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The isokinetic behaviour of crystallization processes controlled by diffusion is analysed under both
isothermal and continuous cooling/heating conditions. The kinetic function is computed employing an
approximate expression for the so called exponential integral. Diffusion controlled 3D growth of ho-
mogeneously nucleating crystalline grains is an isokinetic reaction if the nucleation and diffusion acti-
vation energies are identical. In the non isokinetic range, the kinetic functions in both continuous heating
and isothermal transformations are the same except for a factor which depends on the nucleation and
diffusion activation energies ratio. This development is applied to the crystallization of AgGeSe glasses.
The primary crystallization kinetic of glasses with compositions (Ge25Se75)100�y Agy (with y ¼ 10, 15, 20
and 25 at. %) was studied in a previous work using differential scanning calorimetry and X-ray diffraction.
The analysis is grounded on the Kolmogorov-Johnson-Mehl-Avrami model generalized to account for the
compositional changes of the parent phase, responsible for the decreasing of both the nucleation fre-
quency and the growth rate of the primary grains. The kinetic study of the crystallization process from
continuous heating calorimetric data has been performed applying the master curve method. The primary
crystallization product is the ternary phase g-Ag8GeSe6. The values of apparent activation energy Ea,
obtained are in the range: 2.0 eV/at < Ea < 2.6 eV/at. A model of diffusion controlled 3D growth with
decreasing homogeneous nucleation and soft impingement has been developed that reproduces the rate
of transformation obtained experimentally for the studied alloys.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The knowledge of the crystallization kinetics is a key point in
order to design controlled procedures for the improvement of the
properties that depend on the microstructure. Nowadays, the
transformation kinetics is considered as a very essential subject,
which gives information relative to the stability and thus the
applicability of the materials. This topic is a permanent reason of
analysis and it is currently studied in many works [1e13]. There-
fore, the knowledge of the mechanisms affecting the trans-
formation kinetics is a key point. In particular, it is interesting the
use of simple kinetic models based on average behaviours using
only a few parameters. The development of the classical crystalli-
zation model (Kolmogorov-Johnson-Mehl-Avrami (JMAK) theory)
[14e20] is based on laws of nucleation and growth. In the growth of
a precipitate in a supersaturated liquid, two different growth habits
that can be actually superimposed in real processes are
tana).

erved.
distinguished [9]:

a) When the compositions of both the emerging crystalline and the
remaining non-transformed phases are identical, the precipi-
tated nucleus grows radially with a constant growing rate, un-
der isothermal conditions. The nucleus grows until
impingement with other nuclei stops growing.

b) When a crystalline phase of different composition than the
remaining liquid precipitates, as in primary crystallization, an
interface between the crystal and liquid exists where a con-
centration gradient of solutes acts as a resistance to the flow of
both the solute atoms towards the crystalline nucleus and of the
atoms rejected from the crystalline nucleus. The growth process
is controlled by diffusion.

On the other hand, the “additivity rule” has been used to predict
the kinetics of transformation under non-isothermal conditions
[2e8,14,15]. The conventional hypothesis for additivity is that the
transformation behaviour during continuous cooling/heating can
be described as the overlap of isothermal transformationswith very
short periods of time. Christian [14] proposed a sufficient condition
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for the additivity rule: the transformation rate dx/dt is a separable
function of the temperature T and transformed fraction x that is:

dx
dt

¼ hðTÞ
PðxÞ (1)

where h(T) is the rate constant and P(x) the kinetic function.
The validity of the classic additivity rule was recently studied for

diffusional growth [6] and the KJMA model [7, 10] under lineal
temperature variation. Based on the exact solution of non-
isothermal diffusion controlled growth, a generalized additivity
rule compatible with the thermal history was proposed [6]. In the
framework of the JMAK theory and using also an exact calculation
[10], it is demonstrated that dx/dt separates in a product as Eq. (1).

In the present work, the kinetic study of the crystallization
process of glasses in the system GeSeAg from continuous heating
calorimetric data has been performed applying a recently devel-
oped procedure: the master curve [21e23]. A brief summary of this
method is included in Section 1. This procedure is valid if the
crystallization processes are isokinetic [21e23]. A process can be

defined as isokinetic if the kinetic function P(x) is the same under
both isothermal and continuous cooling/heating conditions. It is
also called isokinetic range [7, 14, 15]. The validation of the iso-
kinetic process hypothesis in the case of 3D growth controlled by
interface has been developed [23] and a summary of the theory of
the growth controlled by interface is shown in Appendix A.

The crystallization mode in glasses is in general a primary
crystallization of a new phase with a composition that differs from
the parent phase. Therefore, the diffusion is the mechanism that
governs the crystallization. This is the case of the crystallization of
GeSeAg glasses. In the presentwork, the validation of this isokinetic
hypothesis in the case of diffusion controlled three-dimensional
growth is analysed and introduced in the Section 2 and Appendix
B. The kinetic function P(x) is computed employing an approxi-
mate expression of the so called temperature integral (in the case of
large activation energy) [7]. Others authors [2e4, 7, 8, 11] per-
formed similar procedures for the interphase and/or diffusion
controlled growth. However, a novel analysis of the kinetic function
is shown in the Section 2 and Appendix B: in the non-isokinetic
range, P(x) is the same function in both continuous heating and
isothermal conditions except for a factor J5/2 which depends on
the nucleation and diffusion activation energies ratio.

The application of this procedure to the crystallization of AgGeSe
amorphous alloys is shown in Section 3. The analysis of the kinetic
mechanisms involved in the crystallization process of AgGeSe
glasses is introduced in Section 3.2. Amodel of diffusion-controlled-
3D growth with decreasing homogeneous nucleation and soft
impingement has been developed. Conclusions are shown in 4.

1.1. New approach for kinetic analysis: master curve analysis of a
transformation in continuous heating regimes

The “master curve method” was introduced in recent works
[21e23]. Kinetic analysis of solid state reactions are usually per-
formed by considering that transformation rate can be expressed in
terms of a first-order separable differential equation. Under
isothermal annealing at temperature T, imposing an Arrhenian
temperature dependence for both nucleation and growth rate, dx/
dt may be expressed as [21e24].

dx
dt

¼
exp

�
�Ea
kT

�
PisoðxÞ

(2a)

where x is the scaled transformed volume fraction of the primary
phase, Ea is the apparent activation energy, k is the Boltzmann’s
constant and Piso(x) a kinetic function dependent on the trans-
formation mechanisms.

Under continuous heating at a constant rate b ¼ dT/dt, the
equivalent form of Eq. (2a) gives the transformation rate dx/dT as

dx
dT

¼
exp

�
�Ea
kT

�
bPHRðxÞ

(2b)

where PHR(x) is the continuous heating counterpart of Piso(x).
In Eqs. (2a) and (2b), the apparent activation energy in both

transformation types (isothermal and continuous heating regimes)
is supposed to be constant. In general, this hypothesis is valid in a
limited temperature interval (for example, in the range of calo-
rimeter experimental measurements).

Eqs. (2a) and (2b) verify the additivity rule and they are
particular cases of the Eq. (1) (the separable differential equation
for the transformation rate [14]).

Themaster curvemethod relies on the validity of Eq. (2b) for the
transformation rate under continuous heating at a constant rate b.
Since it is a first order separate differential equation, it can be in-
tegrated as follows:

Zx
0

PHRðxÞdx ¼

Z Τ

Το
exp

��Ea
kT

�
dT

b
(3)

where To is the onset temperature, To and T are those measured at
the heating rate.

The integral on the right-hand side is independent of thermal
history and depends only on the evolution of x, involving the
transformation mechanisms. So, for different heating rates, b and b0

it can be written:

Zx
0

PHRðxÞdx ¼

Z T

To
exp

��Ea
kT

�
dT

b
¼

Z T 0

To
exp

��Ea
kT

�
dT

b0

¼

Z Teq

To
exp

��Ea
kT

�
dT

beq
(4a)

where it can be generalized for an equivalent heating rate beq and
an equivalent temperature Teq.

Further, if E/RT >> 1, the right term of Eq. (4a) can be written as
(See Eq. (B-2) in Appendix B):

T2

b
exp

��Ea
kT

�
¼ T2eq

beq
exp

��Ea
kTeq

�
(4b)

This assumption E/RT >> 1 is reasonable because 15 < E/RT < 60
is valid for the vast majority of solid-state reactions [28,29].

In the temperature range where the transformation occurs Eq.
(4b) can be used for the set of continuous heating DSC data (curves
{dx/dTi,Ti}) obtained at heating rate bi with (i ¼ 1,…,p), to convert
them to a single curve {dx/dTeq,Teq} at the equivalent heating rate
beq. The activation energy is obtained by analysing the overlap of
the different curves.

The conversion method is established iteratively:

a. An initial activation energy Ea is determined (for instance, by the
Kissinger plot [16]) and Eq. (4b) is used to obtain Teq, i.e., for each
set {Ti(dx/dTi),bI}, the equivalent set {Teq(dx/dTi),beq}.
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b. Integration of dx/dTi with respect to the converted temperature
Teq in the overall transformation range (from the start Tonset to
the end point Tend) gives theweighted factor, C(bI, beq), needed to
transform dx/dTi to dx/dTeq:

dx
dTeq

¼
dx
dT

C
�
b;beq

� with C
�
b; beq

�
¼

ZTend
Tonset

dx
dT

dTeq (5)

since

ZTend

Tonset

dx
dTeq

dTeq ¼ 1

c. A new activation energy Ea is estimated by minimising the dif-
ferences between the various sets {dx/dTeq,Teq} obtained from
each set of continuous heating DSC curves {dx/dTi,Ti} at heating
rate bI.

d. Steps (b) and (c) are repeated until the differences between the
various sets {dx/dTeq,Teq} of two subsequent iteration steps are
negligibly small.

This method provides a more accurate determination of Ea than
the procedures based on the peak temperature of the DSC curves.
The activation energy determined by this method is a “weighted”
average in the limited temperature range where measurements
were made.

Furthermore, it provides a calorimetric curve, the master curve
(Teq, dx/dTeq) for the given heating rate beq. This master curve is the
average of all the experimental continuous heating scans. It has a
better signal/noise ratio than the individual curves. The knowledge
of this master curve determines experimentally the function PHR(x)
using Eq. (2b):

PHRðxÞ ¼
exp

�
�Ea
kTeq

�
beq

dx
dTeq

(6)
1.2. Johnson-Mehl-Avrami-Kolmogorov theory

Most often, the kinetic analysis of non-isothermal trans-
formation assumes the KJMA model. The knowledge of the kinetic
model allows determine Piso(x) or PHR(x) in Eqs. (2a) and (2b). In
general, under isothermal conditions, the kinetic function Piso(x) in
the KJMA model is written as [9,14,23,24]:

PKJMA
iso ðxÞ ¼ P0;iso½ � lnð1� xÞ�1�n

n

nð1� xÞ (7)

where n is called Avrami exponent and P0,iso is a constant factor.

It is useful to know the integral function of PKJMA
iso ðxÞ:

GKJMA
iso ðxÞ ¼

Zx
0

PKJMA
iso ðxÞdx ¼ Po;iso½ � lnð1� xÞ�1=n (8)

In a previous work [23], a KJMA model with homogenous and
constant nucleation and three-dimensional interface-controlled
growth was elaborated under isothermal and continuous heating
regimes. A summary of the theory of the growth controlled by
interface is shown in Appendix A. It uses the following hypothesis:

a) The nucleation critical radius is negligible.
b) An Arrhenian temperature dependence for both nucleation

frequency I(T) and growth rate u(T), that is:

IðTÞ ¼ Io exp
��EI
kT

�
(9a)

uðTÞ ¼ uo exp
��EU

kT

�
(9b)

where EI, and EU are the activation energies for nucleation and
growth, respectively, and Io and uo the pre-exponential factors.

This analysis developed in Ref. [23] and Appendix A for the
interface controlled growth processes, has not been done yet for
diffusion controlled growth processes. Therefore, one of the main
purposes in this work is to analyse if relations similar to Eqs. (A-3)
and (A-4) of the Appendix A exist for homogeneous nucleation and
3D diffusion-controlled growth transformations. This development
is introduced in the Section 2.
2. Johnson-Mehl-Avrami-Kolmogorov theory. Growth
controlled by diffusion

The experimental study of the transformation kinetics in
amorphous materials is mainly based on calorimetric analysis, so it
would be desirable to predict the calorimetric signal by a theoret-
ical approach based on the nucleation and growth mechanisms.

Since the calorimetric signal is proportional to dx/dt, it can be
deduced from the JMAK theory [14e20]. In this framework an
extended volume is defined, where the grains can grow freely
without geometrical impediment, and the extended trans-
formation fraction, xex, is related to the real one, x, by Ref. [14]:

x ¼ 1� expð � xexÞ (10)

In this way the transformed fraction can be obtained based only
on the transformation mechanisms of nucleation and growth. In
the case of a transformation with a homogeneous nucleation fre-
quency, I, the extended transformation fraction can be written as:

xex ¼
Zt
0

IvðtÞdt (11)

where v(t) is the volume of a grain nucleated at the instant t.
For a three-dimensional growth controlled by diffusion with an

initial nucleation critical radius r*, the volume v(t) is:

vðtÞ ¼ 4p
3

2
4r*2 þ Z

t

t

Ddt0
3
5
3=2

(12)

With D the diffusion coefficient.
When a broad range of temperature is considered, the temper-

ature dependence of nucleation frequency and diffusion coefficient
are far from an Arrhenian type. However, over a limited range of
temperature (as it is the case of crystallization peaks in DSC ex-
periments) I(T) and D(T) may be described approximately by an
Arrhenius expression, that is Eq. (9a) for I(T) and:
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DðTÞ ¼ Do exp
��ED

kT

�
(13)

where Do is the pre-exponential factor and ED the activation energy
for the diffusion.
2.1. Isothermal regime

Therefore, the extended transformation fraction xex as a function
of time at a constant temperature T can be written as:

xex ¼ 4p
3

Zt
0

Io expð�EI=RTÞ
2
4r*2 þ Z

t

t

Do expð�ED=RTÞdt0
3
5
3=2

dt

or xex ¼ 4p
3

I
Zt
0

h
r*2 þ Dðt � tÞ

i3=2
dt (14)

And assuming r* is negligible, dx/dt is obtained as:

dx
dt

¼ exp
�
� ð2EI þ 3EDÞ

5RT

�
½ð8p=15ÞIo�

2
5D

3
5
0
5
2
ð1� xÞ½lnð1� xÞ�3=5

or
dx
dt

¼ 5
2
½ð8p=15ÞI�25D3

5ð1� xÞ½lnð1� xÞ�3=5 (15)

If Eq. (15) is compared with Eqs. (2a) and (7), analogous results
to Eq. (A-3) are obtained:

Ea ¼ 2EI þ 3ED
5

and n ¼ 5=2 (16a)

PKJMA
iso ðxÞ ¼ P0;iso½ � lnð1� xÞ��3

5

5
2 ð1� xÞ (16b)

with

P�1
0;iso ¼

�
8p
15

Io

�2
5

D
3
5
o (16c)

The Avrami exponent obtained is a characteristic result of a
three-dimensional growth controlled by diffusion with constant
nucleation rate [14].
2.2. Continuous heating regime

The extended transformation fraction xex, as a function of time,
at continuous heating regime (“HR” is used as subindex) can be
written (assuming r* is negligible) using Eqs. (9a), (10), (11), (12)
and (13) (see Appendix B, Eqs. (B-12) and (B-13)):

xex ¼ 8pID3=2

15b5=2

�
RT2

ED

�5
2�
f5=2ðEI=EDÞ

�5=3
(17)

with

f5=2ðBÞ ¼
"
5
2

X∞
i¼0

�
3=2
i

� ð � 1Þi
Bþ i

#3=5
(18)

And the transformation rate dx/dt is obtained using Eqs. (B-22)
and (B-23) (See Appendix B):
dx
dt

¼
�
8p
15

�2
5

I2=5o D3=5
o

5
2
ð1� xÞð � lnð1� xÞÞ3=5

exp
�
� 2EI þ 3ED

5RT

�
j5=2ðEI=EDÞ

or
dx
dt

¼ 5
2

�
8p
15

�2
5

I2=5D3=5ð1� xÞð � lnð1� xÞÞ3=5j5=2ðEI=EDÞ

(19)

with

j5=2ðBÞ ¼
3
2
P∞

i¼0

�
1=2
i

�
ð�1Þi
Bþi

f5=2ðBÞ
(20)

Comparing Eq. (19) with Eqs. (2a) and (7), analogous results to
Eqs. (A-3) and (16) are obtained:

Ea ¼ 2EI þ 3ED
5

and n ¼ 5=2 (21a)

PKJMA
HR ðxÞ ¼ P0;HR½ � lnð1� xÞ��3

5

5
2 ð1� xÞ j5=2ðEI=EDÞ (21b)

with

P�1
0;HR ¼ P�1

0;iso ¼
�
8p
15

Io

�2
5

D
3
5
o (21c)

Using Eq. (16b), Eq. (21b) can be written as:

PKJMA
HR ðxÞ ¼ PKJMA

iso ðxÞj5=2ðEI=EDÞ (21d)

Based on Eq. (19), under the assumptions of this work, the
validity of the additivity rule for diffusion controlled growth pro-
cesses is demonstrated. In others words, the transformation rate
dx/dt is the product of functions that depend on the temperature T
and transformed fraction. It is in agreement with previous work
[4,6,7,10,11].

The development of xex and dx/dt for diffusion controlled
growth processes under continuous heating conditions reported
here in Eqs (17) and (19) is based on the approximation of large
activation energy [28,29] and is similar to those in previous works
[4,11].

Based on the exact solution of isothermal and non-isothermal
diffusion controlled growth, Tomellini [10] demonstrated that the
non-isothermal kinetic converges to isothermal kinetic in the limit
of zero heating rate and its exact solution is compatible with Eq.
(19) in the case of large activation energy.

The new functions 45/2(B) and J5/2(B) are plotted versus B¼ EI/
ED in Fig. 1. These functions were determined numerically with a
relative error less than 10�12.

It is therefore concluded that diffusion controlled growth of
homogeneously nucleating crystalline grains does not pertain to an
isokinetic reaction except for EI¼ ED in agreement with previous
works [4,6,7,10,11]. However, a novel analysis of the kinetic function
is shown here. Considering the Eq. (21d), apart from the factor J5/

2(EI/ED) a unique function P(x) describes both continuous heating
and isothermal transformation rate in the form given by Eqs. (2a)
and (2b). Consequently, the coupling of experimental data in both
regimes may allow the EI/ED ratio to be determined.

The aim of this work is: to perform the master curve analysis
(using Eqs. (4a) and (4b)) of the continuous heating calorimetric



Fig. 1. Functions 45/2(B) and J5/2(B) versus B¼ EI/ED (Eqs. (18) and (20))). If B¼ EI/
ED ¼ 1, 45/2(EI/ED)¼J5/2(EI/ED)¼ 1 and therefore, diffusion controlled 3D growth of
nucleating crystals is an isokinetic reaction.
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data obtained for the (Ge0.25Se0.75)100�yAgy glassy alloys crystalli-
zation and to compare the experimental function PHR(x) (Eq. (2b) or
(6)) with those obtained with the JMAK model for 3D growth
controlled by diffusion (Eqs. (21aec)).
Fig. 2. DSC curves (dH/dT versus T, where H is the enthalpy in J/g and T the temper-
ature in K) obtained during the crystallization of glasses (Ge25Se75)100�y Agy (with
y ¼ 10, 15, 20 and 25 at.%) at a heating rate of 10 K/min [25].
3. Application to the crystallization of AgGeSe amorphous
alloys

3.1. Master curve analysis of the crystallization process

In a previous work [25] glasses with compositions
(Ge25Se75)100�y Agy (with y ¼ 10, 15, 20 and 25 at.%) were synthe-
sized and their thermal evolution heating has been studied by
differential scanning calorimetry (DSC) (Continuous heating ex-
periments were performed at scan rates b between 10 and 80 K/
min).

Fig. 2 shows the DSC curves obtained in a previous work [25] for
the crystallization of (Ge25Se75)100�y Agy (with y ¼ 10, 15, 20 and
25 at.%) amorphous alloys.

The thermal analysis was carried out in a differential scanning
calorimeter Perkin Elmer DSC-7 under dynamic Ar atmosphere. All
powder samples weighting 5.00 ± 0.05 mg were sealed in
aluminium pans. Continuous heating experiments were performed
at scan rates b ¼ 10, 20, 40 and 80 K min�1.

Two main exothermic transformations occur. They correspond
to a primary crystallization of the high temperature phase g-
Ag8GeSe6 and a secondary crystallization of GeSe2 [25]. The
(Ge25Se75)75 Ag25 sample is quite different. It shows a different
shape of the glass transition shift and a small exothermic peak
(intermediate peak) between the two main peaks.

The master curve method, developed in Section 1.1, was applied
to the DSC data of the first crystallization (g-Ag8GeSe6 phase) ob-
tained in the continuous heating mode. Fig. 3 shows the trans-
formation rate dx/dTobtained from DSC data at 10, 20, 40 and 80 K/
min for all the samples. The average master curve at 40 K/min was
determined with the best overlapping of the experimental data in
the master curve (Eqs. (4a) and (4b)) and its value Ea are shown in
Table 1 (fitting coefficient c2 ~ 10�7). The initial estimates of Ea [25],
obtained by the Kissinger method [16], is shown in Table 1 and they
are in good agreement except for y ¼ 25. The results show that the
activation energy is quite similar in all the analysed compositions
(close to 2.25 eV/at) observing a small increasewith the Ag content.
Such similarity in the Ea values is expected on considering that: (i)
at high undercooling the temperature dependence of crystalliza-
tion is dominated by the viscosity of the metastable liquid alloy and
(ii) the apparent activation energy of the viscosity has a soft
composition dependence [25].

The individual calculated curves at the equivalent heating rate
beq ¼ 40 K/min, obtained from the experimental DSC data, and the
master curve are shown in Fig. 3. The good agreement in between
the different calculated curves confirms the validity of the master
curve method to analyse the continuous heating primary crystal-
lization process of the glasses (Ge25Se75)100�y Agy (y ¼ 10, 15, 20
and 25 at.%) and gives a confident value of their respective apparent
activation energy.
3.2. Analysis of the kinetic mechanisms involved in the
crystallization process

Once the master curve has been calculated, the PHR(x) kinetic
function can be determined by applying Eq. (6) to the master curve
in order to study the kinetics of the primary crystallization. These
PHR(x) “experimental” data, obtained using Eq. (6), are shown in



Fig. 3. The transformation rate dx/dT vs. the equivalent temperature Teq calculated from experimental data by use of Eq. (4b) obtained for the crystallization of glasses
(Ge25Se75)100�y Agy (with y ¼ 10, 15, 20 and 25 at.%) at 10, 20, 40 and 80 K/min and the corresponding master curve (see Section 1.1). Some error bars are shown.

Table 1
The activation energy Ea obtained with the master curve procedure, showed in Section 1.1 (coefficient of the fit c2 ¼ 10�7), the activation energy Ea obtained by Kissinger
method [16], the Avrami exponent at the transformation begin nbegin and at the transformation end nend, the time constant at the transformation begin Po�1

begin [Range of fits:
0.01 < x < 0.03 (transformation begin) and 0.96 < x < 0.99 (transformation end), the correlation coefficients are about 0.999 (begin) and 0.98 (end)] for the crystallization of the
phase g-Ag8GeSe6 in glasses (Ge25Se75)100�y Agy (with y¼ 10,15, 20 and 25 at.%) Simulated parameters: the time constant simulated Po

�1was determined using Eq. (16c), g is the
crystallized fraction at the end of the primary crystallization (x ¼ 1).

y 10 15 20 25

Ea (eV/at) Master curve 2.04 ± 0.03 2.23 ± 0.03 2.20 ± 0.03 2.58 ± 0.03
Ea (eV/at) Kissinger [16] 2.04 ± 0.10 2.24 ± 0.10 2.09 ± 0.10 2.32 ± 0.10
nbegin 2.50 ± 0.01 2.48 ± 0.01 2.31 ± 0.01 2.15 ± 0.01
nend 0.64 ± 0.02 0.70 ± 0.02 0.89 ± 0.02 1.33 ± 0.02
Po�1

begin (s�1) (experimental) (6.8 ± 0.4)1015 (4.9 ± 0.3)1017 (2.1 ± 0.1)1017 (1.1 ± 0.1)1020

Simulated Po�1 (s�1) ± 0.03 1015 6.81$1015 4.65$1017 2.22$1017 1.42$1020

g ± 0.01 0.50 0.50 0.50 0.50
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Fig. 4.
Based on Eq. (21d), in the KJMA model, the kinetic functions

PHR(x) and Piso(x) in both continuous heating and isothermal
transformations are the same except for the factor j5/2(EI/ED).
Consequently, log(PHR(x)) ¼ log(Piso(x)) þ C with C a factor which
depends on the nucleation and diffusion activation energies ratio.
Therefore, assuming constant the nucleation and diffusion activa-
tion energies ratio, the functional dependence of P(x) on x is the
same under both continuous heating and isothermal conditions.

With the aim to compare the “experimental” PHR(x) function and
the PKJMA
iso ðxÞ one described in the JMAK theory for nucleation/

growth, the asymptotic behaviour at the beginning (transformed
fraction 0.01 < x < 0.03) and at the end (transformed fraction
0.96 < x < 0.99) of the transformation were fitted to Eq. (7) with
fixed values of the Avrami exponent. The parameters (n and Po

�1),
used for the asymptotic fittings at the beginning (nbegin and Po

�1
begin)

and the end (nend) of the transformation, are shown in Table 1.
These parameters indicate that the initial stages of the primary
crystallization can be described within the KJMA model with,
depending of the Ag content y, a kinetic exponent n about 2.1e2.5
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Fig. 4. The kinetic function P(x) for the crystallization of the g-Ag8GeSe6 phase in glasses (Ge25Se75)100�y Agy (with y ¼ 10, 15, 20 and 25 at.%) obtained from: a) Experimental data
PHR(x) (using Eq. (6) and the master curve) esymbols-; b) Simulated data Psoft(x) from a model diffusion-controlled-3D growth with decreasing homogeneous nucleation and soft
impingement (Eq. (24)) efull line-. Some error bars are shown.
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(see Table 1). Although the interpretation of this coefficient is not
straightforward, these values of n lie between 3/2 (diffusion-
controlled growth of pre-existing grains) and 5/2 (diffusion-
controlled growth with constant nucleation rate, see Section 2 and
Eqs. (A-3a) and (16a)) [21,22]. These values of n can also be iden-
tified with a decreasing nucleation rate combined with diffusion
controlled grain growth (for 3/2 < n < 5/2) [9,12,14,21e23,26]. On
the other hand, the decrease of the slope in the log-log graphic
PHR(x) vs. x (see Fig. 4) shows that the kinetic exponent n decreases
monotonously with the crystallization fraction x (see Eq. (7))
[21,22,27]. Therefore, the values of nend (see Table 1) and the
analysis of the whole crystallization process, where n decreases
monotonously, let us to conclude that the best hypothesis of the
crystallization kinetic is diffusion-controlled-3D growth combined
with a decreasing nucleation rate [2,12,21e23]. Consequently, the
model shown in Section 2 has been extended by modifying Eqs.
(9a) and (13) to include a decreasing nucleation rate, Isoft, and a
diffusion controlled-3D growth with soft impingement e diffusion
coefficient Dsoft�. The forms of Isoft and Dsoft are:

Isoft ¼ IðTÞ ð1� xÞ2
ð1� gxÞ2

(22a)

Dsoft ¼ DðTÞ ð1� xÞ
ð1� gxÞ (22b)

where I(T) and D(T) are given by Eqs. (9a) and (13), g is the crys-
tallized fraction at the end of the primary crystallization (x¼ 1).
Although a nucleation lineal dependence on the factor (1�x)/
(1�gx) is commonly proposed in soft impingement [2,12,21,22],
based on a previous work [23], a quadratic dependence is used in
this work. In this case, the fitting of the kinetic function P(x) shown
in Fig. 4 is more suitable.

Therefore, the extended transformation fraction xex can be
written as [9,21,22,27]:

xexðtÞ ¼ 4p
3

Zt
0

IsoftðtÞ
2
4Zt

t

Dsoftðt0Þdt0
3
5
3=2

dt

¼ 4p
3

Zt
0

IðTÞ ð1� xðtÞÞ2
ð1� gxðtÞÞ2

2
4Zt

t

DðTÞ ð1� xðt0ÞÞ
ð1� gxðt0ÞÞdt

0
3
5
3=2

dt

(23)

where xex(t), is related to x(t) by Eq. (10):

xðtÞ ¼ 1� expð � xexðtÞÞ
These Eqs. (23) and (10) are an integral-differential equations

system (where the crystallized fraction x(t) is the unknown func-
tion) and were solved numerically. For a fixed time tn, the proce-
dure is an iterative method, where the fraction transformed is re-
estimated at every step of the iteration process. The iteration pro-
cedure starts with an initial value of x corresponding to the pre-
vious instant tn-1, and x(tn) is re-calculated using Eqs. (23) and (10)
iteratively until the convergence, with an accuracy of 10�8 in x.
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The parameters of the simulated curves are shown in Table 1.
These equations reproduce qualitatively the continuous decay of
both nucleation frequency (due to the decrease of supersaturation
of the disordered matrix) and the concentration gradient ahead of
the interface (due to soft impingement between grains).

The validity of this complex model of diffusion-controlled-3D
growth with decreasing homogeneous nucleation and soft
impingement was explored by determining the kinetic function
Psoft(x). This function was calculated from the simulated curves of

the transformation rate, dxdt

����
soft

, using Eq. (2a). Namely,

PsoftðxÞ ¼
exp

�
�Ea
kT

�
dx
dt

����
soft

(24)

The results are shown in Fig. 4. The simulated values of Psoft(x)
show good agreement with the experimental curves PHR(x) ob-
tained using the master curve procedure and Eq. (6). This model
reproduces acceptably the whole crystallization process except for
y ¼ 25%. This fact can be explained with the small exothermic peak
(intermediate peak) between the twomain peaks observed in Fig. 2
for the (Ge25Se75)75 Ag25 sample. It is possible that the overlapping
of the intermediate peak with the primary transformation affects
the baseline.

Also, the experimental value of Po�1
begin is close to the simulated

one (see Table 1).
The Avrami exponent of the studied samples decreases with x

and has very low values at the end of the crystallization. This
behaviour can be explained by analysing the morphology of the
(Ge25Se75)100�y Agy amorphous samples. As a consequence of the
liquid miscibility gap, (GexSe100�x)100�y Agy bulk glasses (x ¼ 20,
25 at.% and 5 < y < 25 at.%) are inhomogeneous with two amor-
phous phases, one with higher Ag content and other with lower Ag
concentration [30e32]. The size of these phases depends on the
composition ranging from 100 nm to a few microns. The primary
crystallization of the g-Ag8GeSe6 phase occurs preferably in the
amorphous phase rich in silver. Based on the crystal composition,
the nucleus of g-Ag8GeSe6 are originated with greater probability
in zones rich in Ag and grow affected by the composition change of
the remaining phase. The growth decreases dramatically at the
edge of the poor silver zone.

4. Conclusions

Diffusion controlled growth of homogeneously nucleating
crystalline grains does not pertain to an isokinetic reaction except
for EI¼ ED. However, considering the Eq. (21d), apart from the factor
J5/2(EI/ED) a unique function P(x) describes both continuous heat-
ing and isothermal transformation rate. Therefore, the coupling of
experimental data in both regimes may allow the EI/ED ratio to be
determined.

The master curve method has been applied to perform the ki-
netic analysis of the continuous heating calorimetric data. It is
shown that the primary crystallization process of the glasses
(Ge25Se75)100�y Agy (y¼ 10, 15, 20 and 25 at.%) may be described by
a unique function PHR(x) on varying heating rate. The master curve
was computed using continuous heating experimental data
without crystallization model information. In other words, the
master curve is the “average” of the experimental data. The values
of apparent activation energy, obtained for the primary crystalli-
zation of the phase g-Ag8GeSe6, are in the range: 2.0 eV/
at < Ea < 2.6 eV/at. The apparent activation energy increases when
the Ag content increases.
The primary crystallization growth of the phase g-Ag8GeSe6, is
controlled by diffusion. A model of the decrease of both nucleation
rate and effective diffusion in primary crystallization, such as the
one described above, is able to reduce the Avrami exponent at the
onset of the transformation, from the ideal value of 5/2 to values
close to those observed experimentally (2.1 < n < 2.5).

In the final stages of crystallization (0.96 < x < 0.99), the
experimental kinetic function PHR(x) may be approached by an
Avrami function with an exponent n in the range 0.6e1.3. Values of
this parameter about or smaller than the unity have been previ-
ously related to soft impingement processes [12,21,22], where grain
growth is kinetically slowed down, and eventually inhibited, by the
change of concentration in the untransformed region. This behav-
iour can be associated with the inhomogeneity of the glasses.
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Appendix A. Johnson-Mehl-Avrami-Kolmogorov theory.
Growth controlled by interface

In a previous work [23], a KJMA model with homogenous and
constant nucleation and three-dimensional interface-controlled
growth was elaborated under isothermal and continuous heating
regimes, using the following hypothesis:

a) The nucleation critical radius is negligible.
b) An Arrhenian temperature dependence for both nucleation

frequency I(T) and growth rate u(T), that is:

IðTÞ ¼ Io exp
��EI
kT

�
(A-1)

uðTÞ ¼ uo exp
��EU

kT

�
(A-2)

where EI, and EU are the activation energies for nucleation and
growth, respectively, and Io and uo the pre-exponential factors.

It was found [23] under isothermal regime, that the activation
energy, the Avrami exponent and the kinetic function Piso(x) in Eq.
(2a), are

Ea ¼ EI þ 3EU
4

and n ¼ 4 (A-3a)

PKJMA
iso ðxÞ ¼ P0;iso½ � lnð1� xÞ��3

4

4ð1� xÞ (A-3b)

with

P�1
0;iso ¼

h�p
3

�
Iou3o

i1
4

(A-3c)

Using the same hypothesis, under continuous heating regimes,
in Eq. (2b), the activation energy, the Avrami exponent and the
kinetic functionPHR(x), are
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Ea ¼ EI þ 3EU
4

and n ¼ 4 (A-4a)

PKJMA
HR ðxÞ ¼ P0;HR½ � lnð1� xÞ��3

4

4ð1� xÞ j4

�
EI
EU

�
(A-4b)

with

P�1
0;HR ¼ P�1

0;iso ¼
h�p

3

�
Iou3o

i1
4

(A-4c)

and

j4ðBÞ ¼
"ð3þ BÞ33

�
1� 2B

1þB þ B
2þB

�
43B

#1=4
with B ¼ EI

EU
(A-5)

Thus Eq. (A-4b) can be written as:

PKJMA
HR ðxÞ ¼ PKJMA

iso ðxÞj4

�
EI
EU

�
(A-6)

Based on Eq. (A-6), Piso(x) and PHR(x) are the same function
except for the factor j4.

The factor j4(EI/EU) is a function of the activation energies ratio
EI/EU, with an interesting particular case: when EI ¼ EU, that is B¼ 1,
j4 is equal to 1 in only this situation. Thus, it is therefore concluded
that the homogenous and constant nucleation and dimensional
interface-controlled growth regime behaves as an isokinetic re-
actions when EI ¼ EU. In other words, Eq. (A-6) clearly indicates, in
general, that the process is non-isokinetic.
Appendix B. Johnson-Mehl-Avrami-Kolmogorov theory.
Growth controlled by diffusion

Assuming r* is negligible, Eq. (14) can be written (with T ¼ Toþb

t) as:

xex¼4p
3

ZT
0

Ioexpð�EI=RT
0Þ
2
4ZT
T 0

Doexp
�
�ED

.
RT

00�
dT

00.
b

3
5
3=2

dT 0=b

(B-1)

If E/RT � 20, to compute the integral, we know that [4]:

ZT
0

exp
�
�E
.
RT

00�
dT

00
y
RT2

E
expð�E=RTÞ (B-2)

Eq. (B-2) can be written as:

v

vT

�
RT2

E
expð�E=RTÞ

�
yexpð�E=RTÞ (B-3)

Equivalently [4]:

ZT
T 0

exp
�
� E
.
RT

00�
dT

00
y
RT2

E
expð�E=RTÞ � RT 02

E
expð � E=RT 0Þ

(B-4)

Eq. (B-4) is the approximation of large activation energy, E/
RT>> 1, of the so called temperature integral [4,8,11]. Other authors
[4,8,11] employed the same approximation in the computation of
the transformed fraction. The evaluation of the different
approximations to the temperature integral was studied by �Orf~ao in
a review [29]. On the other hand, the temperature integral was
computed exactly by Tomellini [7,10].

Consequently using (B-4) in (B-1):

xex ¼4pIoD
3=2
o

3b5=2

��
RT2

.
ED
�
expð�ED=RTÞ

�3=2

�
ZT
0

expð�EI=RT
0Þð1�QÞ3=2dT 0

(B-5)

with Q ¼ T 02 expð � ED=RT 0Þ
T2 expð�ED=RTÞ

(B-6)

In Eq. (B-1), 0 <T ’ <¼ T, and exp(�ED/RT’) <¼ exp(�ED/RT)<1,
therefore 0 <Q <¼ 1 and the function [1�Q]3/2 is replaced by its
Taylor serie:

1�Q½ �3=2 ¼ 1� 3 =2Qþ 3 =2 3 =2� 1
	 
Q2

2!
� 3 =2 3 =2� 1

	 

� 3 =2� 2
	 
Q3

3!
þ………

¼ 1�Q½ �3=2 ¼
X∞
i¼0

3=2
i

� �
�1ð ÞiQi (B-7)

with
�
3=2
i

�
¼
Qi�1

j¼0
ð3=2�jÞ
i! if is0 and

�
3=2
0

�
¼ 1

Substituting into Eq. (B-5):

xex ¼4pIoD
3=2
o

3b5=2

��
RT2

.
ED
�
expð�ED=RTÞ

�3=2X∞
i¼0

�
3=2
i

�
ð � 1Þi

�
ZT
0

expð � EI=RT
0ÞQndT 0

(B-8)

Replacing (B-6) into (B-8):

xex ¼ 4pIoD
3=2
o

3b5=2

�
RT2

ED
expð�ED=RTÞ

�3=2

:

:
X∞
i¼0

3=2
i

� �
�1ð Þiexp nED=RTð Þ

T2i

ZT
0

exp � EI þ nEDð Þ=RT ’
� �

T ’2idT ’

(B-9)

Using the approximation equivalent to (B-2) [4]:

ZT
0

T 0q expð�E=RT 0ÞdT 0yRTqþ2

E
expð�E=RTÞ (B-10)

For q¼ 0,2,4,6,8 …. (if E/RT > 20)

So; xex ¼ 4pIoD
3=2
o

3b5=2

�
RT2

.
ED
�5=2

exp

 
� EI þ 3 =2ED

RT

!

�
X∞
i¼0

�
3=2
i

� ð � 1ÞiED
EI þ iED

(B-11)

Eq. (B-11) can be written as:
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Or; xex ¼ 8pID3=2

15b5=2

�
RT2

.
ED
�5=2�

f5=2ðEI=EDÞ
�5=3

(B-12)

with

f5=2ðBÞ ¼
"
5
2

X∞
i¼0

�
3=2
i

� ð � 1Þi
Bþ i

#3=5
(B-13)

With the same hypothesis, the time derivative dxex/dt is ob-
tained using (B-5):

dxex
dt

¼ b
dxex
dT

¼ 4pIoD
3=2
o

3b3=2
v

vT

2
4�RT2

.
ED
�3=2

exp
��3ED

2RT

�

�
ZT
0

exp
��EI
RT 0

�
½1�Q�3=2dT 0

3
5 (B-14)

In (B-14), using ED/RT >> 1:

v

vT

��
RT2

.
ED
�3=2

exp
��3ED

2RT

��
¼ 3

2

��
RT2
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ED
�1=2
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��3ED
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(B-15)

And using vQ
vT ¼ �Q

T

�
2þ ED

RT

�
z�Q ED

RT2:
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vT

2
4ZT

0
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�EI
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� �
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3
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ZT
0

exp
�EI
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RT2
dT ’ (B-16)

Therefore, (B-14) can be written as:

dxex
dt

¼ 2pIoD
3=2
o

b3=2

��
RT2

.
ED
��1=2

exp
��3ED

2RT

�ZT
0

exp
��EI
RT 0

�

�
n
½1�Q�3=2 þQ½1�Q�1=2
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(B-17)

As it was mentioned before, 0 <Q <¼ 1 and the function [1�Q]1/
2 is replaced by its Taylor serie:

½1�Q�1=2 ¼
X∞
i¼0

�
1=2
i

�
ð � 1ÞiQi (B-18)

with
�
1=2
i

�
¼
Qi�1

j¼0
ð1=2�jÞ
i! if is0 and

�
1=2
0

�
¼ 1

Similarity, as it was done in Eqs. (B-5), (B-8) and (B-9), the in-
tegral in Eq. (B-17) can be written, using the approximation (B-10):

ZT
0

exp
��EI
RT 0

�
½1�Q�1=2dT 0 ¼

X∞
i¼0

�
1=2
i

�
ð � 1ÞiexpðnED=RTÞ
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�
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¼ RT2 expð � ðEIÞ=RTÞ
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� ð � 1Þi
EI þ iED

(B-19)

Therefore, substituting into Eq. (B-17):

dxex
dt

¼ 2pIoD
3=2
o
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�
RT2
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ED
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exp
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But, using Eqs. (B-11) and (B-12):

ðxexÞ3=5 ¼
�
8pIoD

3=2
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15b5=2
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Eq. (B-20) can be written:

dxex
dt

¼ 8p=15ð Þ2=5I2=5o D3=5
o

5
2
xexð Þ3=5 exp �2EIþ3ED

5RT

� �
j5=2 EI=EDð Þ

Or
dxex
dt

¼ 5
2
ð8p=15Þ2=5I2=5D3=5ðxexÞ3=5$j5=2ðEI=EDÞ (B-22)

With
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j5=2ðBÞ ¼
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2
P∞

i¼0

�
1=2
i

�
ð�1Þi
Bþi

f5=2ðBÞ
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References

[1] Zhou D, Grant DJW. Model dependence of the activation energy derived from
non isothermal kinetic data. J Phys Chem A 2004;108:4239e46.

[2] Liu F, Sommer F, Bos C, Mittemeijer EJ. Analysis of solid state phase trans-
formation kinetics: models and recipes. Int Mater Rev 2007;52(4):193e212.

[3] Vazquez J, Barreda DGG, Lopez-Alemany PL, Villares P, Jimenez-Garay R.
A study on non-isothermal transformation kinetics. Application to the crys-
tallization of the Ge0.18Sb0.23Se0.59 glassy alloy. Mater Chem Phys 2006;96:
107e15.

[4] Vazquez J, Wagner C, Villares P, Jim�enez-Garay R. A theoretical method for
determining the crystallized fraction and kinetic parameters by DSC, using
non-isothermal techniques. Acta Mater 1996;44:4807e13.

[5] Mittemeijer. Review. Analysis of the kinetics of phase transformations. J Mater
Sci 1992;27:3977.

[6] Song SJ, Liu F, Jiang YH. Generalized additivity rule and isokinetics in
diffusion-controlled growth. J Mater Sci 2014;49:2624.

[7] Tomellini M. Generalized additivity rule for the KolmogoroveJohnson-Mehl-
Avrami kinetics. J Mater Sci 2015;50:4516.

[8] Farjas J, Roura P. Modification of the KolmogoroveJohnsoneMehleAvrami
rate equation for non-isothermal experiments and its analytical solution. Acta
Mater 2006;54:5573e9.

[9] Fontana M, Arcondo B, Clavaguera-Mora MT, Clavaguera N. Crystallization
kinetics driven by two simultaneous modes of crystal growth. Philos Mag B
2000;80(10):1833e56.

[10] Tomellini M. KolmogoroveJohnsoneMehleAvrami kinetics for non-
isothermal phase transformations ruled by diffusional growth. J Therm Anal
Calorim 2014;116:853.

[11] Ruitenberg G, Woldt E, Petford-Long AK. Comparing the John-
soneMehleAvramieKolmogorov equations for isothermal and linear heating
conditions. Thermochim Acta 2001;378:97e105.

[12] Clavaguera-Mora MT, Clavaguera N, Crespo D, Pradell T. Crystallisation ki-
netics and microstructure development in metallic systems. Prog Mater Sci.
2002;47(6):559e619.

[13] Blazquez JS, Conde CF, Conde A. Non-isothermal approach to isokinetic
crystallization processes: application to the nanocrystallization of HITPERM
alloys. Acta Mater 2005;53:2305e11.

[14] Christian JW. The theory of phase transformations in Metals and alloys. Ox-
ford: Pergamon Press; 2002.
[15] Cahn JW. Transformation kinetics during continuous cooling. Acta Metall
1956;4:572e5.

[16] Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem
1957;29:1702e6.

[17] Avrami M. Kinetics of phase change I. General theory. J Chem Phys 1939;7:
1103e12.
[17a] Avrami M. Kinetics of phase change II. Transformation-time relations for
random distribution of nuclei. J Chem Phys. 1940;8:212e24.

[18] Avrami M. Granulation, phase change, and microstructure kinetics of phase
change. III. J Chem Phys. 1941;9:177e84.

[19] Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and
growth. Trans Am Inst Min Metall Eng 1939;135:416e42.

[20] Kolmogorov AN. On the statistical theory of the crystallization of metals. Bull
Acad Sci USSR, Math Ser 1937;1:355e9.

[21] Jacovkis D, Xiao Y, Rodriguez-Viejo J, Clavaguera-Mora M:T:, Clavaguera N.
Mechanisms driving primary crystallization of Al87Ni7Cu 3Nd 3 amorphous
alloy. Acta Mater 2004;52(9):2819e26.

[22] Jacovkis D, Rodriguez-Viejo J, Clavaguera-Mora MT. Isokinetic analysis of
nanocrystallization in an AleNdeNi amorphous alloy. J Phys Condens Matter
2005;17(32):4897.

[23] Fontana M, Arcondo B, Clavaguera-Mora MT, Clavaguera N. Mechanisms
controlling primary crystallisation of Ga20Te80 glasses. J Non-Cryst solids
2007;353(22):2131e42.

[24] Torrens-Serra J, Bruna P, Stoica M, Roth S, Eckert J. Glass forming ability,
thermal stability, crystallization and magnetic properties of [(Fe,Co,Ni)0.75
Si0.05 B0.20]95 Nb4 Zr1 metallic glasses. J Non-Cryst Solids 2013;367:30e6.

[25] Ure~na MA, Fontana M, Arcondo B, Clavaguera-Mora MT. Crystallization pro-
cesses of AgeGeeSe superionic glasses. J Non-Cryst solids 2003;320(1):
151e67.

[26] Clavaguera-Mora MT. Glassy materials: thermodynamic and kinetic quanti-
ties. J Alloys Compd 1995;220(1):197e205.

[27] Clavaguera N, Clavaguera-Mora MT, Fontana M. Accuracy in the experimental
calorimetric study of the crystallization kinetics and predictive transformation
diagrams: application to a Ga-Te amorphous alloy. J Mater Res 1998;13(3):
744e53.

[28] Starink MJ. The determination of activation energy from linear heating rate
experiments: a comparison of the accuracy of iso-conversion methods.
Thermochim Acta 2003;404:163.

[29] Orfao Jose JM. Review and evaluation of the approximations to the temper-
ature integral. AIChE J 2007;53:2905.

[30] Ure~na MA, Fontana M, Piarristeguy A, Arcondo B. AgGeSe-based bulk glasses:
a survey of their fundamental properties. J Alloys Compd 2010;495:305.

[31] Arcondo B, Ure~na MA, Piarristeguy A, Pradel A, Fontana M. Nanoscale intrinsic
heterogeneities in Ag-Ge-Se glasses and their correlation with physical
properties. Appl Surf Sci 2007;254:321.

[32] Wang Y, Mitkova M, Georgiev DG, Mamedov S, Boolchand P. Macroscopic
phase separation of Se-rich (x< 1/3) ternary Agy(GexSe1�x)1�y glasses.
J Phys Condens Matter 2003;15:S1573.

http://refhub.elsevier.com/S1290-0729(16)30012-6/sref1
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref1
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref1
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref2
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref2
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref2
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref3
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref3
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref3
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref3
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref3
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref4
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref4
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref4
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref4
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref4
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref5
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref5
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref6
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref6
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref7
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref7
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref7
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref8
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref8
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref8
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref8
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref8
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref8
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref8
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref9
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref9
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref9
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref9
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref10
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref10
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref10
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref10
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref10
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref10
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref11
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref11
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref11
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref11
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref11
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref11
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref11
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref12
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref12
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref12
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref12
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref13
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref13
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref13
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref13
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref14
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref14
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref15
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref15
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref15
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref16
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref16
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref16
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref17
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref17
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref17
http://refhub.elsevier.com/S1290-0729(16)30012-6/bib17a
http://refhub.elsevier.com/S1290-0729(16)30012-6/bib17a
http://refhub.elsevier.com/S1290-0729(16)30012-6/bib17a
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref18
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref18
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref18
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref19
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref19
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref19
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref20
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref20
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref20
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref21
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref21
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref21
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref21
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref22
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref22
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref22
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref22
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref22
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref23
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref23
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref23
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref23
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref24
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref24
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref24
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref24
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref25
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref25
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref25
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref25
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref25
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref25
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref25
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref26
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref26
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref26
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref27
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref27
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref27
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref27
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref27
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref28
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref28
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref28
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref29
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref29
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref30
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref30
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref30
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref31
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref31
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref31
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref31
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref32
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref32
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref32
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref32
http://refhub.elsevier.com/S1290-0729(16)30012-6/sref32

	The isokinetic behavior in diffusion controlled growth processes
	1. Introduction
	1.1. New approach for kinetic analysis: master curve analysis of a transformation in continuous heating regimes
	1.2. Johnson-Mehl-Avrami-Kolmogorov theory

	2. Johnson-Mehl-Avrami-Kolmogorov theory. Growth controlled by diffusion
	2.1. Isothermal regime
	2.2. Continuous heating regime

	3. Application to the crystallization of AgGeSe amorphous alloys
	3.1. Master curve analysis of the crystallization process
	3.2. Analysis of the kinetic mechanisms involved in the crystallization process

	4. Conclusions
	Conflict of interest
	Acknowledgments
	Appendix A. Johnson-Mehl-Avrami-Kolmogorov theory. Growth controlled by interface
	Appendix B. Johnson-Mehl-Avrami-Kolmogorov theory. Growth controlled by diffusion
	References


