Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculations

Laura C. Bichara ${ }^{\text {a }}$, Patricia E. Alvarez ${ }^{\text {b,c }}$, María V. Fiori Bimbi ${ }^{\text {b }}$, Hugo Vaca ${ }^{\text {b }}$, Claudio Gervasi ${ }^{\text {c }}$, Silvia Antonia Brandán ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán, Tucumán, Argentina
${ }^{\text {b }}$ Cátedra de Física I, Instituto de Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 S.M. de Tucumán, Argentina
${ }^{\text {c }}$ Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas., Suc. 4, C.C. 16, LIMF, Facultad de Ingeniería, UNLP, Calle 48 y 116, 1900 La Plata, Argentina

H I G H L I G H T S

- Pectin isolated from citrus peel was characterized by IR and Raman spectra.
- The polygalacturonic acid chain was characterized by using two proposed structures.
- The complete assignments of the two structures proposed were performed.
- Both structures were studied by using NBO, AIM and frontier orbitals calculations.
- This study provides new insight to study the interactions of a pectin chain.

A R T I C L E I N F O

Article history:

Received 13 February 2016
Revised 13 March 2016
Accepted 14 March 2016
Available online 15 March 2016

Keywords:

Pectin
Vibrational spectra
Molecular structure
Force field
DFT calculations

GRAPHICALABSTRACT

A B S TRACT

In this work, pectin isolated from citrus peel with a degree of esterification of 76% was characterized by Fourier Transform Infrared (FTIR) and Fourier Transform Raman (FT-Raman) spectroscopies. Structural studies were carried out taking into account their partial degree of esterification and considering the polygalacturonic acid chain as formed by two different subunits, one with both COOH and $\mathrm{COO}-\mathrm{CH}_{3}$ groups (Ac) and the other one as constituted by two subunits with two $\mathrm{COO}-\mathrm{CH}_{3}$ groups (Es). Their structural properties, harmonic frequencies, force fields and force constants in gas and aqueous solution phases were calculated by using the hybrid B3LYP/6-31G* method. Then, their complete vibrational analyses were performed by using the IR and Raman spectra accomplished with the scaled quantum mechanical (SQM) methodology. Reactivities and behaviors in both media were predicted for Ac and Es by using natural bond orbital (NBO), atoms in molecules (AIM), and frontier orbitals calculations. We report for first time the complete assignments of those two different units of polygalacturonic acid chain which are the 132 normal vibration modes of Ac and the 141 normal vibration modes of Es, combining the normal internal coordinates with the SQM methodology. In addition, three subunits were also studied. Reasonable correlations between the experimental and theoretical spectra were obtained. Thus, this work

[^0]would allow the quick identification of pectin by using infrared and Raman spectroscopies and also provides new insight into the interactions that exist between subunits of a large pectin chain.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Pectin substances are of great interest in the chemical, nutrition and pharmaceutical industries because due to their gelling properties they are employed in multiple applications in such as in production of citrus juices, jams and jellies, as a carrier for drug delivery to the gastrointestinal tract, as matrix tablets, gel beads and filmcoated dosage forms [1-5]. From a chemical point of view, pectin can be described as a linear polysaccharide where the subunits of a molecule are different from those other molecule because their structures depend on the esterification degree during extraction from citrus peels [1,5]. Although pectin was discovered long time ago even their composition and structure remain unresolved [1]. In three different preparations of pectins Kravtchenko et al. [4] have found that all the structures are slightly acetylated while Synytsya et al. [6] have reported a vibrational study on the polygalacturonic (pectic) acid, potassium pectate and its derivatives, as well as on commercial citrus and sugar beet pectins. These authors have recorded and interpreted only some bands observed in the corresponding infrared and Raman spectra of those samples but, they have not performed the vibrational assignments taking into account the corresponding structures [6]. In this context and, knowing that galacturonic acid units constitute the chain of this carbohydrate polymer, and, that the units are linked among them by $\alpha-1,4-\mathrm{D}-$ glycosidic bonds, as reported for disaccharides like sucrose and lactose and for a sweetener like sucralose [7-9], we have performed this work to investigate the structures of two different units of galacturonic acid based on the complete vibrational assignment of the infrared and Raman spectra of a pectin isolated from citrus peel with a degree of esterification of 76% [10]. Therefore, the goal of this paper is to perform a structural and vibrational study of this pectin considering the structure of the polygalacturonic acid chain as formed, first by two different subunits with both COOH and $\mathrm{COO}-\mathrm{CH}_{3}$ groups and, then, as constituted by two subunits with two $\mathrm{COO}-\mathrm{CH}_{3}$ groups. Thus, for these two cases we took into account esterification degrees of approximately 50% and 100%, respectively. Hence, the initial structures of those forms were optimized by using the hybrid B3LYP/6-31G* method [11,12] in gas phase and in aqueous solution $[13,14]$ and, afterward their harmonic frequencies and force fields were calculated by using the normal internal coordinates and the SQM procedure in order to perform the complete assignments of all the normal vibration modes of both forms considered [15]. Additionally, three subunits formed by two $\mathrm{COO}-\mathrm{CH}_{3}$ groups and one COO group were theoretically simulated in order to compare their corresponding infrared and Raman spectra with those obtained for the two different proposed structures with two subunits described above. In the case of three subunits the system represents pectin esterified to a degree of approximately 70%. Here, our results were compared with those reported for the group of pectins studied by Synytsya et al. [6]. Later, the structural and vibrational properties were compared and discussed in relation to those obtained in aqueous medium. In addition, the force constants were also reported for the main groups and compared with similar data reported in the literature [7-9]. The simulated vibrational spectra for the structures here proposed show a reasonable correlation with the corresponding experimental data for which these structures are useful to study the polygalacturonic acid chain that forms the pectin molecule. Hence, this work provides new insight into the interactions that exist between subunits of a large pectin
chain and, in addition, this work would allow a quick identification of pectin by using the vibrational spectroscopy.

2. Experimental methods

The pectin was isolated from citrus peel with a degree of esterification of 76% according to procedure explained in the previous studies [10]. The FTIR spectrum of the compound in solid phase was recorded with the KBr pellet technique in the region $4000-$ $400 \mathrm{~cm}^{-1}$ with an FT-IR Perkin Elmer spectrophotometer, equipped with a Globar source and a DGTS detector. The FT-Raman spectrum of the sample was obtained in the range $4000-50 \mathrm{~cm}^{-1}$ using Bruker RFS 100/s FT-Raman spectrophotometer with a 1064 nm Nd : Yag laser source of 150 mW power. Spectra were recorded with a resolution of $1 \mathrm{~cm}^{-1}$ and 200 scans.

3. Computational details

Two different subunits of the polygalacturonic acid, one with COOH and $\mathrm{COO}-\mathrm{CH}_{3}$ groups ($\mathbf{A c}$) and the other one constituted by two subunits with two $\mathrm{COO}-\mathrm{CH}_{3}$ groups (Es) were initially modeled by the GaussView program [16]. Then, these structures were optimized in gas and aqueous solution phases by using the hybrid B3LYP/6-31G* method [11,12]. In solution, the solvent effects were considered by using the PCM model $[13,14]$ while the SM model [17] was employed to obtain the corresponding solvation energies for the two structures, as in similar systems studied in solution [9,18,19]. Here, all the calculations in gas and in solution were performed by using the Gaussian program [20]. Besides, three subunits formed by two $\mathrm{COO}-\mathrm{CH}_{3}$ and one COOH groups were also simulated and optimized in both media. The structures for the two first Ac and Es systems can be seen in Fig. 1 while Fig. 2 shows the optimized structure for three subunits of pectin. Here, the molecular electrostatic potential, atomic charges, stabilization energy values, topological properties and gap energies for Ac and Ec were studied by using NBO [21,22], AIM [23,24] and HOMO-LUMO [25] calculations in order to predict their reactivities and behaviors in both media. The Merz-Kollman (MK) charges were also calculated from the molecular electrostatic potential, according to the Merz-Kollman scheme [26]. The force fields for Ac and Ec in both media were computed at the theory level using the Cartesian coordinates by using the SQM procedure and the Molvib program [27]. Then, this latter program was also used to transform the resulting force fields in Cartesian coordinates to normal internal coordinates. The definition of these coordinates for Ac and Ec are summarized in Tables S1 and S2 (Supporting material) and they were constructed according to similar systems [8,9]. To perform the complete vibrational assignments of Ac and Ec were considered contributions with the potential energy distribution (PED) $\geqslant 10 \%$ but, only for some modes a 7% contribution were considered. For the system of three units the assignment was performed with the aid of the GaussView program [16].

4. Results and discussion

4.1. Geometry optimization

Table S3 shows the calculated total energy, dipolar moments, molecular volume and solvation energies for the two Ac and Ec

Fig. 1. Theoretical molecular structures of two units of the galacturonic acid for a: (a) pectin acid, Ac (upper) and (b) pectin esterified, Es, (bottom) together with the atoms numbering.

Fig. 2. Theoretical molecular structure of three units of the galacturonic acid of acid and esterified pectin together with the atoms numbering.
forms of pectin studied. Note that the dipole moment value for Ac in gas phase is greater than the value corresponding to Es in the same medium but, in solution a contrary result is obtained as a consequence of the hydration of the OH and COO groups. Thus, the orientation and magnitude of the dipole moments for both forms change notably in solution due to the hydration of the OH and COO groups of both forms by hydrogen bonding (H bonds) formation. Probably, the higher value in solution for Es is related to the presence of a CH_{3} group linked to a COO group that decreases the solvation, in relation to Ac, as suggested by the volume and solvation energy values. The volume variations, calculated by the Moldraw program [28] reveal a higher hydration for Ac, as supported by the high solvation energy value. Here, the solvation energy values uncorrected (ΔG_{un}) are the energy variations between the values in solution and in gas phase while the corrected values (ΔG_{C}) are those calculated taking into account the non-electrostatic terms by using the universal solvation model [17-19]. Fig. S2 shows the disposition of all the atoms in the two proposed structures and the names of both rings together with the corresponding $\alpha-1,4-\mathrm{d}$-glycosidic bonds. On the other hand, the comparisons of the theoretical geometrical parameters of Ac and Ec with those experimental ones determinate for methyl- α -d-galacturonic acid methyl ester by Lamba et al. [29] and with some values calculated for sucrose [9] by means of the root-mean-square deviation (RMSD) are given in Table 1. The results show a better correlation for bond length (0.027-0.021 Å) and angles (1.8-1.6 ${ }^{\circ}$) than for the dihedral angles (18.4-14.6 $)$. Note
that in solution the bond angles for Ac are slightly higher than Es, as expected due to their higher solvation. Clearly, the differences observed between the calculated and experimental values can be in part attributed to the calculations because they were computed in gas phase for the isolated molecules without regard to the crystal packing chain. In the two structures, the glycosidic C1-O25 bond is calculated with lower values in both media than the other ones while a contrary result is observed for the $\mathrm{C} 1-\mathrm{O} 26$ bonds. On the other hand, the glycosidic $\mathrm{C} 1-\mathrm{O} 25-\mathrm{O} 26$ angle in both structures is predicted with low values in relation to the experimental ones. Moreover, in solution the dihedral angles for Es decrease while for Ac slightly increases in this medium show that the presence of two CH_{3} groups justify the low hydration of that structure in aqueous solution, as supported by the volume variation and solvation energies.

4.2. Electrostatic potential, charges types and bond orders

For the two Ac and Ec structures proposed both the charges and the molecular electrostatic potential (MEP) were calculated because these properties are of importance to localize the electrophilic and nucleophilic regions taking into account that in these sites occur the H bonds formation in solution. Thus, in Table S4 are presented the calculated molecular electrostatic potential of Ac and Ec by using the B3LYP/6-31G* method in both media. Obviously, the highest values are observed on the 041 and 044 atoms of Ac and on the 045 and 048 atoms of $\mathbf{E c}$ in both media probably

Table 1
Comparison of calculated geometrical parameters for the two proposed pectins with the corresponding experimental ones for methyl- α-D-galacturonic acid methyl.

B3LYP/6-31G*a					Exp. ${ }^{\text {b }}$
Parameters	Ac		Es		
	Gas	Solution	Gas	Solution	
Bond lengths (\AA)					
C1-06	1.441	1.437	1.432	1.437	1.423
C5-06	1.420	1.425	1.418	1.422	1.423
C1-025	1.382	1.398	1.388	1.398	$1.438^{\text {c }}$
C26-025	1.445	1.443	1.445	1.444	$1.417^{\text {c }}$
C27-028	1.421	1.430	1.423	1.428	1.423
C29-028	1.430	1.430	1.428	1.429	1.423
C18-019	1.208	1.218	1.208	1.218	1.191
C18-020	1.352	1.339	1.353	1.337	1.320
C34-036	1.210	1.218	1.210	1.219	1.191
C34-035	1.356	1.344	1.350	1.338	1.320
RMSD	0.027	0.021	0.024	0.021	
Bond angles (${ }^{\circ}$)					
C1-025-C26	116.6	114.9	115.5	115.1	$118.9^{\text {c }}$
C1-06-C5	114.7	114.7	114.1	114.4	112.4
C27-028-C29	115.0	114.9	114.9	114.3	112.4
020-C18-019	123.9	124.0	123.8	124.0	124.7
036-C34-035	122.5	123.3	123.6	124.0	124.7
C18-O20-C21	115.1	116.2	115.1	116.2	116.8
C5-C18-020	110.4	111.2	110.7	111.7	110.4
C5-C18-019	125.4	124.6	125.3	124.1	124.8
C27-C34-035	112.7	111.8	111.9	111.4	110.4
C27-C34-036	124.4	124.5	124.1	124.2	124.8
RMSD	1.8	1.8	1.7	1.6	
Dihedral angle (${ }^{\circ}$)					
C5-C18-O20-C21	-175.7	-177.5	-175.7	-177.6	-178.8
O6-C1-O25-C26	77.2	76.1	70.6	74.4	$107.8{ }^{\text {c }}$
O25-C26-C27-O28	68.4	68.0	67.6	67.5	
C2-C1-O25-C26	-163.4	-163.5	-169.7	-164.9	$-152.4{ }^{\text {c }}$
RMSD	14.6	15.0	18.4	16.0	

[^1]because these atoms are linked to H atoms that are involved in intramolecular H bonds while these values decrease in solution, with exception of the 048 atom, as a consequence of the hydration. On the contrary, the MEP values on the O atoms belonging to the COO groups of both structures for the same reason increase slightly their values in solution. The less negative MEP values are observed on the H10, H11, H14 and H46 atoms of Ac and on the H10, H11, H14 and H44 atoms of Ec in both media possibly because these two latter atoms are forming intramolecular H bonds with the 035 and O25 atoms, respectively. The mapped electrostatic surfaces for both structures in gas phase can be seen in Fig. S3 and they show that the nucleophilic regions, identified by the red colours, are localized on the O atoms belonging to the $\mathrm{C}=\mathrm{O}$ bonds and to the OH groups while the electrophilic regions identified by the blue colours are clearly localized on the H atoms with low MEP values in both structures. Thus, the different colorations reveal clearly the diverse regions.

Two charges types were studied for Ac and Es in both media which are the MK and natural population atomic (NPA) charges whose calculated values can be seen in Table S5. The analyses of the same show that: (i) the NPA charges have in general higher values than the other ones, (ii) both charges have different behaviors in solution, it is, in some cases increase the values while in other decrease, (iii) the NPA charges on the 019 and 036 atoms of Ac and on the 019 and 040 atoms of Es belonging to the $\mathrm{C}=\mathrm{O}$ bonds increase their values in solution due to the hydration but, the MK charge values on the H19 atoms for both forms decrease in solution, (iv) the NPA charges on the O atoms linked to the CH_{3} groups decrease in solution while the MK charges do not show a defined tendency, (v) the MK charges on the C18 and C34 atoms belonging to the COO groups of both structures exhibit different values, as expected because in Ac those groups are linked to OH and CH_{3} groups but in Es both C atoms are linked to CH_{3} groups, (vi) the MK charges on the C atoms of the COO groups show low values when these groups are not esterified, as in Ac while have similar values when are esterified, as in Es and, finally, (vii) the MK charges on the COO groups show clear differences between the two structures in solution.

To understand the behaviors of both proposed species in solution it is necessary to study the bond orders because in solution these values decrease due to the H bonds formation, as compared with the corresponding values in gas phase, thus, the H bonds formation clearly take places. For this reason, for both structures the bond order values in the two media are presented in Table S6. Effectively, the exhaustive analysis show that the higher values are observed for the O atoms corresponding to the COO groups of both forms, thus, the decreasing the these values in solution suggest the H bonds formation in solution in both structures. On the other hand, the increasing in the bond orders values of the O atoms of OH groups in both forms also suggest the clear hydration of these groups in solution.

4.3. NBO study

The main delocalization energy for the two proposed structures of pectin were calculated in order to study the stabilities of both forms in gas phase and in aqueous solution by using the NBO calculations [21,22] and the B3LYP/6-31G* method. The results in both media are presented in Table S7. Thus, the Ac structure show a high stability due to the presence of three $\Delta E_{n \rightarrow \sigma *}, \Delta E_{n \rightarrow \Pi *}$ and $\Delta E_{\sigma * \rightarrow \sigma *}$ charge transfers that generate an $\Delta E_{\text {Total }}$ higher in gas phase than in solution. These delocalization energies are related to the lone pairs of the O atoms belonging to the $\mathrm{C}=\mathrm{O}$ and OH bonds of the COOH groups and to the lone pairs of the O atoms belonging to the OH groups of both rings. These stabilization energies in both media are higher in Ac than Es, being higher in
aqueous solution. Note that for both forms the $\Delta E_{n \rightarrow \Pi *}$ charge transfers in both media are associated with the lone pairs of the O 20 and O 35 atoms of the $\mathrm{C} 34-\mathrm{O} 35-\mathrm{H} 46$ and $\mathrm{C} 18-\mathrm{O} 20-\mathrm{C} 21$ groups in Ac and with the lone pairs of the O atoms of the two C-O-C esterified groups in Es. Hence, these stabilization energies in both media are higher in Es than Ac, being higher in solution. This study evidences clearly the higher stabilities of Ac in both media than Es, suggesting this way, that a structure with both COOH and $\mathrm{COO}-\mathrm{CH}_{3}$ groups is most stable than that with two $\mathrm{COO}-\mathrm{CH}_{3}$ groups, as supported maybe by the higher dipole moment value in gas phase and a higher solvation energy in solution.

4.4. AIM analysis

The Bader's atoms in molecules (AIM) theory [23] is useful to study the inter and intra-molecular interactions or the H bond interactions of different systems especially when in the structures there are atoms that can act as donor o acceptor of H bonds, as in the two proposed Ac and Es structures which have OH, COOH and $\mathrm{COO}-\mathrm{CH}_{3}$ groups. In this study, the AIM2000 program was used to calculate the topological properties for both species in gas phase and in solution [24]. Table S8 shows the results for both species in the bond critical points (BCPs) at B3LYP/6-31G* levels of theory in gas and aqueous solution phases. Thus, the parameters more important in this study are, the electron density distribution, $\rho(r)$ in the BCPs, the values of the Laplacian, $\nabla^{2} \rho(r)$, the eigenvalues ($\lambda 1, \lambda 2, \lambda 3$) of the Hessian matrix at these points and, the $\lambda 1 / \lambda 3$ ratio. This latter ratio allows the description of the character of interaction between atoms. Thus, when $\lambda 1 / \lambda 3>1$ and $\nabla^{2} \rho(r)<0$ the interaction is typical of covalent bonds (called shared interaction) with high values of $\rho(r)$ and $\nabla^{2} \rho(r)$ while when $\lambda 1 / \lambda 3<1$ and $\nabla^{2} \rho(r)>0$ the interaction is called closed-shell interaction and is typical of ionic, highly polar covalent and hydrogen bonds as well as of the van-der-Waals and specific intermolecular interactions, as explained by Bushmarinov et al. [30]. For Ac in gas phase we observed four different interactions, three H bonds typical and a C \cdots O interaction while for Es are observed five interactions, three of which are H bonds and the remains are $\mathrm{O} \cdots \mathrm{O}$ and $\mathrm{C} \cdots \mathrm{O}$ interactions. Figs. S4 and S5 show the BCP and ring critical points (RCPs) for Ac and Es, respectively in gas phase at the B3LYP/6-31G* level of theory. All these interactions have different properties, as observed in Table S8, having the 017‥ H11 interactions in Ac and Es the higher values. Note that in solution the number of H bonds is reduced up to 3 in Ac and up to 4 in Es. Thus, this study show clearly that some intramolecular interactions disappear in both structures in solution while probably new H bonds can be formed as consequence of the hydration of the Ac and Es with molecules of the solvent.

4.5. Frontier HOMO-LUMO orbitals

The NBO and AIM calculations have showed that there are differences significant between both structures in the two media studied. Thus, the charges transfers in Ac confer to it an energetically high stability than Es while, the AIM studies show a higher number of interactions in Es in both media than Ac. In this sense, it is necessary predict the reactivities and behaviors of both species in the two media. For this reason, the frontier orbitals were calculated taking into account the definition reported by Parr and Person [25]. The calculated values for both forms in the two media can be seen in Table S9. The values show newly clear differences between Ac and Es, thus Ac in most reactive in gas phase than Es while a contrary result is observed in solution because the reactivity of Ec increase in solution. This result support the high stability of Ac by NBO analysis but is not in agree with the higher solvation
energy value of Ac. Probably the higher value of the dipole moment value of Es in solution is justified by the higher H bonds formation.

4.6. Vibrational analysis

The optimized Ac and Es structures have C_{1} symmetries and 132 and 141 vibration normal modes, respectively and where all vibrations are IR and Raman active. Fig. 3 shows a comparison between the experimental infrared and Raman spectra of the used pectin in solid phase in the $4000-400$ and $4000-10 \mathrm{~cm}^{-1}$ regions while Figs. 4-6 show the comparisons of these spectra with the corresponding predicted for Ac and Es in both media at B3LYP/6$31 \mathrm{G}^{*}$ level in three different regions. The comparisons among the experimental and theoretical spectra were performed taking into account the $4000-2500,2000-1000$ and $1000-0 \mathrm{~cm}^{-1}$ regions. The observed and calculated wavenumbers are summarized in Table 2 together with the proposed assignments for the two structures studied and a comparison with the reported for other pectins [6]. The assignments were performed at the B3LYP/6-31G* level of theory using the SQMFF procedure and the scale factors taken from Ref. [15] and taking into account the PED contribution calculated $\geqslant 10 \%$. The force fields for both structures were calculated at the same level of theory with the Molvib program [27]. On the other hand, the observed and calculated wavenumbers, potential energy distribution and assignments for Ac and Es in gas phase are presented in Tables S10 and S11. Fig. S6 shows a comparison between the experimental IR spectrum of pectin in solid state with those corresponding to the two proposed units, Ac and Es, in gas phase and in aqueous solution at B3LYP/6-31G* level while Fig. S7 shows a comparison between the experimental IR spectrum of pectin in solid state with that corresponding to three proposed units of the galacturonic acid in gas phase and in aqueous solution at B3LYP/6-31G* level. It is important to observe that the IR spectra predicted for the structure with three units of the galacturonic acid has the same form than those proposed for two units of the acid.

4.6.1. 4000-2500 cm^{-1} region

In this region for Ac and Es are expected the CH_{3} antisymmetric and symmetric, CH and OH stretching modes, as seen in Table 2. From Fig. 4 it is observed that both experimental and theoretical IR and Raman spectra show some bands in two zones. There are one region between 4000 and $3000 \mathrm{~cm}^{-1}$ and the other one between 3000 and $2500 \mathrm{~cm}^{-1}$. Also, Tables S10 and S11 show

Fig. 3. Comparison between the experimental infrared and Raman spectra of pectin in solid phase in KBr pellet.

Fig. 4. Comparison between the experimental IR and Raman spectra of pectin in solid state in the $4000-2500 \mathrm{~cm}^{-1}$ region with that corresponding to the two proposed units of the galacturonic acid for a pectin acid, Ac and pectin esterified, Es, in gas phase at B3LYP/6-31G* level.

Fig. 5. Comparison between the experimental IR and Raman spectra of pectin in solid state in the $2000-1000 \mathrm{~cm}^{-1}$ region with that corresponding to the two proposed units of the galacturonic acid for a pectin acid, Ac and pectin esterified, Es, in gas phase at B3LYP/6-31G* level.

Fig. 6. Comparison between the experimental infrared spectra of pectin in solid state in the $1000-10 \mathrm{~cm}^{-1}$ region with that corresponding to the two proposed units of the galacturonic acid for a pectin acid, Ac and pectin esterified, Es, in gas phase at B3LYP/6-31G* level.
approximately that all the modes are predicted by SQM calculations in this region with PED 100\% contributions. Then, the intense IR band at $3436 \mathrm{~cm}^{-1}$ is easily assigned to OH stretching modes of both Ac and Es structures and due to the intensity of this band can be clearly associated to the vibration modes of Ac, as shown in Figs. 3 and 4. On the contrary, the broad band in the Raman spectrum at $2947 \mathrm{~cm}^{-1}$, of lower intensity than the above band, can be assigned to the symmetric CH_{3} stretching modes of both forms but, due to their intensity is principally related to Es because this form has two CH_{3} groups. Obviously, the remained bands observed in this region are assigned to the antisymmetric CH_{3} and $\mathrm{C}-\mathrm{H}$ stretching modes of Ac and Es, as indicated in Table 2. In different pectins only two bands were previously reported in this region [6], as can be seen in Table 2. Here, the predicted bands for the proposed structure with three units of the galacturonic acid are presented in Table 2 and, they appear at higher wavenumbers than the other ones because they were not scaled. Notice that for this form of pectin the assignments of the bands to the vibration modes are in accordance with those performed for the two units proposed.

4.6.2. 2000-1000 cm^{-1} region

This region is very difficult to assign because in both species are expected the $\mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ stretching modes, the OH deformation and antisymmetric and symmetric CH_{3} deformation modes and the CH_{3} and $\mathrm{C}-\mathrm{H}$ rocking modes. Experimentally, two intense bands between 1800 and $1500 \mathrm{~cm}^{-1}$ are observed in the IR spectrum of pectin while in the corresponding Raman spectrum only very weak bands can be observed Clearly, these two bands should be attributed to COO groups with different moieties linked to these which are -OH and $-\mathrm{O}-\mathrm{CH}_{3}$. Therefore, analyzing first the COO groups, we know that when the COO group is anionic, it forms a
salt, as in the chromyl acetate [31,32]. The antisymmetric and symmetric $\mathrm{C}=\mathrm{O}$ stretching modes are observed as two intense bands with a separation between them of about $200 \mathrm{~cm}^{-1}$ while the separation between these modes increase notably in amino acids such as, tyrosine, tryptophan, threonine up to $470 \mathrm{~cm}^{-1}$ [33-35] and, in acetic acid derivatives compounds the separations are from 400 to $600 \mathrm{~cm}^{-1}$.[36-39]. In this case, the two Ac and Es structures proposed have each two acetate neutral groups, as in the acetic acid derivatives. Hence, taking into account the corresponding PED contributions those $\mathrm{COO}-\mathrm{H}$ modes in Ac are associated with the strong IR bands at 1743 and $1146 \mathrm{~cm}^{-1}$ while those modes related to $\mathrm{COO}-\mathrm{CH}_{3}$ are attributed to the IR bands at 1640 and $1235 \mathrm{~cm}^{-1}$, as indicated in Table 2. In Es, according to SQM calculations, the IR bands at $1743 / 1640$ and $1235 / 1211 \mathrm{~cm}^{-1}$ are assigned to the $\mathrm{C}=0$ stretching modes of both $\mathrm{COO}-\mathrm{CH}_{3}$ groups. On the other hand, the very weak IR band at $1588 \mathrm{~cm}^{-1}$ only can be associated to a $\mathrm{C}=0$ stretching mode of a pectin chain, as predicted the calculations for the proposed structure with three units of the galacturonic acid. According to SQM calculation (Tables S10 and S11), the antisymmetric and symmetric CH_{3} deformation modes in this region [39-42] are calculated as pure modes while the CH rocking modes are calculated coupled with other similar modes, thus, the former modes can be assigned to the IR and Raman bands between 1460 and $1420 \mathrm{~cm}^{-1}$ while the second ones can be attributed to the bands between 1452 and $1191 \mathrm{~cm}^{-1}$. The SQM calculations for Ac and Es predicted the CH_{3} rocking modes between 1192 and $1146 \mathrm{~cm}^{-1}$ and, for this reason, these modes were assigned in that region. In Ac and Es, the OH deformation modes are predicted by SQM calculations with low intensities and PED contribution (34$16 \%$) in the 1440 and $1040 \mathrm{~cm}^{-1}$ region, hence, these modes are assigned as indicated in Table 2. Note that in aqueous solution these modes appear at lower wavenumbers due to the hydration by H bonds formation, such as the $8 \mathrm{O} 5-\mathrm{H} 11$ mode in $\mathbf{A c}$ that in gas phase is assigned at $1440 \mathrm{~cm}^{-1}$ while in solution it is predicted at $1280 \mathrm{~cm}^{-1}$. On the other hand, the $\mathrm{C}-\mathrm{O}$ stretching for Ac and Es are predicted by calculations with high intensities and, for this reason, the bands at $1235,1146,1103,1076,1047$ and $1017 \mathrm{~cm}^{-1}$ are assigned to the C18-O20, C1-O25, C30-041, C5-O6, C29-O39 and C26-O25 stretching modes. Note that the glycosidic bonds, these are the $\mathrm{C} 1-025$ and $\mathrm{C} 26-025$ bonds are predicted at $1025 / 1018$ and $820 / 818 \mathrm{~cm}^{-1}$ and, hence, they were assigned at 1146 and $1017 \mathrm{~cm}^{-1}$, as can be seen in Table 2. In general, the assignments of these modes presented here for both forms are in accordance with that proposed by Synytsya et al. [6] and with the predicted for three units of the galacturonic acid.

4.6.3. $1000-10 \mathrm{~cm}^{-1}$ region

In the previous vibrational study proposed by Synytsya et al. [6] for different pectins in this region few modes were assigned. Thus, the in-plane ($805 / 741 \mathrm{~cm}^{-1}$) and out-of-plane $\operatorname{COO}\left(710 / 575 \mathrm{~cm}^{-1}\right)$ deformation, rocking ($484 / 396 \mathrm{~cm}^{-1}$) and twisting ($88-48 \mathrm{~cm}^{-1}$) modes, the $\mathrm{CH}_{3}\left(182 / 119 \mathrm{~cm}^{-1}\right)$ and OH twisting (554-201 cm^{-1}) modes, the corresponding deformation ($1116 / 233 \mathrm{~cm}^{-1}$) and torsion ($1090 / 60 \mathrm{~cm}^{-1}$) of both rings and, the CCO ($500 / 101 \mathrm{~cm}^{-1}$) and C-O-C (349/40 cm ${ }^{-1}$) deformation modes for Ac and Es are expected in this region. Those modes related to the COO groups can be easily assigned in accordance with the calculations performed here and with related molecules [36,39], as observed in Table 2. The CH_{3} twisting modes, as expected and in accordance with similar molecules $[39,42$] are predicted by calculations in the lower wavenumbers region, thus, these modes are associated with Raman bands observed between 144 and $119 \mathrm{~cm}^{-1}$. The $\mathrm{C}-\mathrm{O}-\mathrm{C}$ deformation modes related to the glycosidic angle, in Ac is predicted by the SQM calculations with a PED contribution of 10% at $30 \mathrm{~cm}^{-1}$ while in Es that mode is predicted with a PED contribution of 9% at $33 \mathrm{~cm}^{-1}$, for this reason, these modes could not

Observed and calculated wavenumbers $\left(\mathrm{cm}^{-1}\right)$ and assignments for 6-nitro-1,3-benzothiazole-2(3H)-thiol and their tautomer in gas phase.

349sh				349	806C5C18	342	$\beta \mathrm{R}_{2}$（ A 6 ）	349	$\begin{aligned} & \tau 043-\mathrm{H} 44 \\ & \delta \mathrm{C} 34 \mathrm{O} 5 \mathrm{C} 36 \end{aligned}$	347	тO48－H49	350	8OCC
339w	340	344	$\tau \mathrm{C}-\mathrm{O}-\mathrm{C}$	330	8C30C31044	334	8015C4C5	329	8015C4C3	327	8015C4C3	322	$\tau \mathrm{OH}$
328w				325	8015C4C5	321	8041C30C31	317	тO16－H14	319	8015C4C5	319	$\tau \mathrm{OH}$
315w				305	8025C26C31	312	¢041－H42			310	8C34035C36	304	8OCC
297sh				295	$\begin{aligned} & \delta C 18020 C 21 \\ & \tau R_{1}(A 6) \end{aligned}$	305	¢O16－H14	305	8C34035C36	298	8C18020C21	299	8COC
293w				290	てO16－H14	298	โO17－H10	295	ๆO16－H14			296	$\tau \mathrm{O}-\mathrm{H}$
						292	8C18020C21	291	8C18O20C21	289	т045－H46	283	$\tau \mathrm{O}-\mathrm{H}$
284w				284	8041C30C31					280	¢C26C31048	281	§OCC
					8C26C31044						8045C30C31		
273sh				273	8028C27C34	271	8028C27C34	270	8C26C31048	269	тO16－H14	268	$\tau \mathrm{O}-\mathrm{H}$
261w						268	$\begin{aligned} & \delta \mathrm{O} 39 \mathrm{C} 29 \mathrm{C} 30 \\ & \beta \mathrm{R}_{3} \text { (A6) } \end{aligned}$			267	8045C30C29	258	$\tau \mathrm{O}-\mathrm{H}$
255sh				258	$\begin{aligned} & \text { 8O41C30C29 } \\ & \text { 8039С29C30 } \end{aligned}$			258	8016C3C4	255	$\begin{aligned} & \tau \mathrm{O} 17-\mathrm{H} 10 \\ & \tau \mathrm{O} 16-\mathrm{H} 14 \end{aligned}$	240	$\tau \mathrm{O}-\mathrm{H}$
247w				250	8015C4C3	242	$\begin{aligned} & \text { 8O15C4C3 } \\ & \text { 8O16C3C4 } \end{aligned}$	247	8045C30C29				
233sh				226	$\tau \mathrm{R}_{2}$（A6）	233	8041C30C29	234	$\beta \mathrm{R}_{3}$（A6）	239	$\begin{aligned} & 8028 \mathrm{C} 27 \mathrm{C} 34 \\ & \rho \mathrm{COO}_{\mathrm{Es} 1} \end{aligned}$	238	8OCC
224w				221	тO17－H10			224	$\begin{aligned} & \tau \mathrm{O} 15-\mathrm{H} 11 \\ & \tau \mathrm{O} 17-\mathrm{H} 10 \end{aligned}$	225	тO17－H10	230	$\tau \mathrm{R}_{1}$（A6）
218w						213	8017C2C1	209	ح017－H10	211	8017C2C1	213	$\tau \mathrm{R}_{1}$（A6）
201w				195	حO17－H10	200	8C18C5C4	192	тO17－H10	195	$\tau \mathrm{R}_{2}$（A6）	205	$\tau \mathrm{R}_{1}$（A6）
182w				174	$\begin{aligned} & \delta 025 \mathrm{C} 1 \mathrm{C} 2 \\ & \rho_{\mathrm{COO}}^{\mathrm{Es}} \end{aligned}$	175	$\tau \mathrm{wCH}{ }_{3}$	173	$\tau \mathrm{R}_{1}$（A6）	179	$\tau \mathrm{R}_{1}$（A6）	181	$\tau \mathrm{R}_{2}$（A6）
173w				163	$\tau \mathrm{R}_{1}$（A6）	168	8C26C27C34	161	$\tau \mathrm{R}_{1}$（A6）	161	8025C1C2	164	$\tau \mathrm{R}_{2}$（A6）
150w				151	てO20－C21	155	$\tau \mathrm{R}_{1}$（A6）	152	てO20－C21	152	$\begin{aligned} & \tau 020-\mathrm{C} 21 \\ & \tau \mathrm{R}_{1}(\mathrm{~A} 6) \end{aligned}$	151	$\mathrm{\tau wCH}_{3}$
144w				144	$\tau \mathrm{R}_{2}$（A6）	146	$\tau \mathrm{R}_{1}$（A6）			147	τ_{wCH}^{3}（C36）	147	$\tau \mathrm{R}_{2}$（A6）
						138	$\tau \mathrm{R}_{2}$（A6）	139	$\tau \mathrm{wCH}_{3}(\mathrm{C} 36)$	139	てO15－H11	140	$\tau \mathrm{wwCH}_{3}$
136vw				126	$\tau \mathrm{wWCH}_{3}$			137	$\tau \mathrm{R}_{2}$（A6）	133	โO15－H11	133	$\tau \mathrm{R}_{3}$（A6）
126sh								125	т035－C36	129	$\mathrm{wwCH}_{3}(\mathrm{C} 21)$	121	$\tau \mathrm{R}_{3}$（A6）
119w				121	8C26C27C34	117	$\tau \mathrm{R}_{2}$（A6）	121	$\tau \mathrm{wCH}_{3}(\mathrm{C} 21)$	125	тO35－C36		
113sh				109	8C18C5C4	110	тO20－C21	108	8C18C5C4	105	8C26C27C34	114	$\tau \mathrm{R}_{3}$（A6）
101w				103	8025C26C27			102	8C26C27C34	104	8C18C5C4	113	¢CCC
97sh				90	$\tau \mathrm{R}_{3}(\mathrm{A6})$	97	$\begin{aligned} & \tau R_{3}(A 6) \\ & \delta 025 C 26 C 31 \end{aligned}$					95	8CCC
88w						83	$\tau \mathrm{R}_{3}$（A6）	86	$\tau \mathrm{R}_{2}$（A6）	84	$\tau \mathrm{R}_{2}$（A6）	85	$\tau \mathrm{wCOO}$
75sh				72	$\tau \mathrm{R}_{3}$（A6）			81	$\tau \mathrm{R}_{3}(\mathrm{A6})$	79	$\tau \mathrm{R}_{3}$（A6）	73	$\tau \mathrm{wCOO}$
69sh						67	$\begin{aligned} & \tau \mathrm{R}_{3}(\mathrm{~A} 6) \\ & \tau \mathrm{R}_{2}(\mathrm{~A} 6) \end{aligned}$	60	$\tau \mathrm{R}_{3}(\mathrm{A6})$	62	$\tau \mathrm{wCOO} \mathrm{Es} 1$	64	$\tau \mathrm{wCOO}$
55sh				53	$\tau \mathrm{wCOO}_{\text {Ac }}$	56	$\tau \mathrm{wCOO}_{\text {Ac }}$	53	$\tau \mathrm{WCOO}{ }_{\text {Es } 1}$	60	$\tau \mathrm{R}_{3}$（A6）	55	8COC
				48	$\tau \mathrm{WCOO}{ }_{\mathrm{Es}}$	48	$\tau \mathrm{WCOO}{ }_{\text {Es }}$	49	$\tau \mathrm{wCOO} \mathrm{Es} 2$	46	$\tau \mathrm{wCOO}{ }_{\text {Es2 }}$	44	8COC
				41	$\tau \mathrm{w}(\mathrm{A6})$	35	$\begin{aligned} & \tau \mathrm{w}(\mathrm{~A} 6) \\ & \delta \mathrm{C} 1025 \mathrm{C} 26 \end{aligned}$			37	8C1025C26	37	§COC
				30	8C1025C26	32	¢w（A6）	33	8C1025C26			30	¢w（A6）
								24	$\tau \mathrm{w}$（A6）	26	тw（A6）	15	¢w（A6）
				12	тw（A6）	15	tw（A6）	10	$\begin{aligned} & \tau \mathrm{w}(\mathrm{~A} 6) \\ & \delta \mathrm{O} 25 \mathrm{C} 26 \mathrm{C} 27 \end{aligned}$	22	\％w（A6）	11	$\tau \mathrm{w}(\mathrm{A6})$

[^2]Table 3
Scaled force constants for both structures proposed of pectin in gas and aqueous solution by using B3LYP/6-31G* method.

B3LYP/6-31G							
Force constant	Gas $^{\mathrm{a}}$	PCM $^{\mathrm{a}}$	Gas $^{\mathrm{a}}$	PCM $^{\mathrm{a}}$	Gas $^{\mathrm{b}}$	PCM $^{\mathrm{b}}$	Gas $^{\mathrm{C}}$
$f(v \mathrm{O}-\mathrm{H})$	7.03	6.99	7.07	7.10	7.186	7.062	6.10
$f\left(v \mathrm{CH}_{3}\right) / f\left(v \mathrm{CH}_{2}\right)$	5.00	5.05	5.00	5.04	4.767	4.812	5.34
$f(v \mathrm{C}-\mathrm{H})$	4.77	4.84	4.78	4.81	4.723	4.728	5.69
$f(v \mathrm{C}=\mathrm{O})$	12.49	11.56	12.42	11.52			13.65
$f(v \mathrm{C}-\mathrm{O})_{\mathrm{C}}$	4.64	4.51	4.63	4.53	4.460	4.266	
$f(v \mathrm{C}-\mathrm{O})_{\mathrm{H}}$	5.13	5.13	5.07	5.08	4.976	4.895	6.36
$f(v \mathrm{C}-\mathrm{C})_{R 6 / R 5}$	3.77	3.85	3.78	3.90	3.868	3.855	
$f(v \mathrm{C}-\mathrm{C})_{R 6}$	3.93	3.93	3.93	3.93	3.965	3.965	6.65
$f(\delta \mathrm{C}-\mathrm{O}-\mathrm{C})$	1.32	1.20	1.13	1.31	1.728	1.299	
$f(\delta \mathrm{C}-\mathrm{O}-\mathrm{H})$	0.77	0.75	0.77	0.74	0.733	0.741	1.06
$f(\delta \mathrm{CH}) / f\left(\delta \mathrm{CH}_{2}\right)$	0.57	0.56	0.57	0.56	0.803	0.796	0.91

Units are mdyn \AA^{-1} for stretching and stretching/stretching interaction and mdyn
$\AA \AA \mathrm{rad}^{-2}$ for angle deformations, R6, glucopyran rings according to Fig. S2.
${ }^{\text {a }}$ This work.
${ }^{\mathrm{b}}$ For sucrose, from Ref. [7].
${ }^{\text {c }}$ For 5,7-Dichloro-quinolin-8-yloxy) acetic acid, from Ref. [9].
be assigned. In sucrose, the deformation mode related to the glycosidic angle was associated with a very weak Raman band at $178 \mathrm{~cm}^{-1}$ [9]. The other modes were assigned according to the SQM calculations, as indicate in Table 2. Clearly, the assignments proposed in this region for three units of the galacturonic acid are in accordance with those descript for two subunits, as shown Table 2.

5. Force constants

For Ac and Es in the two studied media were calculated the force constants expressed in internal coordinates by using the B3LYP/6-31G* method and the Molvib program [27]. The results are observed in Table 3 compared with those reported for sucrose [9] and a conformer of the 5,7-Dichloro-quinolin-8-yloxy) acetic acid [37]. The differences observed among the $f(v \mathrm{O}-\mathrm{H}), f(v \mathrm{C}=\mathrm{O})$ and $f(v \mathrm{C}-\mathrm{O})_{\mathrm{C}}$ force constant values for $\mathbf{A c}$ and $\mathbf{E s}$ in gas phase with those in solution are obviously attributed to the hydration due to the H bonds formation. Note that only slightly modifications between the $f(v \mathrm{C}-\mathrm{O})_{\mathrm{H}}$ and $f(\delta \mathrm{C}-\mathrm{O}-\mathrm{C})$ force constants of $\mathbf{A c}$ and Es are observed. Obviously, the $f(v \mathrm{C}-\mathrm{O})_{\mathrm{H}}$ value is higher in Ac because a $\mathrm{C}-\mathrm{O}$ bond is linked to a H atom while in Es that bond is linked to a CH_{3} group. On the other hand, the differences observed in $f(\delta \mathrm{C}-\mathrm{O}-\mathrm{C})$ are related to the geometrical parameters because they have different values, as observed in Table 1. Comparing the $f(\delta \mathrm{C}-\mathrm{O}-\mathrm{C})$ force constants, we observed that the higher values for sucrose in both media is probably related to the calculations because the deformation mode is assigned at $178 \mathrm{~cm}^{-1}$ while in this work the modes related to those constants for Ac and Es are predicted a low frequencies (30 and $33 \mathrm{~cm}^{-1}$). The differences between the values for Ac and Es with those corresponding to 5,7-Dichloro-quinolin-8-yloxy) acetic acid [37] show clearly the differences between the force constants of a acid and a ester compound. In general, the force constants values calculated for both forms proposed are in agreement with those reported in the literature for molecules containing similar groups [9,36-39].

6. Conclusions

In this work, a pectin isolated from citrus peel with a degree of esterification of 76% was characterized by FTIR and FT-Raman spectroscopies. The polygalacturonic acid chain was studied taking into account their partial esterification's degree by simulation of two different subunits, one with both COOH and $\mathrm{COO}-\mathrm{CH}_{3}$ groups
(Ac) and, the other one as constituted by two subunits with two $\mathrm{COO}-\mathrm{CH}_{3}$ groups (Es). The molecular structures of both forms were determinate in gas phase and in aqueous solution by using the hybrid B3LYP/6-31G* method. The solvent effects and the solvation energies were considered by employing the PCM/SM model. Also, three subunits formed by two $\mathrm{COO}-\mathrm{CH}_{3}$ and one COO groups were theoretically simulated by using the same level of theory. The observed separation of $103 \mathrm{~cm}^{-1}$ between the more intense IR bands suggest the presence of two $\mathrm{C}=\mathrm{O}$ groups with different moieties linked to these which are -OH and $-\mathrm{O}-\mathrm{CH}_{3}$ while the theoretical calculations support the presence of the three structures proposed for a pectin esterified a 76%. Here, the IR bands at 3436 (OH), 1743 ($\mathrm{C}=\mathrm{O}$), 1640 ($\mathrm{C}=\mathrm{O}$), 1146 ($\mathrm{C}-\mathrm{O}$ glycosidic), 1103 (C-O) and 1017 ($\mathrm{C}-\mathrm{O}$ glycosidic) cm^{-1} characterizing clearly a pectin. The infrared and Raman spectra for these three structures proposed show a reasonable concordance with the experimental ones. The two structures proposed show clear differences in the dipole moments and solvation energy values in solution. The molecular electrostatic potential reveals the different sites of H bonds formation while the MK charges on the COO groups show clear differences between the two structures in solution. The NBO study suggest that Ac is most stable than Es while the AIM analyses show four different interactions for $\mathbf{A c}$ in gas phase and five interactions in the same phase, some of which disappear in solution as a consequence of the hydration. This study provides a new insight to study the interactions that exist between subunits of a large pectin chain and, besides, it work will allow the quick identification of pectin by using the vibrational spectroscopy.

Acknowledgements

This work was supported with grants from CIUNT (Consejo de Investigaciones, Universidad Nacional de Tucumán). Dr. Gervasi is a Researcher at CICPBA and INQUINOA. The authors would like to thank Prof. Tom Sundius for his permission to use MOLVIB and to INQUINOA (CONICET) for the spectra.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.infrared.2016.03. 009.

References

[1] P. Sriamornsak, Chemistry of pectin and its pharmaceutical uses: a review, silpakorn university, J. Soc. Sci. Human. Arts 3 (1-2) (2003) 206-228.
[2] Colin D. May, Industrial pectins: sources, production and applications, Carbohyd. Polym. 12 (1) (1990) 79-99.
[3] William G.T. Willats, J. Paul Knox, Jørn Dalgaard Mikkelsen, Trends Food Sci. Technol. 17 (3) (2006) 97-104.
[4] T.P. Kravtchenko, A.G.J. Voragen, W. Pilnik, Analytical comparison of three industrial pectin preparations, Carbohyd. Polym. 18 (1) (1992) 17-25.
[5] Hai-ming Chen, Xiong Fu, Zhi-gang Luo, Properties and extraction of pectinenriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water, Food Chem. 168 (2015) 302-310.
[6] A. Synytsya, J. Čopıková, P. Matějka, V. Machovič, Fourier transform Raman and infrared spectroscopy of pectins, Carbohyd. Polym. 54 (2003) 97-106.
[7] A.B. Brizuela, A.B. Raschi, M.V. Castillo, P. Leyton, E. Romano, S.A. Brandán, Comparison between the structural and vibrational properties of the artificial sweetener sucralose with those obtained for sucrose, Comput. Theor. Chem. 1008 (2013) 52-60.
[8] A.B. Brizuela, L.C. Bichara, E. Romano, A. Yurquina, S. Locatelli, S.A. Brandán, A complete characterization of the vibrational spectra of sucrose, Carbohyd. Res. 361 (2012) 212-218.
[9] A.B. Brizuela, M.V. Castillo, A.B. Raschi, L. Davies, E. Romano, S.A. Brandán, A complete assignment of the vibrational spectra of sucrose in aqueous medium based on the SQM methodology and SCRF calculations, Carbohyd. Res. 388 (2014) 112-124.
[10] M.V. Fiori-Bimbi, P.E. Alvarez, H. Vaca, C.A. Gervasi, Corrosion inhibition of mild steel in HCL solution by pectin, Corros. Sci. (2015), http://dx.doi.org/ 10.1016/j.corsci.2014.12.002.
[11] A.D. Becke, Density functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652.
[12] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785-789.
[13] J. Tomasi, J. Persico, Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent, Chem. Rev. 94 (1994) 2027-2094.
[14] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55 (1981) 117-129.
[15] (a) G. Rauhut, P. Pulay, Transferable scaling factors for density functional derived vibrational force fields, J. Phys. Chem. 99 (1995) 3093-3100; (b) G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 14572.
[16] A.B. Nielsen, A.J. Holder, Gauss View 5.0, User's Reference, GAUSSIAN Inc., Pittsburgh, PA, 2000-2008.
[17] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009) 6378-6396.
[18] L.C. Bichara, S.A. Brandán, Hydration of species derived from ascorbic acid in aqueous solution. An experimental and theoretical study by using DFT calculation, J. Mol. Liq. 181 (2013) 34-43.
[19] A.B. Brizuela, A.B. Raschi, M.V. Castillo, L. Davies, E. Romano, S.A. Brandán, Vibrational investigation on species derived from cyclamic acid in aqueous solution by using HATR and Raman spectroscopies and SCRF calculations, J. Mol. Struct. 1074 (2014) 144-156.
[20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian Inc, Wallingford CT, 2009.
[21] A.E. Reed, L.A. Curtis, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88 (6) (1988) 899-926.
[22] E.D. Glendening, J.K. Badenhoop, A.D. Reed, J.E. Carpenter, F. Weinhold, NBO 3.1; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 1996.
[23] R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press, Oxford, 1990. ISBN: 0198558651.
[24] F. Biegler-Köning, J. Schönbohm, D.J. Bayles, AIM2000; a program to analyze and visualize atoms in molecules, Comput. Chem. 22 (2001) 545-549.
[25] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc. 105 (1983) 7512-7516.
[26] B.H. Besler, K.M. Merz Jr., P.A. Kollman, Atomic charges derived from semiempirical methods, J. Comput. Chem. 11 (1990) 431-439.
[27] T. Sundius, Molvib. A flexible program for force field calculations, J. Mol. Struct. 218 (1990) 321-326.
[28] P. Ugliengo, MOLDRAW Program, University of Torino, Dipartimento Chimica IFM, Torino, Italy, 1998.
[29] D. Lamba, G. Fabrizi, B. Matsuhiro, Methyl- α-D-galacturonic acid methyl ester, Acta Cryst. C50 (1994) 1494-1497.
[30] I.S. Bushmarinov, K.A. Lyssenko, M. Yu Antipin, Atomic energy in the 'Atoms in Molecules' theory and its use for solving chemical problems, Russ. Chem. Rev. 78 (4) (2009) 283-302.
[31] S.A. Brandán, A. Ben Altabef, E.L. Varetti, Spectroscopic and thermal properties of chromyl acetato and trifluoroacetate, Anal. Asoc. Qca. Arg. 87 (1,2) (1999) 89-96.
[32] S.A. Brandán, Volume 2: A Structural and Vibrational Investigation into Chromylazide, Acetate, Perchlorate, and Thiocyanate Compounds, Editado by Ken Derham, Springer Science, Business Media B.V., Van Godewijckstraat 30, 3311 GZ Dordrecht, Netherlands, September 2012, 84 pág (ISBN: 978-94-007-5753-0).
[33] C.D. Contreras, A.E. Ledesma, H.E. Lanús, J. Zinczuck, S.A. Brandán, Hydration of L-tyrosine in aqueous medium. An experimental and theoretical study by mixed quantum mechanical/molecular mechanics methods, Vibrat. Spectr. 57 (2011) 108-115.
[34] P. Leyton, J. Brunet, V. Silva, C. Paipa, M.V. Castillo, S.A. Brandán, An experimental and theoretical study of l-tryptophan in aqueous solution combining two-layered ONIOM and SCRF calculations, Spectrochim. Acta, Part A 88 (2012) 162-170.
[35] Karina Guzzetti, Alicia B. Brizuela, Elida Romano, Silvia A. Brandán, Structural and vibrational study on zwitterions of L -threonine in aqueous phase using the FT-Raman and SCRF calculations, J. Mol. Struct. 1045 (2013) 171-179.
[36] Gerardo R. Argañaraz, Elida Romano, Juan Zinczuk, Silvia A. Brandán, Structural and vibrational study of 2-(8-quinolinyloxy)-acetic acid based on FTIR-Raman spectroscopy and DFT calculations, J. Chem. Chem. Eng. 5 (8) (2011) 747-758.
[37] E. Romano, M.V. Castillo, J.L. Pergomet, J. Zinczuk, S.A. Brandán, Synthesis, structural and vibrational analysis of (5,7-dichloro-quinolin-8-yloxy) acetic acid, J. Mol. Struct. 1018 (2012) 149-155.
[38] E. Romano, M.V. Castillo, J.L. Pergomet, J. Zinczuk, S.A. Brandán, Synthesis, structural study and vibrational spectra of (5-chloro-quinolin-8-yloxy) acetic acid, Open J. Synth. Theory Appl. 2 (2013) 8-22.
[39] E. Romano, J.L. Pergomet, J. Zinczuk, S.A. Brandán, Structural and vibrational properties of some quinoline acetic acid derivatives with potentials biological activities, in: Angelo Basile Edit. "Acetic Acids: Chemical Properties, Production and Applications", Edited Collection, Nova Science Publishers, 2013, pp.75-98.
[40] E. Lizarraga, E. Romano, A.B. Raschi, P. Leyton, C. Paipa, Atilio.C.N. Catalán, S.A. Brandán, A structural and vibrational study of 9,10-dihydrofukinone combining FTIR, FTRaman and NMR spectroscopies with DFT calculations, J. Mol. Struct. 1048 (2013) 331-338.
[41] Fernando Chain, Elida Romano, Patricio Leyton, Carolina Paipa, César A.N. Catalán, Mario A. Fortuna, Silvia A. Brandán, An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FTIR, FT-Raman, UV-Visible and NMR spectroscopies, J. Mol. Struct. 1065-1066 (2014) 160-169.
[42] F. Chain, P. Leyton, C. Paipa, M. Fortuna, S.A. Brandán, FT-IR, FT-Raman, UVVisible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol, Spectrochim. Acta 138 (2015) 303-313.

[^0]: * Corresponding author.

 E-mail address: sbrandan@fbqf.unt.edu.ar (S.A. Brandán).

[^1]: ${ }^{\text {a }}$ This work.
 ${ }^{\text {b }}$ From Ref. [28].
 ${ }^{c}$ From Ref. [9].

[^2]:
 ${ }^{\text {a }}$ This work．
 ${ }^{\mathrm{b}}$ From Ref［6］．
 ${ }^{\text {c }}$ From scaled quantum mechanics force field B3LYP／6－31G＊．
 ${ }^{\text {d }}$ From B3LYP／6－31G＊level．

