASM1)

The complete ASM1 model is represented by the Petersen
matrix (Table 1), which helps in identifying the overall reaction
rate of each model component. This matrix notation allows a
compact and visually appealing description of complex mathe-
matical models [30–32]. As a detailed description of the ASM1
model can be found in [1] and [31], only a minimum of information
about the examined model is provided here. The activated sludge
model ASM1 describes the oxidation of carbonaceous organic
matter, nitrification and denitrification. The model consists of n = 8
processes, m = 13 components and 19 parameters (5 stoichiometric
and 14 kinetic parameters). Regarding the model components, 7
are soluble (S) and 6 are particulate (X) compounds. Seven of the 13
components are carbonaceous: 2 soluble (inert soluble compounds
SI and rapidly biodegradable substrate SS) and 5 particulate
compounds (inert XI, slowly biodegradable substrate XS, hetero-
trophs XBH, autotrophs XBA and products arising from biomass
decay XP), whose concentrations are expressed in terms of
chemical oxygen demand (COD). The carbonaceous matter is
divided into biodegradable COD (SS and XS), non-biodegradable
COD (SI, XI and XP) and active biomass (XBH and XBA). Four of the 13
components are nitrogenous compounds: 3 soluble (ammonium +
ammonia nitrogen, SNH, nitrate + nitrite nitrogen, SNO, and
biodegradable organic nitrogen, SND) and 1 particulate compound
(biodegradable organic nitrogen XND), expressed in g N m�3 units.
The biodegradable nitrogen consists of a soluble fraction (SND) and
a particulate fraction (XND). The remaining 2 model components
ation, nitrification and denitrification.



3658 J.A. Santa Cruz et al. / Journal of Environmental Chemical Engineering 4 (2016) 3654–3664
are dissolved oxygen (SO) and alkalinity (SALK), expressed in g O2

m�3 and mole CaCO3 m�3, respectively.
The ASM1 model considers four types of processes: growth and

decay of XBH and XBA, ammonification of SND, hydrolysis of XS, and
hydrolysis of XND (Table 1). The use of the Petersen matrix to
formulate the differential equation describing the dynamics of the
model components is explained in [30] and [33]. The overall
component conversion rates r can be calculated as the sum of
conversion rates of components involved in each process:

ri ¼
X
j

nijrj ð13Þ

For example, writing r for the active heterotrophic biomass is
done as follows: component i = 5, process j = 1, 2, 4, and nij = 1, 1, �1.
Then,

r5 ¼ 1 � r1 þ 1 � r2 þ ð�1Þ � r4

r1 ¼ mh �
SS

KS þ SS
� SO
KOH þ SO

� XBH

r2 ¼ mh �
SS

KS þ SS
� KOH

KOH þ SO
� SNO
KNO þ SNO

� hg � XBH

r4 ¼ bH � XBH

ð14Þ

Finally, the calculated overall component conversion rates can
be coupled with appropriate mass balance equations to obtain the
ODE for this component; for instance, for active heterotrophic
biomass in batch systems, the resulting ODE is the following:

dXBH

dt
¼ 1 � mh �

SS
KS þ SS

� SO
KOH þ SO

� XBH

þ1 � mh �
SS

KS þ SS
� KOH

KOH þ SO
� SNO
KNO þ SNO

� hg � XBH � bH

� XBH ð15Þ

4. Results and discussion

The described methodology is applied to three case studies,
where the biological conversion scheme, represented by the ASM1
model for C and N removal, in batch reactors is reduced. The case
study 1 (CS1) is a simple example where a model reduction by 1
order (i.e. 1 reaction invariant) is accomplished to illustrate the
methodology.

In the case studies 2 (CS2) and 3 (CS3), two more realistic
situations are presented. In CS2, an aerobic batch reactor is
considered where a reduction by 3 orders (3 reaction invariants) is
performed. In CS3, a reduction by 5 orders (5 reaction invariants) is
conducted for an anoxic batch bioreactor.

Batch bioreactor models represented by the original ASM1
model and its reductions were simulated in the general PROcess
Modelling Systems (gPROMS) environment [34–36] for results
comparison.

4.1. Case study 1 (CS1): 1 reaction invariant

Since the ASM1 model consists of 8 independent processes
(reactions), it is necessary to consider only 9 of the 13 model
components. Therefore, 4 components have to be excluded from
the reduction procedure. The two inert components (SI and XI),
alkalinity (SALK) and oxygen (SO) were excluded. In this case, the
stoichiometric coefficient matrix C ∊ R(9�8) is of rank 8, which is
obtained by eliminating the rows corresponding to the model
components that are not incorporated into the reduction proce-
dure from the transpose of the Petersen matrix of the ASM1 model
(Table 1).

C ¼

� 1
yH

� 1
yH

0 0 0 0 1 0

0 � 1 � yH
2:86 � yH

1
yA

0 0 0 0 0

�ixb �ixb �ixb �
1
yA

0 0 1 0 0

0 0 0 0 0 �1 0 1
0 0 0 1 � f p 1 � f p 0 �1 0
1 1 0 �1 0 0 0 0
0 0 1 0 �1 0 0 0
0 0 0 f p f p 0 0 0
0 0 0 ixb � f p � ixp ixb � f p � ixp 0 0 �1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð16Þ
The desired matrix A has the dimension (9 � 8) � 9:

A ¼ a1;1 a1;2 a1;3 a1;4 a1;5 a1;6 a1;7 a1;8 a1;9
� � ð17Þ

Therefore, the system of 8 equations with 9 unknowns that
results according to Eq. (2) is:

a1;1 � � 1
yH

� �
þ a1;3 � �ixbð Þ þ a1;6 ¼ 0

a1;1 � � 1
yH

� �
þ a1;2 � � 1 � yH

2:86 � yH

� �
þ a1;3 � �ixbð Þ þ a1;6 ¼ 0

a1;2 � 1
yA

� �
þ a1;3 � �ixb �

1
yA

� �
þ a1;7 ¼ 0

a1;5 � 1 � f p
� �

þ a1;6 � �1ð Þ þ a1;8 � f p þ a1;9 � ixb � f p � ixp
� �

¼ 0

a1;5 � 1 � f p
� �

þ a1;7 � �1ð Þ þ a1;8 � f p þ a1;9 � ixb � f p � ixp
� �

¼ 0
a1;3 þ a1;4 � �1ð Þ ¼ 0
a1;1 þ a1;5 � �1ð Þ ¼ 0
a1;4 þ a1;9 � �1ð Þ ¼ 0

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð18Þ
In order to determine the free variable aij of the under-

determined linear system Eq. (18), the G-J method with partial
pivoting is applied using the “rref” function of Matlab. It converts
the coefficient matrix P of dimension 8 � 9 into a reduced echelon
form Ptransf by transformations, with as many leading “1” values on
the diagonal as possible. The free variables are those that are not
diagonalized, i.e., they do not contain “1” in the main diagonal of
the transformed matrix. The following transformed matrix Ptransf is
obtained, resulting in a1,9 as the free variable:

Ptransf ¼

1 0 0 0 0 0 0 0 �2:79
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 �1
0 0 0 1 0 0 0 0 �1
0 0 0 0 1 0 0 0 �2:79
0 0 0 0 0 1 0 0 �4:25
0 0 0 0 0 0 1 0 �4:25
0 0 0 0 0 0 0 1 �20:04

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð19Þ

With this procedure, the equivalent linear system Eq. (20) is
obtained:

a1;1 � 2:79 � a1;9 ¼ 0
a1;2 ¼ 0
a1;3 � 1 � a1;9 ¼ 0
a1;4 � 1 � a1;9 ¼ 0
a1;5 � 2:79 � a1;9 ¼ 0
a1;6 � 4:25 � a1;9 ¼ 0
a1;7 � 4:25 � a1;9 ¼ 0
a1;8 � 20:04 � a1;9 ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð20Þ

The following assignment is then added to the linear system
Eq. (18) as the 9th equation:

a1;9 ¼ 1 ð21Þ
The coefficient matrix Q of the resulting linear system is given

by Eq. (22), in which the assignment Eq. (21) is represented by the



Fig. 1. Dynamics of the component SS predicted by the original model (solid line)
and the reduced model (dash-dotted line) for CS1.

J.A. Santa Cruz et al. / Journal of Environmental Chemical Engineering 4 (2016) 3654–3664 3659
last row:

Q ¼

� 1
yH

0 �ixb 0 0 1 0 0 0

� 1
yH

� 1 � yH
2:86 � yH

�ixb 0 0 1 0 0 0

0
1
yA

�ixb �
1
yA

0 0 0 1 0 0

0 0 0 0 1 � f p �1 0 f p ixb � f p � ixp
0 0 0 0 1 � f p 0 �1 f p ixb � f p � ixp
0 0 1 �1 0 0 0 0 0
0 0 0 0 �1 0 0 0 1
0 0 0 1 0 0 0 0 �1
0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð22Þ
According to Eq. (6), in this case, the vector b of independent

terms is:

bT ¼ ð0bÞ ¼ ð0 0 0 0 0 0 0 0 1Þ ð23Þ
The vector w and, consequently, the elements aij of the desired

matrix A (Eq. (9)) are obtained from Eq. (8):

wT ¼ A ¼ ð2:79 0 1 1 2:79 4:25 4:25 20:04 1Þ ð24Þ
If the vector x of states is given by Eq. (25) and with the vector

xin of initial conditions given by Eq. (26), the system reaction
invariant &a1,9 is obtained from Eq. (11).

x ¼ ðSSSNOSNHSNDXSXBHXBAXPXNDÞ ð25Þ

xin ¼ ð40:23 8:55 19:07 4:19 148:65 2305:03 126:85 338:89 8:67Þ
ð26Þ

&a1;9 ¼ 2:79 � ðSS þ XSÞ þ ðSNH þ SND þ XNDÞ
þ4:25 � ðXBH þ XBAÞ þ 20:04 � XP ¼ 17677:73 ð27Þ

Any variable can be isolated from Eq. (27) to be expressed
algebraically. In this case, the rapidly degradable substrate
concentration SS is selected for reducing the model, which implies
replacing the ODE Eq. (28) in the original model, which represents
the mass balance for the component SS, by the linear algebraic
equation Eq. (29) obtained from the reaction invariant given by
Eq. (27). Note that the dynamics of the other states of the reduced
model is still described by the original ODEs.

dSS
dt

¼ ð�1Þ
yH

mh
SS

KS þ SS

SO
KOH þ SO

XBH þ ð�1Þ
yH

mh
SS

KS þ SS

KOH

KOH þ SO

SNO
KNO þ SNO

hgXBH þ

KH

XS
�
XBH

KX þ XS
�
XBH

SO
KOH þ SO

þ hh
KOH

KOH þ SO

SNO
KNO þ SNO

� �
XBH ð28Þ

SS ¼ 6336:10 � 0:36 � ðSNH þ SND þ XNDÞ � XS�
1:52 � ðXBH þ XBAÞ � 7:18 � XP ð29Þ

The dynamics of the component SS obtained by simulating an
aerated phase followed by a non-aerated phase (60% and 40% of the
total time horizon, respectively) of a batch reactor using the
original model and the resulting reduced model are compared in
Fig. 1. The initial conditions (at t = 0) for the variables included into
the reduction procedure (Eq. (25)) are given by Eq. (26) and for the
variables that were not included are: SOin = 0 g O2 m�3,
XI

in = 980.32 g COD m�3, SIin = 30 g COD m�3 and SALKin = 5.49 mol
CaCO3 m�3. The kLa values of 240 and 0 d�1 for the aerobic and
anoxic phases, respectively, were set. The default parameter values
of the ASM1 model [31] were used. Both models predict exactly the
same dynamic behavior. The concentration SS intervenes in the
kinetic expressions of several other reactions forming the model.
As expected, comparing the dynamics for each component
predicted by both models, there is total agreement between them
(results not shown) thereby demonstrating the validity of the
approach.

It should be noted that the application of the G-J method
determines that the variable a1,2 can only be assigned to 0. Since
a1,2 is the element of matrix A related to nitrate (SNO), it is
concluded that it is not possible to obtain its concentration as an
algebraic variable from the resulting reaction invariant expres-
sions.

By inspecting the ASM1 process rate expressions (Table 1) and
the component mass balance equations, it can be observed, for
instance, that if the state XND (component #12 in Table 1) is
expressed as an algebraic variable in CS1 using the invariant
expression Eq. (27), the stoichiometric coefficient ixp (mass N/mass
COD in products from biomass) will not be present in the resulting
reduced model. However, it is also important to emphasize that all
the stoichiometric coefficients of the original model must be
known values when starting the reduction procedure.

4.2. Case study 2 (CS2): 3 reaction invariants

In this case study, 3 reaction invariants are obtained;
consequently, 3 states of the system can be represented by 3
linear algebraic relationships. This reduction is applied to the
aerobic phase of the reaction stage of a batch activated sludge
process. Unlike CS1, the inert soluble component SI and the
alkalinity SALK are now incorporated into the reduction procedure.
Instead, oxygen (SO) and inert particulate material (XI) are
excluded from it. In this case, the system’s stoichiometric
coefficients matrix C ∊ R(11�8) is of rank 8, with 11 components
and 8 reactions. The matrix A that is to be found then has the
dimension (11 �8) � 11:

A ¼
a1;1 . . . a1;11
..
.

} ..
.

a3;1 � � � a3;11

0
B@

1
CA ð30Þ

The generated homogeneous linear system (A�C = 0 (2)) consists
of 24 equations and 33 unknowns; then, 9 free variables aij (set a)
should be selected and assigned values hij, where hij values are
either 0 or 1 (set b), thereby generating a combinatorial problem.
The set a of free variables aij is obtained by applying the G-J
method with partial pivoting to the matrix P resulting in a
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non-singular matrix Q. The set b is obtained by applying the ad hoc
algorithm described in the Supplementary material associated
with this article. Now, it was found that the final expressions of the
reaction invariants §i are sensitive to the relative number of “0” and
“1” elements of the set b, and that it is not possible to obtain
solutions with a certain number of “0” values and “1” values in the
set b. It was found that if one, two, eight or nine of the nine
elements hij of the set b are “1”, it is not possible to find a matrix A
with row vectors LI. So, the algorithm provides solutions with three
to seven times the value “1” in the set b, randomly distributed
among the free variables aij to be assigned. There is a direct relation
between the number of times the value “1” is assigned among the
free variables aij and the number of terms present in the resulting
algebraic equations of the reaction invariants. The lower the
number of times the value “1” has been used, the shorter the
reaction invariant expressions (without accuracy loss in the
predictions), but the smaller the number of states that can be
expressed as algebraic variables. The set a obtained by the G-J
method and one of the sets b with three “1” values generated by
the ad hoc algorithm are:

a ¼ ða1;1a1;6a1;11a2;1a2;6a2;11a3;1a3;6a3;11Þ

b ¼ ð0 0 1 1 0 0 0 1 0Þ
Thus, the coefficient matrix Q of dimension 33�33 is obtained

(not shown), whose last 9 rows correspond to the previous
assignments, and the vector b formed by 24 null elements and the
9 elements of the set b: bT = (0 b).
Fig. 2. Dynamics of the components SNH, SI, and SALK predicted by the origin
The vector w and, consequently, the matrix A of rank 3 to be
found are obtained from Eqs. (8) and (9), respectively:

A ¼ ‘
0 2:79 0 1 1 0 2:79 4:25 4:25 20:04 1
1 0 0 0 0 0 0 0 0 0 0
0 0 0:0714 �0:0714 0 1 0 0 0 0 0

0
@

1
A

ð31Þ
If the state vector x and the initial condition vector xin are the

following:

x ¼ ðSISSSNOSNHSNDSALKXSXBHXBAXPXNDÞ ð32Þ

xin ¼ ð30 40:23 8:55 19:07 4:19 5:5 148:65 2305:04 126:85 338:89 8:67Þ
ð33Þ

then, the 3 components &i of the reaction invariant vector § are
obtained from Eq. (11):

&1 ¼ 2:79 � ðSS þ XSÞ þ ðSNH þ SND þ XNDÞ
þ4:25 � ðXBH þ XBAÞ þ 20:04 � XP ¼ 17677:73 ð34Þ

&2 ¼ SI ¼ 30 ð35Þ

&3 ¼ 0:0714 � ðSNO � SNHÞ þ SALK ¼ 4:74 ð36Þ
As expected, it was found that SI must necessarily be one of the

algebraic variables of the reduced model. The remaining variables
can be chosen arbitrarily; in this case, the variables SNH and SALK are
selected. Then, the model reduction implies replacing the original
al model (solid line) and the reduced model (dash-dotted line) for CS2.
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nonlinear ODEs given by Eqs. (37)–(39):

dSNH
dt

¼ �ixbð Þ � mh �
SS

KS þ SS
� SO
KOH þ SO

� XBHþ

�ixbð Þ � mh �
SS

KS þ SS
� KOH

KOH þ SO
� SNO
KNO þ SNO

� hg � XBHþ

�ixb �
1
yA

� �
� ma �

SNH
KNH þ SNH

� SO
KOA þ SO

� XBA þ Ka � SND � XBH

ð37Þ

dSI
dt

¼ 0 ð38Þ

dSALK
dt

¼ �ixb
14

� �
� mh �

SS
KS þ SS

� SO
KOH þ SO

� XBHþ
1 � yH

14 � 2:86 � yH
� ixb
14

� �
� mh �

SS
KS þ SS

� KOH

KOH þ SO
� SNO
KNO þ SNO

� hg � XBHþ

�ixb
14

� 1
yA

� �
� ma �

SNH
KNH þ SNH

� SO
KOA þ SO

� XBA þ 1
14

� Ka � SND � XBH

ð39Þ
by the linear algebraic relationships given by Eqs. (40)–(42),

respectively:

SNH ¼ 17677:73 � 2:79 � ðSS þ XSÞ � ðXND þ SNDÞ
�4:25 � ðXBH þ XBAÞ � 20:04 � XP ð40Þ

SI ¼ 30 ð41Þ
Fig. 3. Comparison of the dynamics of the components SNH, SI, and SALK predicted by
intermittent aeration profile.
SALK ¼ 4:74 � 0:0714 � ðSNO � SNHÞ ð42Þ
The dynamics of components SNH, SI and SALK obtained by

simulating the aerobic phase of a batch process with the original
model and the resulting reduced model are compared in Fig. 2. The
initial conditions (t = 0) for the variables included into the
reduction procedure (Eq. (32)) are given by Eq. (33) and for the
variables that were not included are: SOin = 0 g O2 m�3 and X
I
in = 980.32 g COD m�3. A kLa value of 240 d�1 and the default ASM1
parameter values were used. It is observed that both models
predict exactly the same dynamic behavior. As expected, both
models predict the same dynamic behavior for the other
components as well (not shown), since there the original ODEs
are kept.

Although the reduction procedure was performed for a batch
bioreactor with continuous aeration, the reduced model can
simulate (exactly) the dynamic behavior of the original model for
any aeration profile. Fig. 3 compares the simulation results for an
intermittent aeration profile predicted by both models for a batch
bioreactor.

4.3. Case study 3 (CS3): 5 reaction invariants

This case study deals with the largest possible reduction of the
ASM1 model in batch reactors with the considered methodology,
obtaining 5 reaction invariants; consequently, 5 states of the
system can be represented by 5 linear algebraic relationships. For
demonstration purposes, this reduction is applied to the anoxic
phase of the reaction stage of a batch process; for instance, the
 the original model (solid line) and the reduced model (dash-dotted line) for an
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anoxic phase of an activated sludge sequencing batch reactor (SBR)
process (cyclic process of filling, reaction, settling, withdrawing
and, eventually, idle) [37–42]. This is possible because the oxygen
component SO is incorporated into the reduction procedure
without considering its liquid-gas transfer as no aeration is
required in this treatment phase.

In this case, the system’s stoichiometric coefficients matrix C ∊
R(13�8) is of rank 8, with 13 components and 8 reactions. The matrix
A to be found has the dimension (13-8)x13:

A ¼
a1;1 . . . a1;13
..
.

} ..
.

a5;1 � � � a5;13

0
B@

1
CA ð43Þ

The homogeneous linear system A�C = 0 (Eq. (2)) consists of 40
equations and 65 unknowns; then, 25 free variables aij (set a)
should be selected and assigned values hij, where hij either takes
the value 0 or 1 (set b). The set a obtained by the G-J method and
one of the sets b with five times the value “1” (the minimum
number possible) generated by the ad hoc algorithm are:

a=(a1,1a1,6a1,8a1,12a1,13a2,1a2,6a2,8a2,12a2,13a3,1a3,6a3,8a3,12a3,13a4,1a4,6
a4,8a4,12a4,13a5,1a5,6a5,8a5,12a5,13)

b ¼ ð0100000100000011000000010Þ
Thus, the matrix Q of dimension 65�65 (not shown) is

obtained, whose last 25 rows correspond to the previous assign-
ments; and the vector b is obtained, which is formed by 40 null
elements and the 25 elements of the set b: bT = (0 b).

The vector w and, consequently, the matrix A of rank 5 to be
found are obtained from Eqs. (8) and (9), respectively:

A ¼
0 0 0:071 �0:071 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0:51 �1:73 1 1 0 �0:6 0 0:51 0:55 0:55 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0:11 0:086 0 0 0 0:03 0 0:11 0:18 0:18 1 0

0
BBBB@

1
CCCCA

ð44Þ
If the state vector x and the initial condition vector xin are the

following:

x ¼ SISSSNOSNHSNDSALKSOXIXSXBHXBAXPXNDð Þ ð45Þ

xin ¼ ð30 0:76 25:23 1:31 0:64 3:04 3:82 980:31 38:46 2375:87 131:12 345:17 2:84Þ
ð46Þ

then, the 5 components &i of the reaction invariant vector § are
obtained from Eq. (11):

&1 ¼ 0:071 � ðSNO � SNHÞ þ SALK ¼ 4:74 ð47Þ

&2 ¼ XI ¼ 980:32 ð48Þ

&3 ¼ 0:51 � ðSS þ XSÞ � 1:73 � SNO þ SNH þ SND � 0:6 � SO

þ0:55 � ðXBH þ XBAÞ þ XND ¼ 1347:04 ð49Þ

&4 ¼ SI ¼ 30 ð50Þ

&5 ¼ 0:11 � ðSS þ XSÞ þ 0:086 � SNO þ 0:03 � SOþ
0:18 � ðXBH þ XBAÞ þ XP ¼ 814:93 ð51Þ
It is observed that SI and XI must necessarily be two of the
algebraic variables of the reduced model. The remaining three
variables are arbitrarily selected to be SALK, SND and SNO in this case.
Then, the model reduction implies replacing the original non-
linear ODEs given by Eq. (52)–(56):

dSALK
dt

¼ �ixb
14

� �
� mh �

SS
KS þ SS

� SO
KOH þ SO

� XBHþ
1 � yH

14 � 2:86 � yH
� ixb
14

� �
� mh �

SS
KS þ SS

� KOH

KOH þ SO
� SNO
KNO þ SNO

� hg � XBHþ

�ixb
14

� 1
yA

� �
� ma �

SNH
KNH þ SNH

� SO
KOA þ SO

� XBA þ
1
14

� Ka � SND � XBH

ð52Þ

dXI

dt
¼ 0 ð53Þ

dSND
dt

¼ � ka � SND � XBHð Þþ

KH �
XS
�
XBH

KXþXS
�
XBH

� SO
KOH þ SO

þ hh �
KOH

KOH þ SO
� SNO
KNO þ SNO

� �
� XBH � XND

�
XS

� �
ð54Þ

dSI
dt

¼ 0 ð55Þ

dSNO
dt

¼ � 1 � yH
2:86 � yH

� �
� mh �

SS
KS þ SS

� KOH

KOH þ SO
� SNO
KNO þ SNO

� hg � XBH

þ 1
yA

� �
� ma �

SNH
KNH þ SNH

� SO
KOA þ SO

� XBA ð56Þ

by the linear algebraic relationships given by Eqs. (57)–(61),
respectively:

SALK ¼ 4:74 � 0:071 � ðSNO � SNHÞ ð57Þ

XI ¼ 980:32 ð58Þ

SND ¼ 1347:04 � 0:51 � ðSS þ XSÞ þ 1:73 � SNO � SNH þ 0:6 � SO
� 0:55 � ðXBH þ XBAÞ � XND ð59Þ

SI ¼ 30 ð60Þ

SNO ¼ 9475:93 � 1:28 � ðSS þ XSÞ � 0:35 � SO�
2:09 � ðXBH þ XBAÞ � 11:62 � XP ð61Þ

The dynamics of components SALK, XI, SND, SI and SNO obtained
by simulating the anoxic phase (i.e. a non-aerated process) of a
bath reactor with the original model and the resulting reduced
model are compared in Fig. 4. The initial conditions set for the
variables included into the reduction procedure (Eq. (45)) are given
by Eq. (46). A kLa value of 0 and the default ASM1 parameter values
were used. It is again observed that both models predict exactly the
same dynamic behavior. As expected, both models predict the
same dynamic behavior for the other components as well (results
not shown).
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Then, in this case study, a reduced version of the ASM1 model
consisting of 8 ODEs was obtained to describe the dynamic
behavior of the anoxic phase of the reaction step of a batch process
for C and N removal, rather than using the 13 ODEs of the original
model.

5. Conclusions

The characteristics of the ASM1 model with respect to the
number of reactions and components were appropriate to allow
applying the methodology of model reduction based on reaction
invariants.

The dynamic behaviors of the bioreactors simulated using the
resulting reduced models were compared with respect to the
“original” model for three case studies to obtain 1, 3 and 5 reaction
invariants.

From a numerical point of view, this reduction may mean an
improvement in the model initialization and/or solution for
dynamic optimization since it allows replacing, for instance, the
discretization of 5 highly nonlinear differential equations by 5 linear
Fig. 4. Dynamics of the components SALK, XI, SND, SI, and SNO predicted by the or
algebraic equations in an equation-oriented algebraic modeling
platform, such as GAMS.

From a conceptual point of view, a simpler model in terms of the
number of linear constraints is at a first glance better or, at least,
not worse for optimization purposes than a more complex
(nonlinear) model since a lower number of bilinear terms (e.g.:
[SS/(KS + SS)] � [SO/(KOH + SO)]), and consequently, of non-convex
constraints are present. It was shown that it is also possible to
reduce the number of model parameters present in the resulting
reduced model; however, all the stoichiometric coefficients of the
original model must be known values when starting the reduction
procedure. The reduction of the required computational time for
simulating the three case studies was negligible i.e. the reduced
model did not necessarily lead to faster simulation runs.

The model reduction methodology based on reaction invariants
can be generally and straightforwardly applied to any closed
biochemical or chemical reacting system (e.g. batch process) with
the only condition that the number of components involved in the
reaction mechanism is greater than the number of conversion
processes. When such a reduction is possible, the reduced model
iginal model (solid line) and the reduced model (dash-dotted line) for CS3.
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predicts the exact dynamics of the original model. In other words,
the same dynamic trajectory as predicted by the original model is
obtained as a result of (linear) mathematical transformations, and
not just an approximate trajectory as a result of simplifying the
assumptions of the original model, which is the case for many
other reduced models obtained using other techniques.

The reaction invariants are also used in the invariant manifold
approach for reduction of dynamic models that describe continu-
ous flow reactors. This issue will be addressed in a further paper
considering a continuous-flow activated sludge bioreactor de-
scribed by the ASM1 model. Methodologically, this paper forms a
first part of that work.
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