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The cestode parasite Echinococcus multilocularis is the aetiological agent of alveolar echinococcosis, responsible
for considerable humanmorbidity andmortality. This disease is aworldwide zoonosis ofmajor public health con-
cern and is considered a neglected disease by the World Health Organization. The complete genome of
E. multilocularis has been recently sequenced and assembled in a collaborative effort between the Wellcome
Trust Sanger Institute and our group, with the main aim of analyzing protein-coding genes. These analyses sug-
gested that approximately 10% of E. multilocularis genome is composed of protein-coding regions. This shows
there is still a vast proportion of the genome that needs to be explored, including non-coding RNAs such as
small RNAs (sRNAs). Within this class of small regulatory RNAs, microRNAs (miRNAs) can be found, which
have been identified in many different organisms ranging from viruses to higher eukaryotes. MiRNAs are a key
regulationmechanism of gene expression at post-transcriptional level and play important roles in biological pro-
cesses such as development, proliferation, cell differentiation and metabolism in animals and plants. In spite of
this, identification of miRNAs directly from genome-wide data only is still a very challenging task. There are
many miRNAs that remain unidentified due to the lack of either sequence information of particular phylums
or appropriate algorithms to identify novelmiRNAs. Themotivation for this work is the discovery of newmiRNAs
in E. multilocularis based on non-target genomic data only, in order to obtain useful information from the current-
ly available unexplored data. In this work, we present the discovery of new pre-miRNAs in the E. multilocularis
genome through a novel approach based on machine learning. We have extracted the most commonly used
structural features from the folded sequences of the parasite genome: triplets, minimum free energy and se-
quence length. These features have been used to train a novel deep architecture of self-organizing maps
(SOMs). This model can be trained with a high class imbalance and without the artificial definition of a negative
class.We discovered 886 pre-miRNA candidateswithin the E. multilocularis genome-wide data. After that, exper-
imental validation by small RNA-seq analysis clearly showed23pre-miRNA candidateswith a pattern compatible
with miRNA biogenesis, indicating them as high confidencemiRNAs.We discovered new pre-miRNA candidates
in E. multilocularis using non-target genomic data only. Predictions were meaningful using only sequence data,
with no need of RNA-seq data or target analysis for prediction. Furthermore, the methodology employed can
be easily adapted and applied on any draft genomes, which are actually the most interesting ones since most
non-model organisms have this kind of status and carry real biological and sanitary relevance.
Availability
Web demo: http://fich.unl.edu.ar/sinc/web-demo/mirna-som/
Source code: http://sourceforge.net/projects/sourcesinc/files/mirnasom/
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1. Introduction

1.1. MicroRNAs in Echinococcus spp

Echinococcusmultilocularis is a parasitic flatworm that causes human
alveolar echinococcosis worldwide. It is among the world's most
dangerous zoonoses, developing tumor-like flatworm larvae growing
in the body [37]. Themetacestode of this parasite can grow in an aggres-
sivemanner budding exogenously, infiltrating and colonizing surround-
ing and distant tissues due to the metastatic nature of its germinative
cells. The genome of E. multilocularis was recently sequenced and as-
sembled in a collaborative effort between the Wellcome Trust Sanger
Institute and our group [38]. Gene content analysis revealed that ap-
proximately 10% of the genome is protein-coding regions [6]. This
shows that there is still a vast proportion of the genome that needs to
be explored, including non-coding RNAs such as small RNAs (sRNAs).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ygeno.2016.04.002&domain=pdf
http://fich.unl.edu.ar/sinc/web-demo/mirna-som/
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http://dx.doi.org/10.1016/j.ygeno.2016.04.002
http://dx.doi.org/10.1016/j.ygeno.2016.04.002
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Within this class of small regulatory RNAs, microRNAs (miRNAs)
have been identified in many different organisms. MiRNAs are endoge-
nous ~22 nucleotide noncoding RNAs, which act as pos-transcriptional
regulators involved in the control of nearly all cellular pathways, from
development to diseases in animals and plants [2]. MiRNAs act mainly
silencing gene expression by binding to complementary sequences
in the 3′ untranslated regions (UTRs) of their target mRNAs. Animal
miRNAs are processed in the nucleus from long primary RNA transcripts
(pri-miRNAs) into ~70 nt long stem loop intermediates, known as
miRNA precursors (pre-miRNAs), fromwhichmaturemiRNAs are proc-
essed in the cytoplasm [4]. Pre-miRNAs (also known as hairpins) gener-
ated during biogenesis have well-known RNA secondary structures
derived from primary structures that have allowed the development
of computational algorithms for their identification. In a previous re-
port, we experimentally found that miRNAs are expressed in Echinococ-
cus granulosus sensu lato [5], a species closely related to E. multilocularis,
suggesting that these small RNAs could be an essential mechanism of
gene regulation in this genus. Profiling of miRNAs can be defined as
the assessment of miRNA expression in a given cell type and condition
[32]. Several methods are available to do this, and are preferentially
used depending on a wide range of factors. The most important consid-
erations tend to be related to the amount of biological material avail-
able, the experimental design and the final objectives of the study. As
with model organisms, this kind of experiments is time-consuming
and depends on the expression level of each biological stage. With the
advent of new sequencing technologies, it is faster and easier to obtain
genomic sequences from new organisms. However, only a few bioinfor-
matics efforts are available to analyze this type of data, which, on the
other hand, provide limited capabilities and low prediction perfor-
mance for non-model organisms. To the best of our knowledge, no
miRNA discovery studies from E. multilocularis genome wide data
have been carried out to date. Thus, knowledge of the E. multilocularis
miRNA repertoire needs to be explored.

1.2. Tools for miRNA identification

MiRNAs can be identified either by bioinformatics approaches or by
sequencing strategies, both of which need computational tools for the
analysis of the sequences obtained [34]. Some of the oldest strategies
for miRNAs discovery include RNA conformation based approaches
using Mfold [47] and RNAfold [15,16,19] as core algorithms. Other ap-
proaches are based on homology methods using known miRNA and
pre-miRNA sequences from several well-known model organisms.
One potential drawback of these homology-based methods is their in-
ability to identify completely novel miRNA sequences in non-model ge-
nomes, precisely due to the conservation criteria between related
genomes on which they rely and that might not be true or known for
brand-new recently sequenced genomes. More recently, machine-
learning techniques for miRNA prediction have been proposed, based
on properties and features of well-knownmiRNAs. Among them,main-
ly supervised machine-learning techniques have been employed, using
sequence composition and structural conformation features to train a
learning system capable of identifying miRNA candidates [36,49]. As
opposed to homology based methods, this approach could be useful
for species-specific miRNA discovery since it does not depend on evolu-
tionary conservation. As mentioned above, many methods have been
developed to predict pre-miRNA loci based on the genome sequence
and structural properties of the candidate loci. The miRNA classifier
methods use different features to evaluate, for example, the structural
stability or sequence properties of the candidates, in order to produce
a final prediction [18,22,23]. However, this is a non-trivial problem
when addressing it in a purely computerized way, in particular with
classical supervised learning because the artificial definition of a nega-
tive class is required [10]. Methods that use only positive samples to
predict new miRNAs have been described [45]. However, it is well
known that these methods fail when the negative class is complex
because this region of the feature space is not properly modeled. Actu-
ally, they do not model the negative class at all or they model it under
very simplified assumptions. Furthermore, when the negative class is
not artificially defined and genome-wide data wants to be used, a
huge imbalance is often present between the positive class (a few
known miRNAs) and the unlabeled data (hundreds of thousands of se-
quences). Since E.multilocularis genomewas recently generated,mining
this new genomic data will provide a deeper understanding of parasite
miRNome. In this work, we identify candidate novel miRNA precursors
in E. multilocularis through a novel approach based on self-organizing
maps (SOM) [21,28].

2. Materials and methods

2.1. Biologically relevant data set and hairpin features extraction

The main pipeline used for the analysis of the genome-wide data is
presented in Fig. 1. The complete E. multilocularis genome [38] was proc-
essed by Einverted software (EMBOSS package) as described by de Souza
Gomes et al. [7]) with the following parameters: gap penalty 6, mini-
mum score threshold 25, match score 3, mismatch score−3, maximum
separation between the start and end of the inverted repeat 95. Then, the
inverted repeats were folded into 491,532 sequences by RNAfold (Supp.
file 1). The obtained sequences were then pre-processed. Sequences
with minimum free energy (MFE) threshold of −20 and single-loop
folded sequences were selected according to the miRNA biogenesis
model [4]. The retained sequenceswere analyzed using BLAST algorithm
[1] against an in-house database of CDS, tRNAs, rRNAs and long non cod-
ing RNAs flatworm sequences [6]. After this, 77,429 sequences were
retained. Then, all E. multilocularis hairpin sequences were downloaded
frommiRBase v21, BLAST searches among the77,429 sequences retained
were performed and a total of 18 sequences were labeled as positive
class. To represent the sequences, the 34 most commonly used features
were extracted. We used the smallest and less costly to compute subset
of features that are extensively used nowadays to identify novel pre-
miRNAs: 32 triplets [42], sequence length and MFE [18]. These features
were extracted with the web tool miRNAfe [43] recently developed by
us. Then, the features extracted from 77,429 sequences were used to
train the SOM classifier, which identified 886 sequences as the best
pre-miRNA candidates.

2.2. Classifier

In this work, instead of training a classifier in a classical supervised
manner, we identified miRNA precursors with a novel approach based
on several nested SOMs. For SOM training, there is no need to define
the negative miRNA class. Only some examples of positive class exam-
ples (well-known pre-miRNAs) are needed to identify the neurons
that have the bestmiRNA candidates associated to them. In this context,
each neuron in the SOM is a cluster of sequences. The SOM classifier is
actually composed of several nested SOMs, which are hierarchically re-
lated. This deep architecture is shown at the top of Fig. 2, where a 10-
layered (h= 10) example is provided. The training process of the hier-
archical maps starts with the root SOM on the first layer (left), with the
77,429 sequences as input. This map undergoes standard training. After
that, all the sequences grouped together in a neuron (cluster) having
alsowell-knownpre-miRNAs (painted in dark blue) are labeled as high-
ly likely pre-miRNA candidates. These sequences are chosen as input to
train the map in the following layer (indicated with black lines). This
process is repeated several times, further refining the classifier level
after level. With this approach, each internal map is trained with only
a portion of the input data: the data mapped in the pre-miRNA clusters
in the previous layer. At the bottomof Fig. 2, the number of candidates is
shown for each level of the SOM. It can be clearly seen here that this
method significantly reduces the number of possible pre-miRNA candi-
dates, level after level, retaining at last the high-confidence pre-miRNAs.



Fig. 1. Flow diagram of the pipeline proposed formiRNA discovery from Echinococcusmultilocularis genome-wide data. The folded E. multilocularis genome (491,532 sequences) is used as
input. Blue arrows indicate pre-processing and SOM analysis. Green arrows indicate pre-miRNA validation after RNA-seq data integration.
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After four consecutive levels without changes in the number of data
clustered into pre-miRNA neurons (8042 sequences), no more levels
are added. These and the following levels are exactly the same since
the map is trained with exactly the same data. Therefore, adding more
levels does not cause over-training either. In the last level, each well-
known pre-miRNA in the miRNA neurons (in blue) is grouped together
with unlabeled sequences. Among them, the best bona fide candidates
are selected (886) as those having feature values within ranges auto-
matically defined by rules obtained according to the positive class
(well-known miRNAs). This reduction was possible because each fea-
ture was evaluated individually with respect to its discriminative
power for separating the positive class (well-known miRNAs) from
the rest of the sequences. This was done iteratively, until all features
were analyzed and all positive sequences were correctly classified.
This way, several rules for the feature ranges were extracted, which
were applied to the 8042 sequences in order to further reduce its num-
ber to 886.

2.3. Mature miRNA sequence extraction

The total number of candidate pre-miRNAs discovered by SOM anal-
ysis (886)wasmapped to the complete E.multilocularis genome and se-
quences with more than 10 hits were removed (highly repetitive
sequences, Fig. 1). Then, in order to extract mature miRNA sequences
from pre-miRNAs retained in the previous step, 26.9 million clean
mapped reads from small RNA-seq data of E. multilocularismetacestode
stage retrieved from Cucher et al. [6]) were BLAST searched against the
Fig. 2. Architecture developed to find pre-miRNA candidates in E. multilocularis genome. Top: H
miRNA candidates, which are input to the next level SOM (black lines). Bottom: Number of pr
pre-miRNAs sequences. BLAST algorithm was optimized for small se-
quences with word size set in 7, the filter for low complexity regions
off, and an e-value set in 10. For each pre-miRNA with small RNAseq ev-
idence in the stem region of the candidate pre-miRNA, the consensusma-
ture sequence was extracted from alignments showing 100% of identity
and 100% of coverage. This data was used for mature miRNA sequence
determination and not for miRNA expression quantification. In order to
extract additional mature miRNA sequences, all metazoan mature
miRNA sequences frommiRBase 21 and EchinococcusmaturemiRNAs re-
ported in the literature that were not integrated in miRBase [3,25] were
analyzed by BLAST and SSEARCH algorithms against candidate pre-
miRNAs. Finally, for conservation analysis, all E. multilocularismature se-
quences identified in previous stepswere BLAST searched against related
flatworm genomes: E. granulosus, Echinococcus canadensis, Hymenolepis
microstoma and Taenia solium. The genomes were downloaded from
http://parasite.wormbase.org/index.html and processed as previously
described for E. multiloculariswhole genome.

2.4. Further evaluation of the approach in a model organism

In order to further evaluate the proposal, amodel organism has been
used. Caenorhabditis elegans genome was processed in a similar way as
previously described for E. multilocularis. The 1,739,460 sequences ob-
tained were BLASTmatched against miRBase v17 for pre-miRNA identi-
fication. A total of 200 well-known miRNAs of C. elegans included into
miRBase v17 were labeled as positive class. All genome data (including
the identified positive class) were used to train SOM until the level
ierarchy of SOM classifier for 10 levels (h= 10). Dark blue neurons have highly likely pre-
e-miRNA candidates in each level.

http://parasite.wormbase.org/index.html
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where the number of candidates did not change (as described previous-
ly for E. multilocularis). In order to evaluate the prediction performance
of new miRNAs in a model organism, the miRNAs added to miRBase in
its most recent version have been used as input test sequences. There-
fore, the trained SOMwas testedwith 48 C. elegans pre-miRNAobtained
frommiRBase v19 to v21 (absent in miRBase v17). The trainedmodel is
available at http://fich.unl.edu.ar/sinc/blog/web-demo/mirna-som-ce/.

3. Results and discussion

In this work, we discovered 886 pre-miRNA candidates from
E. multilocularis genome-wide data (Fig. 1). Although such quantity can
be hard to validate experimentally, thismust be interpreted as an impor-
tant first step towards the discovery of newmiRNAs in low explored ge-
nomes, such as the E. multilocularis one, where only few pre-miRNA
sequences are available. Computationally identified miRNAs suggests
that miRNA gene numbers are substantially higher than those currently
known, as proposed by Piriyapongsa et al. [31]). Most computational
methods nowadays require expensive high-throughput RNA sequencing
data as input [13,24]. However, we use NGS data only for validation after
finding the pre-miRNA candidates, as in [35]. The fewmethods that have
been proposed to identify miRNAs from a complete genome without
such data obtain a very high number of initial candidates, hundreds of
thousands or tens of thousands of sequences [26]. After that, a reduced
list of the best candidates is obtained by manually applying ad hoc
rules [27] in order to achieve a number of sequences that can be experi-
mentally validated. However, for miRNA prediction most of the pub-
lished approaches do not really deal with genome-wide data, instead
they used data having positive and negative classes previously defined
[8,11,12,14,17,20,33,41,42]. In these works, in order to train classifiers,
andmeasure sensitivity and specificity in a cross-validation scheme, a re-
duced subset of negative examples must be artificially defined. More-
over, these unrealistic tests are performed over the genomes of model
organisms, such as mammals or round worms, being only useful to
Table 1
Conserved and novel Echinococcus multilocularismicroRNAs predicted from whole genome dat

MiRNA ID Read
countsa

Biological functionbc

emu-bantam-3p 1,184,581 Regulates the growth of dendrites in sensory neurons o
Present only in protostomes

emu-miR-31-5p 88 Tumour suppressor in humans
emu-miR-36a-3p 617 Unknown, present only in protostomes
emu-miR-36b-3p 1075 Unknown, present only in protostomes
emu-miR-61-3p 578,860 Promotes development in Caenorhabditis elegans. Prese
emu-miR-281-3p 17,958 Enhance viral replication in Aedes albopictus
emu-miR-307-3p 123,277 Unknown, present only in protostomes
emu-miR-1992-3p 24 Unknown, present only in protostomes
emu-miR-2162-3p 100,642 Unknown, present only in protostomes
emu-miR-10,293-3p 4017 Unknown
emu-miR-3479a-3p 56,603 Unknown
emu-miR-3479b-3p 63,552 Unknown
emu-miR-7b-5p 1070 Controls epidermal growth factor receptor signaling an

differentiation in Drosophila
emu-miR-new1-5p 8 Unknown
emu_miR-new2-3p 32 Unknown
emu_miR-new3-5p 123 Unknown
emu_miR-new4-5p 58 Unknown
emu_miR-new5-3p 1 Unknown
emu_miR-new6-5p 1 Unknown
emu-miR-new7-5p 41 Unknown
emu-miR-new8-3p 20 Unknown
emu-miR-new9-3p 246 Unknown
emu-miR-new10-5p 231 Unknown
Total 2,133,125

a Number of clean mapped reads without normalization.
b Described in model species.
c Most relevant references for miRNA function in other organisms or studies on related Echi
precisely measure the performance in cross-validation experiments,
but they cannot be applied in real practical scenarios. In the proposed
processing pipeline, only obvious non-miRNA sequences are filtered (ac-
cording to loops, energy threshold and identity to known RNAs other
than miRNAs). The remaining sequences from the original genome are
all presented to the SOM for training and classification. The first advan-
tage here is that the SOMdoes not require the artificial definition of neg-
ative class, thus it does not perform unrealistic tests. The second
advantage is that it works directly on complete genome-wide data,
which is being refined level after level, automatically discarding low-
quality candidates. With this methodology, artificial examples to repre-
sent thenegative class (which is actually unknown)must not be defined.
The negative examples can be actually very hard to define, even for a
model genome [39]. Thus, SOM is well suited to the analysis of genome
data from novel non model organisms.

In order to classify each miRNA as conserved or novel, we analyzed
the identity of all pre-miRNA candidates discovered by SOM with al-
ready reported metazoan miRNAs (miRBase v21) and E. multilocularis
miRNAs [6]. This analysis allowed us to identify 13 pre-miRNAs previ-
ously described (Supplementary Table S1). Taking into account the 18
miRNAs used as positive class, the total of miRNAs found was 31 out
of 37 miRNAs expected to be in E. multilocularis [6]. Since four miRNAs
were absent in the genome input dataset because their folded structure
did not match the filter criteria employed, the sensitivity of SOM
reached 94% (31/33). Moreover, 10 new pre-miRNAs were also identi-
fied totaling 23 pre-miRNAs. The mature miRNA annotation, their
clean mapped read counts and the biological function in other organ-
isms are shown in Table 1. E. multilocularis RNA-seq clearly mapped to
the hairpin stem region with a pattern compatible with miRNA biogen-
esis indicating them as high-confidencemiRNAs. As an example, a sche-
matic representation of the secondary structure from the conserved
E. multilocularis premiRNA 36b is shown in Fig. 3.

These new pre-miRNAs represent, in the first place, flatworm-
specific miRNAs since they were not detected in any other phyla. Also,
a.

Referenceb

f Drosophila melanogaster epithelial cells. Parrish et al. [30]

O'Day and Lal [29]
Macchiaroli et al. [25]
Cucher et al. [6]

nt only in protostomes Yoo and Greenwald [44]
Zhou et al. [46]
Cucher et al. [6]
Cucher et al. [6]
Cucher et al. [6]
Cucher et al. [6]
Cucher et al. [6]
Cucher et al. [6]

d promotes photoreceptor cell Jiang et al. [48], Macchiaroli et al. [25]
(egr-miR-7b-5p)
This work and Bai et al. [3] (egr-new-48)
This work
This work
This work and Bai et al. [3] (egr-new-12)
This work and Bai et al. [3] (egr-new-25)
This work and Bai et al. [3]) (egr-new-114)
This work and Bai et al. [3] (egr-new-7)
This work and Bai et al. [3] (egr-new-24)
This work
This work and Bai et al. [3] (egr-new-29)

nococcus species.

http://fich.unl.edu.ar/sinc/blog/web-demo/mirna-som-ce/


Fig. 3. Schematic representation of the secondary structure from the conserved pre-miRNA 36b discovered by the SOM. The secondary structure predictions for pre-miRNA-36b is shown
for four species offlatworms. Emul: E.multilocularis; Egra: E. granulosus; Ecan: E. canadensis; Hmic:H.microstoma. MaturemiRNA sequences are underlined.Minimum free energy (MFE) is
expressed as kcal/mol.
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some of themwere recently reported in E. granulosus [3]. It can be noticed
here the ability of the SOMtodiscover of newmiRNAs, onlywith genomic
data as input. Furthermore, the secondary structure from all new pre-
miRNAs discovered by SOManalysis is shown in Fig. 4. Structural features
such as MFE and mature miRNA sequences that mapped to them clearly
showed that they were bona fide pre-miRNAs. All mature and pre-
miRNA sequences and structures are available in Supplementary
Table S1 and Fig. S1. Additionally, our method discovered miRNAs in
E. multilocularis that were not identified by a recent bioinformatics ap-
proach [50] such as miR-36, miR-307, miR-1992, miR-3479, highlighting
the potential of SOM analysis for miRNA discovery. Interestingly, this
miRNAs were considered lost in Echinococcus [9] but SOM discovered
them in coincidence with previously reports [6,25].

We have also searched for these 23 pre-miRNA sequences in closely
related flatworm genomes. All of them were found in at least one of
the four related flatworm species (Fig. 3, Supplementary Table S1). Sev-
eral of the mature miRNAs found in this work are deeply conserved
among bilateria such as emu-miR-281 and emu-miR-31, but others are
found only in protostomia such as emu-bantam, emu-miR-36 and
emu-miR-1992. So far, there is no information about the biological func-
tion of these miRNAs in Echinococcus. These results could be interpreted
as a good indicator of the biological confidence of the predictions obtain-
ed with the pipeline proposed in this work, and indicate that the SOM
could discover both conserved and novel miRNAs from E. multilocularis
genome data. Although losses of conserved miRNAs have been
previously proposed in parasiteflatworms [9,25], the presence of specific
miRNAs is expected since novel miRNAs have been recently reported
from small RNAseq data in other helminth parasites [3,40]. The new
pre-miRNA sequences discovered in our work are good candidates to
be flatworm-specific miRNAs since they have no identity with miRNAs
from other phyla. These miRNA sequences are the most interesting
ones because they could have a crucial role in the establishment and/or
progression of human alveolar echinococcosis. As future work, it could
be interesting to be able to determine the E. multilocularis life cycle
stage where the new miRNAs discovered in this work are expressed
which could be done following approaches previously published by us
[25]. The knowledge of the complete repertoire of miRNAs, conserved
and specific ones, is key to understand the development of the parasite
and the progression and control of this neglected disease.

The validation of the proposed methodology in a non-model organ-
ism has proved its effectiveness. However, benchmarking it in a well-
known reference genome can provide evidence of its utility in a wide
number of organisms. Thus, we have performed a benchmarking test
of the proposed SOM approach with a well- known reference genome.
The SOM was trained with the complete genome data plus a total of
200 C. elegans well-known pre-miRNA sequences present in miRBase
v17. Then, the trained SOM has been tested with 48 pre-miRNAs more
recently added to miRBase v18–21 and absent in v17. In this test, 44
out of 48 pre-miRNA have been identified as positive class, resulting
in a SOM sensitivity of 92%.



Fig. 4. The secondary structure predictions of all new miRNAs from E. multilocularis discovered by SOM analysis. Mature miRNAs are indicated in red. Minimum free energy (MFE) is
expressed as kcal/mol.
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4. Conclusions

We applied SOM analysis for E. multilocularismiRNA prediction and
demonstrated its effectiveness and usefulness. Although using purely
computational methods for de novo miRNA prediction was a real chal-
lenge and a difficult problem to address, this analysis allow us to discov-
er good candidates from E. multilocularis genome sequencing data.Most
pre-miRNA prediction methods based on supervised machine learning
methods, which need to artificially define the negative class, cannot
handle the class imbalance existing in such genome-wide data. Howev-
er, the proposed method addressed the problem effectively without
requiring the artificial definition of a negative class dataset. With this
approach, complete genomes containing thousands of hairpins se-
quences could be analyzed and only highly likely hairpin sequences
can be further selected for biological validation. We found novel
E. multilocularis pre-miRNAs from non target genomic data without
the need of RNA-seq data and all of them conserved in at least one
related flatworm species. These results clearly indicate that there are
still several genomic sequences to be classified and ready to be analyzed
deeply. We found expression of mature miRNAs derived from pre-
miRNA candidates adding confidence to the predictions obtained
by SOM analysis. The data obtained in this work will be useful to
search for new mature miRNAs expressed in the human parasite
E. multilocularis resulting in new tools for the diagnosis, prevention
and developmental regulation of alveolar echinococcosis neglected
disease.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ygeno.2016.04.002.
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