Infrared Physics & Technology 76 (2016) 315-327

Contents lists available at ScienceDirect

Infrared Physics & Technology

journal homepage: www.elsevier.com/locate/infrared

Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-Raman spectra and DFT calculations

Laura C. Bichara^a, Patricia E. Alvarez^{b,c}, María V. Fiori Bimbi^b, Hugo Vaca^b, Claudio Gervasi^c, Silvia Antonia Brandán^{a,*}

^a Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán, Tucumán, Argentina

^b Cátedra de Física I, Instituto de Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 S.M. de Tucumán, Argentina ^c Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas., Suc. 4, C.C. 16, LIMF, Facultad de Ingeniería, UNLP, Calle 48 y 116, 1900 La Plata, Argentina

HIGHLIGHTS

- Pectin isolated from citrus peel was characterized by IR and Raman spectra.
- The polygalacturonic acid chain was characterized by using two proposed structures.
- The complete assignments of the two structures proposed were performed.
- Both structures were studied by using NBO, AIM and frontier orbitals calculations.
- This study provides new insight to study the interactions of a pectin chain.

ARTICLE INFO

Article history: Received 13 February 2016 Revised 13 March 2016 Accepted 14 March 2016 Available online 15 March 2016

Keywords: Pectin Vibrational spectra Molecular structure Force field DFT calculations

G R A P H I C A L A B S T R A C T

ABSTRACT

In this work, pectin isolated from citrus peel with a degree of esterification of 76% was characterized by Fourier Transform Infrared (FTIR) and Fourier Transform Raman (FT-Raman) spectroscopies. Structural studies were carried out taking into account their partial degree of esterification and considering the polygalacturonic acid chain as formed by two different subunits, one with both COOH and COO–CH₃ groups (Ac) and the other one as constituted by two subunits with two COO–CH₃ groups (Es). Their structural properties, harmonic frequencies, force fields and force constants in gas and aqueous solution phases were calculated by using the hybrid B3LYP/6-31G* method. Then, their complete vibrational analyses were performed by using the IR and Raman spectra accomplished with the scaled quantum mechanical (SQM) methodology. Reactivities and behaviors in both media were predicted for Ac and Es by using natural bond orbital (NBO), atoms in molecules (AIM), and frontier orbitals calculations. We report for first time the complete assignments of those two different units of polygalacturonic acid chain which are the 132 normal vibration modes of Ac and the 141 normal vibration modes of Es, combining the normal internal coordinates with the SQM methodology. In addition, three subunits were also studied. Reasonable correlations between the experimental and theoretical spectra were obtained. Thus, this work

* Corresponding author. E-mail address: sbrandan@fbqf.unt.edu.ar (S.A. Brandán).

http://dx.doi.org/10.1016/j.infrared.2016.03.009 1350-4495/© 2016 Elsevier B.V. All rights reserved. would allow the quick identification of pectin by using infrared and Raman spectroscopies and also provides new insight into the interactions that exist between subunits of a large pectin chain. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

Pectin substances are of great interest in the chemical, nutrition and pharmaceutical industries because due to their gelling properties they are employed in multiple applications in such as in production of citrus juices, jams and jellies, as a carrier for drug delivery to the gastrointestinal tract, as matrix tablets, gel beads and filmcoated dosage forms [1–5]. From a chemical point of view, pectin can be described as a linear polysaccharide where the subunits of a molecule are different from those other molecule because their structures depend on the esterification degree during extraction from citrus peels [1,5]. Although pectin was discovered long time ago even their composition and structure remain unresolved [1]. In three different preparations of pectins Kravtchenko et al. [4] have found that all the structures are slightly acetylated while Synytsya et al. [6] have reported a vibrational study on the polygalacturonic (pectic) acid, potassium pectate and its derivatives, as well as on commercial citrus and sugar beet pectins. These authors have recorded and interpreted only some bands observed in the corresponding infrared and Raman spectra of those samples but, they have not performed the vibrational assignments taking into account the corresponding structures [6]. In this context and, knowing that galacturonic acid units constitute the chain of this carbohydrate polymer, and, that the units are linked among them by α -1,4-Dglycosidic bonds, as reported for disaccharides like sucrose and lactose and for a sweetener like sucralose [7-9], we have performed this work to investigate the structures of two different units of galacturonic acid based on the complete vibrational assignment of the infrared and Raman spectra of a pectin isolated from citrus peel with a degree of esterification of 76% [10]. Therefore, the goal of this paper is to perform a structural and vibrational study of this pectin considering the structure of the polygalacturonic acid chain as formed, first by two different subunits with both COOH and COO–CH₃ groups and, then, as constituted by two subunits with two COO–CH₃ groups. Thus, for these two cases we took into account esterification degrees of approximately 50% and 100%, respectively. Hence, the initial structures of those forms were optimized by using the hybrid B3LYP/6-31G* method [11,12] in gas phase and in aqueous solution [13,14] and, afterward their harmonic frequencies and force fields were calculated by using the normal internal coordinates and the SQM procedure in order to perform the complete assignments of all the normal vibration modes of both forms considered [15]. Additionally, three subunits formed by two COO--CH_3 groups and one COO group were theoretically simulated in order to compare their corresponding infrared and Raman spectra with those obtained for the two different proposed structures with two subunits described above. In the case of three subunits the system represents pectin esterified to a degree of approximately 70%. Here, our results were compared with those reported for the group of pectins studied by Synytsya et al. [6]. Later, the structural and vibrational properties were compared and discussed in relation to those obtained in aqueous medium. In addition, the force constants were also reported for the main groups and compared with similar data reported in the literature [7–9]. The simulated vibrational spectra for the structures here proposed show a reasonable correlation with the corresponding experimental data for which these structures are useful to study the polygalacturonic acid chain that forms the pectin molecule. Hence, this work provides new insight into the interactions that exist between subunits of a large pectin

chain and, in addition, this work would allow a quick identification of pectin by using the vibrational spectroscopy.

2. Experimental methods

The pectin was isolated from citrus peel with a degree of esterification of 76% according to procedure explained in the previous studies [10]. The FTIR spectrum of the compound in solid phase was recorded with the KBr pellet technique in the region 4000– 400 cm⁻¹ with an FT-IR Perkin Elmer spectrophotometer, equipped with a Globar source and a DGTS detector. The FT-Raman spectrum of the sample was obtained in the range 4000–50 cm⁻¹ using Bruker RFS 100/s FT-Raman spectrophotometer with a 1064 nm Nd: Yag laser source of 150 mW power. Spectra were recorded with a resolution of 1 cm⁻¹ and 200 scans.

3. Computational details

Two different subunits of the polygalacturonic acid, one with COOH and COO– CH_3 groups (Ac) and the other one constituted by two subunits with two $COO-CH_3$ groups (Es) were initially modeled by the *GaussView* program [16]. Then, these structures were optimized in gas and aqueous solution phases by using the hybrid B3LYP/6-31G* method [11,12]. In solution, the solvent effects were considered by using the PCM model [13,14] while the SM model [17] was employed to obtain the corresponding solvation energies for the two structures, as in similar systems studied in solution [9,18,19]. Here, all the calculations in gas and in solution were performed by using the Gaussian program [20]. Besides, three subunits formed by two COO-CH₃ and one COOH groups were also simulated and optimized in both media. The structures for the two first Ac and Es systems can be seen in Fig. 1 while Fig. 2 shows the optimized structure for three subunits of pectin. Here, the molecular electrostatic potential, atomic charges, stabilization energy values, topological properties and gap energies for Ac and Ec were studied by using NBO [21,22], AIM [23,24] and HOMO-LUMO [25] calculations in order to predict their reactivities and behaviors in both media. The Merz-Kollman (MK) charges were also calculated from the molecular electrostatic potential, according to the Merz-Kollman scheme [26]. The force fields for **Ac** and **Ec** in both media were computed at the theory level using the Cartesian coordinates by using the SQM procedure and the Molvib program [27]. Then, this latter program was also used to transform the resulting force fields in Cartesian coordinates to normal internal coordinates. The definition of these coordinates for Ac and Ec are summarized in Tables S1 and S2 (Supporting material) and they were constructed according to similar systems [8,9]. To perform the complete vibrational assignments of Ac and Ec were considered contributions with the potential energy distribution (PED) \ge 10% but, only for some modes a 7% contribution were considered. For the system of three units the assignment was performed with the aid of the GaussView program [16].

4. Results and discussion

4.1. Geometry optimization

Table S3 shows the calculated total energy, dipolar moments, molecular volume and solvation energies for the two **Ac** and **Ec**

Fig. 1. Theoretical molecular structures of two units of the galacturonic acid for a: (a) pectin acid, Ac (upper) and (b) pectin esterified, Es, (bottom) together with the atoms numbering.

Fig. 2. Theoretical molecular structure of three units of the galacturonic acid of acid and esterified pectin together with the atoms numbering.

forms of pectin studied. Note that the dipole moment value for Ac in gas phase is greater than the value corresponding to **Es** in the same medium but, in solution a contrary result is obtained as a consequence of the hydration of the OH and COO groups. Thus, the orientation and magnitude of the dipole moments for both forms change notably in solution due to the hydration of the OH and COO groups of both forms by hydrogen bonding (H bonds) formation. Probably, the higher value in solution for Es is related to the presence of a CH₃ group linked to a COO group that decreases the solvation, in relation to Ac, as suggested by the volume and solvation energy values. The volume variations, calculated by the Moldraw program [28] reveal a higher hydration for Ac, as supported by the high solvation energy value. Here, the solvation energy values uncorrected (ΔG_{un}) are the energy variations between the values in solution and in gas phase while the corrected values ($\Delta G_{\rm C}$) are those calculated taking into account the non-electrostatic terms by using the universal solvation model [17–19]. Fig. S2 shows the disposition of all the atoms in the two proposed structures and the names of both rings together with the corresponding α -1,4-D-glycosidic bonds. On the other hand, the comparisons of the theoretical geometrical parameters of Ac and **Ec** with those experimental ones determinate for methyl- α -D-galacturonic acid methyl ester by Lamba et al. [29] and with some values calculated for sucrose [9] by means of the rootmean-square deviation (RMSD) are given in Table 1. The results show a better correlation for bond length (0.027-0.021 Å) and angles $(1.8-1.6^{\circ})$ than for the dihedral angles $(18.4-14.6^{\circ})$. Note that in solution the bond angles for **Ac** are slightly higher than **Es**, as expected due to their higher solvation. Clearly, the differences observed between the calculated and experimental values can be in part attributed to the calculations because they were computed in gas phase for the isolated molecules without regard to the crystal packing chain. In the two structures, the glycosidic C1–O25 bond is calculated with lower values in both media than the other ones while a contrary result is observed for the C1–O26 bonds. On the other hand, the glycosidic C1–O25–O26 angle in both structures is predicted with low values in relation to the experimental ones. Moreover, in solution the dihedral angles for **Es** decrease while for **Ac** slightly increases in this medium show that the presence of two CH₃ groups justify the low hydration of that structure in aqueous solution, as supported by the volume variation and solvation energies.

4.2. Electrostatic potential, charges types and bond orders

For the two **Ac** and **Ec** structures proposed both the charges and the molecular electrostatic potential (MEP) were calculated because these properties are of importance to localize the electrophilic and nucleophilic regions taking into account that in these sites occur the H bonds formation in solution. Thus, in Table S4 are presented the calculated molecular electrostatic potential of **Ac** and **Ec** by using the B3LYP/6-31G* method in both media. Obviously, the highest values are observed on the O41 and O44 atoms of **Ac** and on the O45 and O48 atoms of **Ec** in both media probably

Table 1

Comparison of calculated geometrical parameters for the two proposed pectins with the corresponding experimental ones for methyl- α -D-galacturonic acid methyl.

B3LYP/6-31G*a					Exp. ^b
Parameters	Ac		Es		
	Gas	Solution	Gas	Solution	
Bond lengths (Å)					
C1-06	1.441	1.437	1.432	1.437	1.423
C5—O6	1.420	1.425	1.418	1.422	1.423
C1-025	1.382	1.398	1.388	1.398	1.438 ^c
C26-025	1.445	1.443	1.445	1.444	1.417 ^c
C27—O28	1.421	1.430	1.423	1.428	1.423
C29–O28	1.430	1.430	1.428	1.429	1.423
C18-019	1.208	1.218	1.208	1.218	1.191
C18-020	1.352	1.339	1.353	1.337	1.320
C34—O36	1.210	1.218	1.210	1.219	1.191
C34—O35	1.356	1.344	1.350	1.338	1.320
D) (CD	0.007	0.001	0.02.4	0.001	
RMSD	0.027	0.021	0.024	0.021	
Bond angles (°)					
C1-025-C26	116.6	114.9	115.5	115.1	118.9 ^c
C106C5	114.7	114.7	114.1	114.4	112.4
C27-028-C29	115.0	114.9	114.9	114.3	112.4
020-C18-019	123.9	124.0	123.8	124.0	124.7
036–C34–O35	122.5	123.3	123.6	124.0	124.7
C18-020-C21	115.1	116.2	115.1	116.2	116.8
C5-C18-O20	110.4	111.2	110.7	111.7	110.4
C5-C18-019	125.4	124.6	125.3	124.1	124.8
C27-C34-O35	112.7	111.8	111.9	111.4	110.4
C27-C34-036	124.4	124.5	124.1	124.2	124.8
RMSD	1.8	1.8	1.7	1.6	
Dihedral angle (°)					
C5-C18-020-C21	-175.7	-177.5	-175.7	-177.6	-178.8
06-C1-025-C26	77.2	76.1	70.6	74.4	107.8 ^c
025-C26-C27-028	68.4	68.0	67.6	67.5	
C2-C1-025-C26	-163.4	-163.5	-169.7	-164.9	-152.4 ^c
RMSD	14.6	15.0	18.4	16.0	

^a This work.

^b From Ref. [28].

^c From Ref. [9].

because these atoms are linked to H atoms that are involved in intramolecular H bonds while these values decrease in solution. with exception of the O48 atom, as a consequence of the hydration. On the contrary, the MEP values on the O atoms belonging to the COO groups of both structures for the same reason increase slightly their values in solution. The less negative MEP values are observed on the H10, H11, H14 and H46 atoms of Ac and on the H10, H11, H14 and H44 atoms of Ec in both media possibly because these two latter atoms are forming intramolecular H bonds with the O35 and O25 atoms, respectively. The mapped electrostatic surfaces for both structures in gas phase can be seen in Fig. S3 and they show that the nucleophilic regions, identified by the red colours, are localized on the O atoms belonging to the C=O bonds and to the OH groups while the electrophilic regions identified by the blue colours are clearly localized on the H atoms with low MEP values in both structures. Thus, the different colorations reveal clearly the diverse regions.

Two charges types were studied for Ac and Es in both media which are the MK and natural population atomic (NPA) charges whose calculated values can be seen in Table S5. The analyses of the same show that: (i) the NPA charges have in general higher values than the other ones, (ii) both charges have different behaviors in solution, it is, in some cases increase the values while in other decrease, (iii) the NPA charges on the O19 and O36 atoms of Ac and on the O19 and O40 atoms of **Es** belonging to the C=O bonds increase their values in solution due to the hydration but, the MK charge values on the H19 atoms for both forms decrease in solution, (iv) the NPA charges on the O atoms linked to the CH₃ groups decrease in solution while the MK charges do not show a defined tendency, (v) the MK charges on the C18 and C34 atoms belonging to the COO groups of both structures exhibit different values, as expected because in Ac those groups are linked to OH and CH₃ groups but in **Es** both C atoms are linked to CH₃ groups, (vi) the MK charges on the C atoms of the COO groups show low values when these groups are not esterified, as in Ac while have similar values when are esterified, as in Es and, finally, (vii) the MK charges on the COO groups show clear differences between the two structures in solution.

To understand the behaviors of both proposed species in solution it is necessary to study the bond orders because in solution these values decrease due to the H bonds formation, as compared with the corresponding values in gas phase, thus, the H bonds formation clearly take places. For this reason, for both structures the bond order values in the two media are presented in Table S6. Effectively, the exhaustive analysis show that the higher values are observed for the O atoms corresponding to the COO groups of both forms, thus, the decreasing the these values in solution suggest the H bonds formation in solution in both structures. On the other hand, the increasing in the bond orders values of the O atoms of OH groups in both forms also suggest the clear hydration of these groups in solution.

4.3. NBO study

The main delocalization energy for the two proposed structures of pectin were calculated in order to study the stabilities of both forms in gas phase and in aqueous solution by using the NBO calculations [21,22] and the B3LYP/6-31G* method. The results in both media are presented in Table S7. Thus, the Ac structure show a high stability due to the presence of three $\Delta E_{n\to\sigma*}$, $\Delta E_{n\to\Pi*}$ and $\Delta E_{\sigma*\to\sigma*}$ charge transfers that generate an ΔE_{Total} higher in gas phase than in solution. These delocalization energies are related to the lone pairs of the O atoms belonging to the C=O and OH bonds of the COOH groups and to the lone pairs of the O atoms belonging to the OH groups of both rings. These stabilization energies in both media are higher in **Ac** than **Es**, being higher in aqueous solution. Note that for both forms the $\Delta E_{n \to II*}$ charge transfers in both media are associated with the lone pairs of the O20 and O35 atoms of the C34–O35–H46 and C18–O20–C21 groups in **Ac** and with the lone pairs of the O atoms of the two C–O–C esterified groups in **Es**. Hence, these stabilization energies in both media are higher in **Es** than **Ac**, being higher in solution. This study evidences clearly the higher stabilities of **Ac** in both media than **Es**, suggesting this way, that a structure with both COOH and COO–CH₃ groups is most stable than that with two COO–CH₃ groups, as supported maybe by the higher dipole moment value in gas phase and a higher solvation energy in solution.

4.4. AIM analysis

The Bader's atoms in molecules (AIM) theory [23] is useful to study the inter and intra-molecular interactions or the H bond interactions of different systems especially when in the structures there are atoms that can act as donor o acceptor of H bonds, as in the two proposed Ac and Es structures which have OH, COOH and COO-CH₃ groups. In this study, the AIM2000 program was used to calculate the topological properties for both species in gas phase and in solution [24]. Table S8 shows the results for both species in the bond critical points (BCPs) at B3LYP/6-31G* levels of theory in gas and aqueous solution phases. Thus, the parameters more important in this study are, the electron density distribution, $\rho(r)$ in the BCPs, the values of the Laplacian, $\nabla^2 \rho(r)$, the eigenvalues $(\lambda 1, \lambda 2, \lambda 3)$ of the Hessian matrix at these points and, the $\lambda 1/\lambda 3$ ratio. This latter ratio allows the description of the character of interaction between atoms. Thus, when $\lambda 1/\lambda 3 > 1$ and $\nabla^2 \rho(r) < 0$ the interaction is typical of covalent bonds (called shared interaction) with high values of $\rho(r)$ and $\nabla^2 \rho(r)$ while when $\lambda 1/\lambda 3 < 1$ and $\nabla^2 \rho(r) > 0$ the interaction is called closed-shell interaction and is typical of ionic, highly polar covalent and hydrogen bonds as well as of the van-der-Waals and specific intermolecular interactions, as explained by Bushmarinov et al. [30]. For Ac in gas phase we observed four different interactions, three H bonds typical and a $C \cdots O$ interaction while for **Es** are observed five interactions, three of which are H bonds and the remains are O...O and C...O interactions. Figs. S4 and S5 show the BCP and ring critical points (RCPs) for Ac and Es, respectively in gas phase at the B3LYP/6-31G* level of theory. All these interactions have different properties, as observed in Table S8, having the O17...H11 interactions in Ac and Es the higher values. Note that in solution the number of H bonds is reduced up to 3 in Ac and up to 4 in Es. Thus, this study show clearly that some intramolecular interactions disappear in both structures in solution while probably new H bonds can be formed as consequence of the hydration of the Ac and Es with molecules of the solvent.

4.5. Frontier HOMO–LUMO orbitals

The NBO and AIM calculations have showed that there are differences significant between both structures in the two media studied. Thus, the charges transfers in **Ac** confer to it an energetically high stability than **Es** while, the AIM studies show a higher number of interactions in **Es** in both media than **Ac**. In this sense, it is necessary predict the reactivities and behaviors of both species in the two media. For this reason, the frontier orbitals were calculated taking into account the definition reported by Parr and Person [25]. The calculated values for both forms in the two media can be seen in Table S9. The values show newly clear differences between Ac and Es, thus **Ac** in most reactive in gas phase than **Es** while a contrary result is observed in solution because the reactivity of **Ec** increase in solution. This result support the high stability of Ac by NBO analysis but is not in agree with the higher solvation energy value of **Ac**. Probably the higher value of the dipole moment value of **Es** in solution is justified by the higher H bonds formation.

4.6. Vibrational analysis

The optimized **Ac** and **Es** structures have C_1 symmetries and 132 and 141 vibration normal modes, respectively and where all vibrations are IR and Raman active. Fig. 3 shows a comparison between the experimental infrared and Raman spectra of the used pectin in solid phase in the 4000–400 and 4000–10 cm^{-1} regions while Figs. 4–6 show the comparisons of these spectra with the corresponding predicted for Ac and Es in both media at B3LYP/6-31G* level in three different regions. The comparisons among the experimental and theoretical spectra were performed taking into account the 4000-2500, 2000-1000 and 1000-0 cm⁻¹ regions. The observed and calculated wavenumbers are summarized in Table 2 together with the proposed assignments for the two structures studied and a comparison with the reported for other pectins [6]. The assignments were performed at the B3LYP/6-31G* level of theory using the SQMFF procedure and the scale factors taken from Ref. [15] and taking into account the PED contribution calculated \geq 10%. The force fields for both structures were calculated at the same level of theory with the Molvib program [27]. On the other hand, the observed and calculated wavenumbers, potential energy distribution and assignments for Ac and Es in gas phase are presented in Tables S10 and S11. Fig. S6 shows a comparison between the experimental IR spectrum of pectin in solid state with those corresponding to the two proposed units, **Ac** and **Es**, in gas phase and in aqueous solution at B3LYP/6-31G* level while Fig. S7 shows a comparison between the experimental IR spectrum of pectin in solid state with that corresponding to three proposed units of the galacturonic acid in gas phase and in aqueous solution at B3LYP/6-31G* level. It is important to observe that the IR spectra predicted for the structure with three units of the galacturonic acid has the same form than those proposed for two units of the acid.

4.6.1. 4000–2500 cm⁻¹ region

In this region for **Ac** and **Es** are expected the CH_3 antisymmetric and symmetric, CH and OH stretching modes, as seen in Table 2. From Fig. 4 it is observed that both experimental and theoretical IR and Raman spectra show some bands in two zones. There are one region between 4000 and 3000 cm⁻¹ and the other one between 3000 and 2500 cm⁻¹. Also, Tables S10 and S11 show

Fig. 3. Comparison between the experimental infrared and Raman spectra of pectin in solid phase in KBr pellet.

Fig. 4. Comparison between the experimental IR and Raman spectra of pectin in solid state in the 4000–2500 cm⁻¹ region with that corresponding to the two proposed units of the galacturonic acid for a pectin acid, Ac and pectin esterified, Es, in gas phase at B3LYP/6-31C^{*} level.

Fig. 5. Comparison between the experimental IR and Raman spectra of pectin in solid state in the $2000-1000 \text{ cm}^{-1}$ region with that corresponding to the two proposed units of the galacturonic acid for a pectin acid, Ac and pectin esterified, Es, in gas phase at B3LYP/6-31G* level.

Fig. 6. Comparison between the experimental infrared spectra of pectin in solid state in the $1000-10 \text{ cm}^{-1}$ region with that corresponding to the two proposed units of the galacturonic acid for a pectin acid, Ac and pectin esterified, Es, in gas phase at B3LYP/6-31G* level.

approximately that all the modes are predicted by SOM calculations in this region with PED 100% contributions. Then, the intense IR band at 3436 cm⁻¹ is easily assigned to OH stretching modes of both Ac and Es structures and due to the intensity of this band can be clearly associated to the vibration modes of Ac, as shown in Figs. 3 and 4. On the contrary, the broad band in the Raman spectrum at 2947 cm⁻¹, of lower intensity than the above band, can be assigned to the symmetric CH₃ stretching modes of both forms but, due to their intensity is principally related to Es because this form has two CH₃ groups. Obviously, the remained bands observed in this region are assigned to the antisymmetric CH₃ and C-H stretching modes of Ac and Es, as indicated in Table 2. In different pectins only two bands were previously reported in this region [6], as can be seen in Table 2. Here, the predicted bands for the proposed structure with three units of the galacturonic acid are presented in Table 2 and, they appear at higher wavenumbers than the other ones because they were not scaled. Notice that for this form of pectin the assignments of the bands to the vibration modes are in accordance with those performed for the two units proposed.

4.6.2. 2000–1000 cm⁻¹ region

This region is very difficult to assign because in both species are expected the C=O, C–O and C–C stretching modes, the OH deformation and antisymmetric and symmetric CH_3 deformation modes and the CH_3 and C–H rocking modes. Experimentally, two intense bands between 1800 and 1500 cm⁻¹ are observed in the IR spectrum of pectin while in the corresponding Raman spectrum only very weak bands can be observed Clearly, these two bands should be attributed to COO groups with different moieties linked to these which are –OH and –O–CH₃. Therefore, analyzing first the COO groups, we know that when the COO group is anionic, it forms a

salt, as in the chromyl acetate [31,32]. The antisymmetric and symmetric C=O stretching modes are observed as two intense bands with a separation between them of about 200 cm^{-1} while the separation between these modes increase notably in amino acids such as, tyrosine, tryptophan, threonine up to 470 cm^{-1} [33–35] and, in acetic acid derivatives compounds the separations are from 400 to 600 cm⁻¹.[36–39]. In this case, the two **Ac** and **Es** structures proposed have each two acetate neutral groups, as in the acetic acid derivatives. Hence, taking into account the corresponding PED contributions those COO-H modes in Ac are associated with the strong IR bands at 1743 and 1146 cm⁻¹ while those modes related to COO–CH₃ are attributed to the IR bands at 1640 and 1235 cm^{-1} , as indicated in Table 2. In Es, according to SOM calculations, the IR bands at 1743/1640 and 1235/1211 cm⁻¹ are assigned to the C=O stretching modes of both COO-CH3 groups. On the other hand, the very weak IR band at 1588 cm⁻¹ only can be associated to a C=O stretching mode of a pectin chain, as predicted the calculations for the proposed structure with three units of the galacturonic acid. According to SQM calculation (Tables S10 and S11), the antisymmetric and symmetric CH₃ deformation modes in this region [39-42] are calculated as pure modes while the CH rocking modes are calculated coupled with other similar modes, thus, the former modes can be assigned to the IR and Raman bands between 1460 and 1420 cm⁻¹ while the second ones can be attributed to the bands between 1452 and 1191 cm⁻¹. The SQM calculations for Ac and Es predicted the CH₃ rocking modes between 1192 and 1146 cm⁻¹ and, for this reason, these modes were assigned in that region. In Ac and Es, the OH deformation modes are predicted by SQM calculations with low intensities and PED contribution (34-16%) in the 1440 and 1040 cm^{-1} region, hence, these modes are assigned as indicated in Table 2. Note that in aqueous solution these modes appear at lower wavenumbers due to the hydration by H bonds formation, such as the δ O5–H11 mode in **Ac** that in gas phase is assigned at 1440 cm⁻¹ while in solution it is predicted at 1280 cm⁻¹. On the other hand, the C–O stretching for Ac and Es are predicted by calculations with high intensities and, for this reason, the bands at 1235, 1146, 1103, 1076, 1047 and 1017 cm⁻¹ are assigned to the C18-O20, C1-O25, C30-O41, C5-O6, C29-O39 and C26-O25 stretching modes. Note that the glycosidic bonds, these are the C1-O25 and C26-O25 bonds are predicted at 1025/1018 and 820/818 cm⁻¹ and, hence, they were assigned at 1146 and 1017 cm⁻¹, as can be seen in Table 2. In general, the assignments of these modes presented here for both forms are in accordance with that proposed by Synytsya et al. [6] and with the predicted for three units of the galacturonic acid.

4.6.3. 1000–10 cm⁻¹ region

In the previous vibrational study proposed by Synytsya et al. [6] for different pectins in this region few modes were assigned. Thus, the in-plane $(805/741 \text{ cm}^{-1})$ and out-of-plane COO $(710/575 \text{ cm}^{-1})$ deformation, rocking $(484/396 \text{ cm}^{-1})$ and twisting $(88-48 \text{ cm}^{-1})$ modes, the CH₃ $(182/119 \text{ cm}^{-1})$ and OH twisting $(554-201 \text{ cm}^{-1})$ modes, the corresponding deformation (1116/233 cm⁻¹) and torsion $(1090/60 \text{ cm}^{-1})$ of both rings and, the CCO $(500/101 \text{ cm}^{-1})$ and C–O–C (349/40 cm⁻¹) deformation modes for Ac and Es are expected in this region. Those modes related to the COO groups can be easily assigned in accordance with the calculations performed here and with related molecules [36,39], as observed in Table 2. The CH₃ twisting modes, as expected and in accordance with similar molecules [39,42] are predicted by calculations in the lower wavenumbers region, thus, these modes are associated with Raman bands observed between 144 and 119 cm⁻¹. The C-O-C deformation modes related to the glycosidic angle, in Ac is predicted by the SQM calculations with a PED contribution of 10% at 30 cm⁻¹ while in **Es** that mode is predicted with a PED contribution of 9% at 33 cm⁻¹, for this reason, these modes could not

Table 2						
Observed and calculate	ed wavenumbers (cm	⁻¹) and assignments for	6-nitro-1,3-benzothia	zole-2(3H)-thiol a	nd their tautomer in gas phase.	
Experimental	LL Doc	K Doch	Assignment			Ec CAS

Experime	ntal ^a	H-Pec ^b		K-Pec ^b		Assignment ^b	Ac GAS	a	Ac PCN	la	Es GAS	1	Es PCM ^a		Three u	Three units ^a Gas	
IR	Ra	Ra	IR	Ra	IR		SQM ^c	Assignment	SQM ^c	Assignment	SQM ^c	Assignment	SQM ^c	Assignment	Calc ^d	Assignment	
							3598	v017–H10	3579	vO39-H40	3597	v017-H10	3578	v017-H10	3752	v0—H	
							3590	v016-H14	3573	v017-H10	3588	v016-H14	3572	v045-H46	3743	ν0—Н	
							3579	vO39-H40	3569	v016-H14	3580	v043-H44	3570	v016-H14	3737	ν0—Н	
							3538	vO41-H42	3558	v041-H42	3545	v045-H46	3568	v015-H11	3726	ν0—Н	
	3373s						3526	vO35-H46	3525	v044–H45	3530	v048-H49	3564	v043-H44	3683	νО—Н	
3436vs	3301vs		3493		3425	ν0—Н	3498	vO44-H45	3510	v035-H46	3486	v015-H11	3525	v048-H49	3676	νО—Н	
							3480	v015-H11	3427	v015-H11	3054	$v_aCH_3(C21)$	3072	$v_a CH_3(C21)$	3631	νО—Н	
	3188m						3055	$v_a CH_3$	3072	$v_a CH_3$	3051	$v_a CH_3(C36)$	3070	$v_a CH_3(C36)$	3188	$v_a CH_3$	
	3027w						3027	$v_a CH_3$	3044	$v_a CH_3$	3026	$v_a CH_3(C21)$	3045	$v_a CH_3(C21)$	3123	vC—H	
	2984w						2983	vC26-H32	3003	vC26-H32	3023	$v_a CH_3(C36)$	3041	$v_a CH_3(C36)$	3109	vC—H	
	2970w						2974	vC31-H43	2990	vC4-H12	3008	vC26-H32	3009	vC26-H32	3095	vC—H	
	2965w						2967	vC5-H13	2989	vC31-H43	2990	vC31-H47	2988	vC31-H47	3089	vC—H	
							2961	vC4—H12	2979	vC29-H38	2965	vC4-H12	2969	vC29-H42	3085	vC—H	
	2957w						2958	vC1-H7	2971	vC5-H13	2960	vC5-H13	2967	vC5-H13	3084	vC—H	
2950sh							2953	$v_s CH_3$	2970	vC1-H7	2952	$v_sCH_3(C21)$	2965	vC1-H7	3082	$v_s CH_3$	
	2947w	2941	2942	2945	2941	vC—H	2946	vC29—H38	2964	$v_s CH_3$	2950	$v_sCH_3(C36)$	2964	$v_s CH_3(C21)$	3080	$v_s CH_3$	
2927w	2937w						2939	vC27—H33	2959	vC27—H33	2948	vC1-H7	2963	vC27—H33	3066	vC—H	
2911sh	2927w						2936	vC2—H8	2957	vC2-H8	2943	vC29-H42	2962	$v_s CH_3(C36)$	3061	vC—H	
	2906w						2892	vC30-H37	2927	vC3-H9	2935	vC2—H8	2934	vC30-H41	3050	vC—H	
2852vw	2871w						2882	vC3-H9	2921	vC30-H37	2934	vC27—H33	2933	vC4-H12	3036	vC—H	
											2886	vC30-H41	2922	vC2—H8	3020	vC—H	
			2653			v(OH) _{COOH}					2880	vC3—H9	2897	vC3—H9	3007	vC—H	
1743s		1740	1762			$v(C=0)_{COOH}$	1769	vC34-036	1696	vC34-036	1764	vC18-019	1692	vC18-019	1845	vC=0	
1640s	1697vw		1645			δH ₂ O	1765	vC18-019	1689	vC18-019	1752	vC34—040	1685	vC34—040	1832	vC=0	
	1588vw			1607	1633	$v_{as}(COO-)$	4.464				4 4 6 4				1829	vC=0	
4 4 5 0 1	1463vw						1461	$\delta_{as}CH_3$	1440	$\delta_{as}CH_3$	1461	$\delta_{as}CH_3(C36)$			1535	δ _{as} CH ₃	
1458sh											1461	$\delta_{as}CH_3(C2T)$		C4 117	14/1	рс—н	
1452sh	4 4 4 2 1						1447	δ _{as} CH ₃	4 405	64 117	1448	$\delta_{as}CH_3(C36)$	1445	$\rho CI - H/$	1451	рс—н	
1442w	1443sh						1444	ρ'CI-H/	1437	pCI-H/	1447	$\delta_{as}CH_3(C2T)$	1439	$\delta_{as}CH_3(C36)$	1440	рс—н	
1440m							1434	805-HII	1434	δ _{as} CH ₃	1438	ρ'CI-H/	1438	ρ'C29—H42			
1440m	1420-1						1433	VC30-C29	1431	р С29—н 38	1432	ρC30—H41	1437	$\delta_{as}CH_3(C2T)$			
1420ch	1430sh						1425	рСЗ1—H43	1427	$\delta_{s}CH_{3}$	1431	рс4—н12	1435	$\delta_{as}CH_3(C3b)$			
1420511	1420511						1425	osch3	1422	рс4—п12	1476	S CIL (C2C)	1430	$\delta_{as} CH_3(C2T)$	1420	аС II	
1420ch	1420ch										1420	$o_s CH_3(C30)$	1429	$\delta_{s}CH_{3}(C30)$	1429	рс—н	
1420511 1420ch	1420511 1420ch						1/17	o/C2_U0	1/16	oC21_U/2	1424	$o_{s}C\Pi_{3}(C21)$	1422	$o_{s}CH_{3}(C21)$	1425	рс—н	
1420511 1406cb	1420511 1408cb			1405	1/10	$v_{1}(COO_{-})$	1417	р С3—п9 «С20—Ц27	1410	рсэт—п45 «С2—Ц0	1410	pC30-H41	1417	р C3—п9 oC21—Ц47	1420	рс—н	
1400511	1406511			1405	1415	$V_{\rm s}(\rm COO-)$	1407	p C30-1137	1400	pcs-ns	1415	p co-na	1406	pC31-H47	1415		
		1202	1402			SCOL			1206	oC20_U28	1200	oC21_U47	1200	oC20_U42	1404		
		1555	1405			OCOTICOOH			1550	pc29–1158	1555	pc31-1147	1395	o'C4-H12	1395	рс—н	
1383ch							1387	oC30-H37	1384	o/C30—H37	1384	oC29—H42	1555	p C4 1112	1387	рс н оС—Н	
1505511	1375ch						1379	oC2-H8	1380	р C30 1137 оС2—Н8	1379	oC2-H8	1380	o/C30—H41	1375	рс н оС—Н	
	157531						1575	pc2 110	1372	oC26-H32	1575	pc2 110	1373	oC26-H32	1375	рс н оС—Н	
							1368	oC1-H7	1369	oC30-H37	1368	oC1-H7	1369	oC2-H8	1371	pen	
1366sh							1365	oC29-H38	1505	peso 1157	1365	oC27-H33	1505	pc2 110	1365	oC—H	
1500511							1362	oC26-H32	1362	oC5-H13	1361	oC26-H32	1363	o'C1-H7	1505	pe n	
	1357sh						1358	oC5-H13	1353	oC3-H9	1356	oC5-H13	1351	oC30-H41	1351	oC—H	
1344sh	1344sh						1344	oC3-H9	1346	o'C29-H38	1550	peo mo	1551	peso ini	1349	oC—H	
10 1 1011	10 1 1011							peo no	10 10	oC27-H33					10 10	p c	
							1340	o'C29-H38	1343	o'C1-H7	1343	oC3-H9	1343	oC5-H13			
1333m	1333vs	1330	1335	1324	1334	δ(CH)	15.15	F 220 1150		r e	1331	o'C29-H42	1337	oC27-H33			
						-()	1322	pC27-H33	1327	oC27-H33		F	1333	pC3-H9	1333	oC—H	
0	1313sh						1317	o'C4-H12	1320	o'C2-H8	1317	o'C4-H12	1319	o'C31-H47	1319	рС—Н	
٢	1300sh						1303	p'C26—H32	1323	F 02 110	1301	p'C26—H32	1307	p'C27—H33	1307	рС—Н	
1297sh	1291sh								1299	p′C26—H32	1294	ρ′C27—H33	1295	ρ′C26—H32	1297	, δО—Н	
														· · · · · · · · · · · · · · · · · · ·			

1297sh							1287	vC26-C31	1287	ρ′C31—H43			1291	ρ′C5—H13 ρ′C26—H32	1290	δО—Н
							1281	ρC4—H12	1280	δ 05 —H11	1280	δ 05 —H11				
							1273	δ044—H45	1277	ρ′C5—H13	1275	ρ′C31—H47				
1265m	1269sh						1269	ρ′C5—H13	1263	р′С27—Н33	1270	ρ′C5—H13			1265	δО—Н
	1261sh						1256	ρ′C27—H33			1257	δO48—H49	1256	δ048—H49	1261	δО—Н
1253sh		1254	1253sh	1242	1236	δ(CH)			1245	δO44—H45	1239	δ 045 —H46	1247	ρ′C5—H13	1252	δО—Н
1235m			1226			δ(OH) _{COOH}	1238	δ041-H42	1232	δO41-H42	1224	vC18-020	1223	δ05–H11	1229	ρCH_3
												ρ′C5—H13				
1235m							1223	vC18-020	1220	ρ′C4—H12	1211	νC34—035 ρ'C27—H33	1219	vC34-035	1223	ρCH_3
1211sh							1208	δ016—H14	1209	vC18-020	1209	vC18-020	1200	δ017—H10 ο′C2—H8	1210	vC—Oglyc
	1207sh						1196	δ 039 —H40					1198	vC29-043	1199	vC-0
	1207511						1192	o/C2—H8	1192	oCH.	1191	o/C2—H8	1193	oCH ₂ (C36)	1101	OCH.
							1152	p c2 110	1186	ренз 8017—H10	1191	p C2 110	1101	vC18_020	1100	oCH.
	1190cb						1105	oCH	1100	SO20-U40	1100	SO12_U11	1107	ocu (C21)	110/	
	1180sh						1105	pen ₃	1105	0039-1140	1100	20043-1144 2011 (C21)	1107	SO16 U14	1104	pcn ₃
	1180sh						1177	\$017 1110	1176	SO16 U14	1105	SO17 U10	1101	SO45 1146	1171	VC Oglug
1140-	1170sh						1177	8017—нто wC1_025	11/0	0010—п14 uC1_025	11/0	0017-HIU	11/7	6043—п46 SO42_U44	11/1	vc—Oglyc
11465	117051						11/4	VCI-025	1155	VC1-025	1101	VCI-025	1102	0043—H44	1155	vc—Oglyc
11465	1152VW	1145	1150	1144	1140		1155	p ^r CH ₃	1155	p'CH ₃	1153	$\rho'CH_3(C36)$	1151	p(CH ₃ (C36)	1150	VC-Oglyc
11465	1142	1145	1156	1144	1146	V(COC)giyc	1120	SODE 1140	1140		1153	$\rho'CH_3(C21)$	1150	VCI-025	1149	VC-0
11465	1142vw						1138	δ035—H46 νC34—035	1143	vC29—039	1129	vC30-045	1148	ρ'CH ₃ (C21)	1144	vC-0
1103s	1130sh						1132	vC27—028	1116	δ035—H46 νC34—035	1116	βR_1 (A6)	1112	vC2-017	1125	vC—0
1103s							1121	vC30-041							1113	vC0
1103s		1105	1119	1106	1112	vС—С, vС—О	1109	vC4—C5	1103	vC2-017	1110	vC5—06 vC4—C5			1109	vC—0
1103s	1098sh						1097	vC31-044	1094	vC5-06	1090	vC26-C31	1091	vC26—C27 vC26—C31	1099	vC—0
1076s	1093vw						1089	vC5-06	1088	vC30-041	1090	vC3-016 $\tau R_1 (A6)$	1089	vC27-028	1097	vC-0
1076s		1079	1085	1078	1083	$vC = 0 + \delta OH$			1082	vC3-016	1083	vC31-048	1085	vC30-045	1082	vC-0
10705		1075	1005	1070	1005	ve o voon	1075	vC26-C27	1072	vC26-C27	1005	vest old	1080	vC5-06	1079	vC-C
	1070vw						1068	vC4-015	1072	1020 027	1067	vC4-015	1064	vC4-015	1068	vc—c
	10/0111						1059	vC3-016	1055	vC26-C31	1060	vC3-016	1054	vC31-048	1052	vc-c
10476	1046304	1050		10/0		איר-ר איר-0	1055	VC20-030	1055	vC31-044	10/0	vC29-043	10//	vC2-C3	1052	vee
10475	1040000	1050		1045		ve e,ve o	10/0	8016-H14	10/0	vC2_C3	1045	8016-H14	1044	VC2 C5	1036	VC-C
	1040100						1040	0010 1114	1035	vC2 C3	1040	0010 1114	1035	vC3-016	1030	vc c
1017c	1026104	1020	1024	1022	1026cb	<i>\</i> ,	1025	VC26_025	1010	VC4 015	1025	VC26_025	1055	VC3 010	1032	vc c
10173 1001sb	102000	000	000ch	1055	1050311	vCOOHdim	1025	VC20 025	1010	VC20 025	1025	vC26-025	1013	vC1-06	1025	vc 0 vc-0
1001311	1005000	550	550311	002	002		002		004		1004	vC27–C34	007	vc1 00	004	
				992	992	ð(COO-)	995	VC2-C3	994	VCI-C2	1002	VCI-00	997	VC30-033	994	vc=0
	986vw						982	vC21-020	984	vC29-028	983	vC21-020	976	vC21-C34 vC21-020	967	βR_1 (A6)
										vC30-C29						
972sh	966vw						972	vC29-028	970	vC5-C18	972	vC26-025	967	vC5-C18	964	vC-0
953w	950vw	953	954	957	958	δ(CCH)	969	vC29-028	955	vC29-028	965	vC29-028	956	vC29-028	952	vC-0
938sh	937vw					δ(COH)	942	δO28C29O39 βR ₁ (A6)	940	βR ₁ (A6)	942	βR_1 (A6)	940	βR_1 (A6)	944	vC—C
												vC2-C3				
929vw	926vw						928	vC5-C18	922	vC21-020	924	vC5-C18	919	δ06C5C18	921	δΟϹϹ
911vw	905sh		915		917		903	vC27-C34	908	vC27-C34					916	vC—0
894sh	895sh						893	vC27-028	895	vC30-C29	893	vC30-C29	899	vC30-C29	904	vC—0
								vC30-C29								
889w	889sh	887	888	896	894	δ(CCH) δ(COH)	880	vC1-06	883	vC1-06	888	vC26-C27	886	vC36-035	889	vC—C
878sh	880sh					J(COII)					887	vC34-035	881	vC1-06	871	VC-C
070311	000311										002	VCJ4 -000	001	VCI OU	0/1	vee

Table 2 (continued)

Experime	ental ^a	H-Pec ^b		K-Pec		Assignment ^b	Ac GAS	a	Ac PCN	a	Es GAS		Es PCM	a	Three units ^a Gas	
IR	Ra	Ra	IR	Ra	IR		SQM ^c	Assignment	SQM ^c	Assignment	SQM ^c	Assignment	SQM ^c	Assignment	Calc ^d	Assignment
												δ028C27C34		vC3-C4		
873sh	871sh						873	vC2-017	865	δ025C1C2	865	vC2-017	865	vC2-017	865	vC—C
												δ025C1C2				
0.47	849sh	853			857	(CCOCO)	0.40	<u> </u>	0.50	<u> </u>	054	62 64	858	vC4—C5		
847w	837s						848	vC3-C4	852	vC3-C4	851	vC3-C4			844	$\beta R_1 (A6)$
833w	831sh	834								VC4-C5	820	vC1-C2	820	vC1-C2	877	BR. (A6)
05511	821sh	051					818	vC1-C2	816	vC1-06	020	Ver ez	020	Ver ez	022	pici (no)
805sh	805sh						792	βR1 (A6)	798	vC27-028	802	vC27-028	808	βR1 (A6)	786	δCOO
										βR_1 (A6)						
782sh	784sh	795	790 760ab	814	815	γ(COH)ring	771	δCOO _{Es}	768	δCOO _{Es}	778	δCOO _{Es1}	777	δCOO _{Es1}	782	δCOO
769511 741 w	767511 744w	775 750sh	760511	//4	769	$\chi(COH)_{analysis}$	716	80170201	720	vC1-06	//1	oCOU _{Es2}	//1	acou _{Es2}	737	8000
741 W	7-1100	750311	750			/(COII)COOH	/10	00176261	720	δ017C2C1					757	0000
	735w										711	δ017C2C1	708	δ017C2C1	726	δΟϹϹ
														vC36-035		
704sh	707vw	710	700sh	717	710sh	γ(COH)ring	699	γCOO _{Ac}	701	vC30–C31	699	vC30–C31	699	vC30–C31	710	βR_3 (A6)
697sh	688vw	686	682	687	6/3	Pyranoid ring	693	VC30-C31	695	βR_3 (A6)					674	τΟΗ
670w	676w							ркз (ло)			657	δ025C26C31	661	δ025C26C31	658	νርοο
635m	637vw						636	δCOO _{Ac}	638	δCOO _{Ac}	007	0020020001	001	0020020001	646	βR_3 (A6)
620m	620vw	621	637	636	649		634	τ035–H46	621	γCOO _{Ac}	619	γCOO_{Es2}	624	γCOO_{Es2}	633	γCOO
603w	612vw						611	γCOO _{Es}	600	γCOO _{Es}					619	τΟΗ
	591vw						593	8016C3C4	590	βR_2 (A6)	593	8043C29C30	594	γCOO _{Es1}	597	τΟΗ
588w	583vw								585	8028029039	591	BR ₂ (A6)	589	6R ₂ (A6)		
50011	505111								505	0020023033	551	δ016C3C2	505	ph2 (110)		
588w	583vw												587	δ028C29O43	585	βR_2 (A6)
576w	575vw						579	δ028C29O39			579	γCOO_{Es1}				
CC 4ab	FFC111						F 40	-015 1111	F 40	-015 1111	E 40	δ028C29O43			F 40	
554511	330VW						549	1015-011	545	τ015-H46	545	1015-011			542	$pR_2(R0)$
536w	545vw	537	534	538	544		545	τ015 — Η11	540	τ035-H46					539	τΟΗ
								τ035—H46								
526w	524vw						525	τ015—H11	517	τ015–H11	525	βR ₃ (A6)	528	vC3-C4	526	βR_2 (A6)
500	507						F14	\$0256106	510	\$0256106	F 1 7	δ025C106	F17	\$0256106	52.4	
508W 490w	507VW 491vw						514	80250106	512	0025C106	517 494	8017C2C3 8045C30C31	517	80250106	524 492	βR ₃ (Ab) τΟΗ
484w	485vw	486		483			484	pCOO _{Ac}	484	δC30C31O44	-17-	0045050051	484	βR ₃ (A6)	467	τΟΗ
474m	475vw							1 16			471	τ048—H49		, 3, ,		
466m	465vw						467	τ044—H45								
455	450							τ041—H42	451		451		450	\$620621040	4.47	-011
455M 444sh	453VW 444vw	441		444		τር0	444	β R ₂ (A 6)	451	τκ ₁ (Α6)	451	ρርθθ _{Es1}	450 441	βR_{2} (A6)	447 440	τΟΗ τΟΗ
440m	435sh						437	βR_2 (A6)	439	δ016C3C2	437	βR ₂ (A6)		ph2 (110)	110	ton
429m	430vw						432	δ016C3C2	431	ρCOO _{Ac}	432	δ016C3C2	434	δ016C3C2	431	δΟϹϹ
								δ017C2C3								
416w	412w						415	βR ₂ (A6)	410	ρCOO _{Es}	413	δC30C31O48	414	ρCOO _{Es2}	415	τΟΗ
405147	3961747						305	τ <u>039</u> _μ/0	308	80170203	301	0000 -	306	0016C3C4 0017C2C3	404	000
WC0F	330000						797	1055-1140	220	δC26C31044	334	pcov _{Es2}	290	00176265	404	μου
	390sh								389	τO39—H40					392	δΟϹϹ
	383sh						380	τ041-H42	382	τ044—H45	378	τ045—H46	380	δ025C26C27	383	δΟϹϹ
	378w	372		378			377	τ044—H45	373	δ025C26C27	373	τ043—H44	370	βR ₂ (A6)	378	τΟΗ
	368w						362	τ044—H45			363	βR ₂ (A6)	358	τ043-H44	363	δΟϹϹ
	357w								353	δ06C5C18	350	δ06C5C18	353	ουσίσιιδ τ043Η44	353	δΟCC
	337 44									000000000	550	300000010		1015 1111		0000

324

349sh				349	δ 06C5C18	342	βR_2 (A6)	349	τ043-H44 8C34035C36	347	τ048	350	δΟϹϹ
339w	340	344	τС—О—С	330	δC30C31044	334	δ015C4C5	329	δ015C4C3	327	δ015C4C3	322	τОН
279147				225	\$015C4C5	221	\$0/1020021	217	TO16_U14	210	\$015C4C5	210	70U
328W				205	SOJEC26C21	212	#041C30C31	517	1010-1114	210	SC24025C26	204	SOCC
207ah				305	0023C20C31	205	T041-H42	205	\$624025626	200	8C18020C21	200	30CC
297sn				295	τR_1 (A6)	305	τ016Η14	305	8634035636	298	ac18020C21	299	SCOC
293w				290	τ016-H14	298	τ017—H10	295	τ016-H14			296	τΟ—Η
						292	δC18O20C21	291	δC18O20C21	289	τ045-H46	283	τΟ—Η
284w				284	δ041C30C31					280	δC26C31O48	281	δΟϹϹ
					δC26C31O44						δ045C30C31		
273sh				273	δ028C27C34	271	δ028C27C34	270	δC26C31O48	269	τ016-H14	268	τ0—Н
261w						268	8039029030			267	δ045C30C29	258	τ0—Н
2011						200	βR_2 (A6)			207	0010000020	200	
255sh				258	δ041C30C29		PH3 (110)	258	δ016C3C4	255	τ017—H10 τ016—H14	240	τ0—Η
24714				250	8015C4C3	242	80150403	247	8045030020		1010 1114		
247 W				250	00150405	242	δ015C4C5 δ016C3C4	247	0045050025				
233sh				226	τR_2 (A6)	233	δ041C30C29	234	βR ₃ (A6)	239	δ028C27C34	238	δΟϹϹ
											ρCOO _{Es1}		
224w				221	τ017—H10			224	τ015–H11 τ017–H10	225	τ017—H10	230	τR_1 (A6)
218w						213	80170201	209	τ017-H10	211	80170201	213	$\tau R_{\star} (A6)$
201w				195	$\tau 017 - H10$	215	δC18C5C4	192	τ017-H10	195	$\tau R_{\rm e}$ (A6)	215	$\tau R_{1} (A6)$
1821				174	80250102	175	TWCH-	172	$\tau \mathbf{R}_{\rm c}$ (A6)	170	$\tau R_{\rm c} (A6)$	181	$\tau R_{-} (A6)$
102 W				1/4	00230102	175	twen3	175	$tR_1(R0)$	179	$t\mathbf{R}_1(\mathbf{A}0)$	101	$i \mathbf{R}_2$ (A0)
172				162	$\tau P (AC)$	160	\$626627624	161	$\tau \mathbf{P}$ (AG)	161	\$02EC1C2	164	$\tau \mathbf{P}$ (AG)
175W				105	-020 C21	100	$\frac{3020027034}{2000}$	101	-020 C21	101	-020 C21	104	$\pi \kappa_2 (A0)$
150W				151	t020–C21	155	$\tau \mathbf{K}_1$ (Ab)	152	t020-C21	152	$\tau 0 20 - C 21$	151	TWCH ₃
1 4 4				1 4 4	$-\mathbf{D}$ (AC)	1.40	$-\mathbf{D}$ (AC)			1 47	$\tau \mathbf{K}_1 (Ab)$	1 47	$-\mathbf{P}$ (AC)
144W				144	$tR_2(Ab)$	140	$\tau \mathbf{K}_1 (Ab)$	120		147	TWCH ₃ (C36)	147	$tR_2(Ab)$
120				100		138	$\tau \mathbf{K}_2$ (Ab)	139	$TWCH_3(C30)$	139	1015-HII	140	$tWCH_3$
136VW				126	TWCH ₃			137	$\tau R_2 (Ab)$	133	tuis-HII	133	$\tau R_3 (A6)$
126sh							D (10)	125	τ035C36	129	$\tau WCH_3(C2T)$	121	τR_3 (A6)
119w				121	8026027034	11/	τR_2 (Ab)	121	$\tau WCH_3(C21)$	125	τ035		5 (10)
113sh				109	8C18C5C4	110	τ020C21	108	8C18C5C4	105	8C26C27C34	114	τR_3 (A6)
101w				103	δ025C26C27		D (10)	102	δC26C27C34	104	δC18C5C4	113	δССС
97sh				90	τR_3 (A6)	97	τR ₃ (A6) δO25C26C31					95	8000
88w						83	τR_{3} (A6)	86	τR_2 (A6)	84	τR_2 (A6)	85	τwC00
75sh				72	τR_{3} (A6)			81	τR_3 (A6)	79	τR_{3} (A6)	73	τwCOO
69sh						67	τR_3 (A6) τR_2 (A6)	60	τR_3 (A6)	62	$\tau wCOO_{Es1}$	64	τwCOO
55sh				53	τωςοολα	56	TWCOOA	53	TWCOOrat	60	τR_{2} (A6)	55	δርΟር
00011				48	twCOO	48	twCOO _E	49	TWCOO	46	τωCOO _{E-2}	44	δርΟΟ
				41	TW(A6)	35	$\tau_W(A6)$	15	COO _{ES2}	37	δC1025C26	37	8000
				-11		55	δC1025C26				501025020	57	0000
				30	δC1025C26	32	τw(A6)	33	δC1025C26			30	τw(A6)
								24	τw(A6)	26	τw(A6)	15	τw(A6)
				12	τw(A6)	15	τw(A6)	10	τw(A6) δO25C26C27	22	τw(A6)	11	τw(A6)

v, stretching; δ, scissoring; γ, wagging or out-of-plane deformation; ρ, rocking; τ, torsion; τw, twisting; a, antisymmetric; s, symmetric; ip, in-phase; op, out-of-phase; R, ring; benzene ring, (A6); thiazole ring, (A5); Sym, symmetry.
 ^a This work.
 ^b From Ref [6].
 ^c From scaled quantum mechanics force field B3LYP/6-31G*.
 ^d From B3LYP/6-31G* level.

Table 3

Scaled force constants for both structures proposed of pectin in gas and aqueous solution by using $B3LYP/6-31G^*$ method.

B3LYP/6-31G*											
Force constant	Gas ^a	PCM ^a	Gas ^a	PCM ^a	Gas ^b	PCM ^b	Gas ^c				
<i>f</i> (vO—H)	7.03	6.99	7.07	7.10	7.186	7.062	6.10				
$f(vCH_3)/f(vCH_2)$	5.00	5.05	5.00	5.04	4.767	4.812	5.34				
f(vC-H)	4.77	4.84	4.78	4.81	4.723	4.728	5.69				
f(vC=0)	12.49	11.56	12.42	11.52			13.65				
$f(vC-O)_{C}$	4.64	4.51	4.63	4.53	4.460	4.266					
$f(vC-O)_{H}$	5.13	5.13	5.07	5.08	4.976	4.895	6.36				
f(vCC) _{R6/R5}	3.77	3.85	3.78	3.90	3.868	3.855					
$f(vC-C)_{R6}$	3.93	3.93	3.93	3.93	3.965	3.965	6.65				
$f(\delta C - O - C)$	1.32	1.20	1.13	1.31	1.728	1.299					
f(δ С—О—Н)	0.77	0.75	0.77	0.74	0.733	0.741	1.06				
$f(\delta CH_3)/f(\delta CH_2)$	0.57	0.56	0.57	0.56	0.803	0.796	0.91				

Units are mdyn Å⁻¹ for stretching and stretching/stretching interaction and mdyn Å rad⁻² for angle deformations, R6, glucopyran rings according to Fig. S2.

^a This work.

^b For sucrose, from Ref. [7].

^c For 5,7-Dichloro-quinolin-8-yloxy) acetic acid, from Ref. [9].

be assigned. In sucrose, the deformation mode related to the glycosidic angle was associated with a very weak Raman band at 178 cm^{-1} [9]. The other modes were assigned according to the SQM calculations, as indicate in Table 2. Clearly, the assignments proposed in this region for three units of the galacturonic acid are in accordance with those descript for two subunits, as shown Table 2.

5. Force constants

For Ac and Es in the two studied media were calculated the force constants expressed in internal coordinates by using the B3LYP/6-31G* method and the Molvib program [27]. The results are observed in Table 3 compared with those reported for sucrose [9] and a conformer of the 5,7-Dichloro-quinolin-8-yloxy) acetic acid [37]. The differences observed among the f(vO-H), f(vC=O)and $f(vC-O)_{C}$ force constant values for **Ac** and **Es** in gas phase with those in solution are obviously attributed to the hydration due to the H bonds formation. Note that only slightly modifications between the $f(vC-O)_{H}$ and $f(\delta C-O-C)$ force constants of **Ac** and **Es** are observed. Obviously, the $f(vC-O)_{H}$ value is higher in Ac because a C-O bond is linked to a H atom while in Es that bond is linked to a CH₃ group. On the other hand, the differences observed in $f(\delta C - O - C)$ are related to the geometrical parameters because they have different values, as observed in Table 1. Comparing the $f(\delta C - O - C)$ force constants, we observed that the higher values for sucrose in both media is probably related to the calculations because the deformation mode is assigned at 178 cm⁻¹ while in this work the modes related to those constants for Ac and Es are predicted a low frequencies (30 and 33 cm^{-1}). The differences between the values for Ac and Es with those corresponding to 5,7-Dichloro-quinolin-8-yloxy) acetic acid [37] show clearly the differences between the force constants of a acid and a ester compound. In general, the force constants values calculated for both forms proposed are in agreement with those reported in the literature for molecules containing similar groups [9,36–39].

6. Conclusions

In this work, a pectin isolated from citrus peel with a degree of esterification of 76% was characterized by FTIR and FT-Raman spectroscopies. The polygalacturonic acid chain was studied taking into account their partial esterification's degree by simulation of two different subunits, one with both COOH and COO– CH_3 groups

(Ac) and, the other one as constituted by two subunits with two COO–CH₃ groups (Es). The molecular structures of both forms were determinate in gas phase and in aqueous solution by using the hybrid B3LYP/6-31G* method. The solvent effects and the solvation energies were considered by employing the PCM/SM model. Also, three subunits formed by two COO–CH₃ and one COO groups were theoretically simulated by using the same level of theory. The observed separation of 103 cm⁻¹ between the more intense IR bands suggest the presence of two C=O groups with different moieties linked to these which are -OH and -O-CH₃ while the theoretical calculations support the presence of the three structures proposed for a pectin esterified a 76%. Here, the IR bands at 3436 (OH), 1743 (C=O), 1640 (C=O), 1146 (C-O glycosidic), 1103 (C–O) and 1017 (C–O glycosidic) cm⁻¹ characterizing clearly a pectin. The infrared and Raman spectra for these three structures proposed show a reasonable concordance with the experimental ones. The two structures proposed show clear differences in the dipole moments and solvation energy values in solution. The molecular electrostatic potential reveals the different sites of H bonds formation while the MK charges on the COO groups show clear differences between the two structures in solution. The NBO study suggest that Ac is most stable than Es while the AIM analyses show four different interactions for Ac in gas phase and five interactions in the same phase, some of which disappear in solution as a consequence of the hydration. This study provides a new insight to study the interactions that exist between subunits of a large pectin chain and, besides, it work will allow the quick identification of pectin by using the vibrational spectroscopy.

Acknowledgements

This work was supported with grants from CIUNT (Consejo de Investigaciones, Universidad Nacional de Tucumán). Dr. Gervasi is a Researcher at CICPBA and INQUINOA. The authors would like to thank Prof. Tom Sundius for his permission to use MOLVIB and to INQUINOA (CONICET) for the spectra.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.infrared.2016.03. 009.

References

- P. Sriamornsak, Chemistry of pectin and its pharmaceutical uses: a review, silpakorn university, J. Soc. Sci. Human. Arts 3 (1–2) (2003) 206–228.
- [2] Colin D. May, Industrial pectins: sources, production and applications, Carbohyd. Polym. 12 (1) (1990) 79–99.
- [3] William G.T. Willats, J. Paul Knox, Jørn Dalgaard Mikkelsen, Trends Food Sci. Technol. 17 (3) (2006) 97–104.
- [4] T.P. Kravtchenko, A.G.J. Voragen, W. Pilnik, Analytical comparison of three industrial pectin preparations, Carbohyd. Polym. 18 (1) (1992) 17–25.
- [5] Hai-ming Chen, Xiong Fu, Zhi-gang Luo, Properties and extraction of pectinenriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water, Food Chem. 168 (2015) 302–310.
- [6] A. Synytsya, J. Čopiková, P. Matějka, V. Machovič, Fourier transform Raman and infrared spectroscopy of pectins, Carbohyd. Polym. 54 (2003) 97–106.
- [7] A.B. Brizuela, A.B. Raschi, M.V. Castillo, P. Leyton, E. Romano, S.A. Brandán, Comparison between the structural and vibrational properties of the artificial sweetener sucralose with those obtained for sucrose, Comput. Theor. Chem. 1008 (2013) 52–60.
- [8] A.B. Brizuela, L.C. Bichara, E. Romano, A. Yurquina, S. Locatelli, S.A. Brandán, A complete characterization of the vibrational spectra of sucrose, Carbohyd. Res. 361 (2012) 212–218.
- [9] A.B. Brizuela, M.V. Castillo, A.B. Raschi, L. Davies, E. Romano, S.A. Brandán, A complete assignment of the vibrational spectra of sucrose in aqueous medium based on the SQM methodology and SCRF calculations, Carbohyd. Res. 388 (2014) 112–124.
- [10] M.V. Fiori-Bimbi, P.E. Alvarez, H. Vaca, C.A. Gervasi, Corrosion inhibition of mild steel in HCL solution by pectin, Corros. Sci. (2015), http://dx.doi.org/ 10.1016/j.corsci.2014.12.002.

326

- [11] A.D. Becke, Density functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648–5652.
- [12] C. Lee, W. Yang, R.G. Parr, Development of the Colle–Salvetti correlationenergy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785–789.
- [13] J. Tomasi, J. Persico, Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent, Chem. Rev. 94 (1994) 2027–2094.
- [14] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55 (1981) 117–129.
- [15] (a) G. Rauhut, P. Pulay, Transferable scaling factors for density functional derived vibrational force fields, J. Phys. Chem. 99 (1995) 3093–3100;
 (b) G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 14572.
- [16] A.B. Nielsen, A.J. Holder, Gauss View 5.0, User's Reference, GAUSSIAN Inc., Pittsburgh, PA, 2000–2008.
- [17] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009) 6378–6396.
- [18] L.C. Bichara, S.A. Brandán, Hydration of species derived from ascorbic acid in aqueous solution. An experimental and theoretical study by using DFT calculation, J. Mol. Liq. 181 (2013) 34–43.
- [19] A.B. Brizuela, A.B. Raschi, M.V. Castillo, L. Davies, E. Romano, S.A. Brandán, Vibrational investigation on species derived from cyclamic acid in aqueous solution by using HATR and Raman spectroscopies and SCRF calculations, J. Mol. Struct. 1074 (2014) 144–156.
- [20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian Inc, Wallingford CT, 2009.
- [21] A.E. Reed, L.A. Curtis, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88 (6) (1988) 899–926.
- [22] E.D. Glendening, J.K. Badenhoop, A.D. Reed, J.E. Carpenter, F. Weinhold, NBO 3.1; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 1996.
- [23] R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press, Oxford, 1990. ISBN: 0198558651.
- [24] F. Biegler-Köning, J. Schönbohm, D.J. Bayles, AIM2000; a program to analyze and visualize atoms in molecules, Comput. Chem. 22 (2001) 545–549.
- [25] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc. 105 (1983) 7512–7516.
- [26] B.H. Besler, K.M. Merz Jr., P.A. Kollman, Atomic charges derived from semiempirical methods, J. Comput. Chem. 11 (1990) 431–439.
- [27] T. Sundius, Molvib. A flexible program for force field calculations, J. Mol. Struct. 218 (1990) 321–326.

- [28] P. Ugliengo, MOLDRAW Program, University of Torino, Dipartimento Chimica IFM, Torino, Italy, 1998.
- [29] D. Lamba, G. Fabrizi, B. Matsuhiro, Methyl-α-D-galacturonic acid methyl ester, Acta Cryst. C50 (1994) 1494–1497.
- [30] I.S. Bushmarinov, K.A. Lyssenko, M. Yu Antipin, Atomic energy in the 'Atoms in Molecules' theory and its use for solving chemical problems, Russ. Chem. Rev. 78 (4) (2009) 283–302.
- [31] S.A. Brandán, A. Ben Altabef, E.L. Varetti, Spectroscopic and thermal properties of chromyl acetato and trifluoroacetate, Anal. Asoc. Qca. Arg. 87 (1,2) (1999) 89–96.
- [32] S.A. Brandán, Volume 2: A Structural and Vibrational Investigation into Chromylazide, Acetate, Perchlorate, and Thiocyanate Compounds, Editado by Ken Derham, Springer Science, Business Media B.V., Van Godewijckstraat 30, 3311 GZ Dordrecht, Netherlands, September 2012, 84 pág (ISBN: 978-94-007-5753-0).
- [33] C.D. Contreras, A.E. Ledesma, H.E. Lanús, J. Zinczuck, S.A. Brandán, Hydration of L-tyrosine in aqueous medium. An experimental and theoretical study by mixed quantum mechanical/molecular mechanics methods, Vibrat. Spectr. 57 (2011) 108–115.
- [34] P. Leyton, J. Brunet, V. Silva, C. Paipa, M.V. Castillo, S.A. Brandán, An experimental and theoretical study of L-tryptophan in aqueous solution combining two-layered ONIOM and SCRF calculations, Spectrochim. Acta, Part A 88 (2012) 162–170.
- [35] Karina Guzzetti, Alicia B. Brizuela, Elida Romano, Silvia A. Brandán, Structural and vibrational study on zwitterions of L-threonine in aqueous phase using the FT-Raman and SCRF calculations, J. Mol. Struct. 1045 (2013) 171–179.
- [36] Gerardo R. Argañaraz, Elida Romano, Juan Zinczuk, Silvia A. Brandán, Structural and vibrational study of 2-(8-quinolinyloxy)-acetic acid based on FTIR-Raman spectroscopy and DFT calculations, J. Chem. Chem. Eng. 5 (8) (2011) 747–758.
- [37] E. Romano, M.V. Castillo, J.L. Pergomet, J. Zinczuk, S.A. Brandán, Synthesis, structural and vibrational analysis of (5,7-dichloro-quinolin-8-yloxy) acetic acid, J. Mol. Struct. 1018 (2012) 149–155.
- [38] E. Romano, M.V. Castillo, J.L. Pergomet, J. Zinczuk, S.A. Brandán, Synthesis, structural study and vibrational spectra of (5-chloro-quinolin-8-yloxy) acetic acid, Open J. Synth. Theory Appl. 2 (2013) 8–22.
- [39] E. Romano, J.L. Pergomet, J. Zinczuk, S.A. Brandán, Structural and vibrational properties of some quinoline acetic acid derivatives with potentials biological activities, in: Angelo Basile Edit. "Acetic Acids: Chemical Properties, Production and Applications", Edited Collection, Nova Science Publishers, 2013, pp.75–98.
- [40] E. Lizarraga, E. Romano, A.B. Raschi, P. Leyton, C. Paipa, Atilio.C.N. Catalán, S.A. Brandán, A structural and vibrational study of 9,10-dihydrofukinone combining FTIR, FTRaman and NMR spectroscopies with DFT calculations, J. Mol. Struct. 1048 (2013) 331–338.
- [41] Fernando Chain, Élida Romano, Patricio Leyton, Carolina Paipa, César A.N. Catalán, Mario A. Fortuna, Silvia A. Brandán, An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV-Visible and NMR spectroscopies, J. Mol. Struct. 1065–1066 (2014) 160–169.
- [42] F. Chain, P. Leyton, C. Paipa, M. Fortuna, S.A. Brandán, FT-IR, FT-Raman, UV-Visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-*epi*-sclareol, Spectrochim. Acta 138 (2015) 303–313.