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a b s t r a c t

Cellular Automata (CA) are of interest in several research areas and there are many available

serial implementations of CA. However, there are relatively few studies analyzing in detail

High Performance Computing (HPC) implementations of CA which allow research on large

systems. Here, we present a parallel implementation of a CA with distributed memory based

on MPI. As a first step to insure fast performance, we study several possible serial implemen-

tations of the CA. The simulations are performed in three infrastructures, comparing two dif-

ferent microarchitectures. The parallel code is tested with both Strong and Weak scaling, and

we obtain parallel efficiencies of ∼ 75%–85%, for 64 cores, comparable to efficiencies for other

mature parallel codes in similar architectures. We report communication time and multiple

hardware counters, which reveal that performance losses are related to cache references with

misses, branches and memory access.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Cellular Automata (CA) are models composed of a lattice or grid of cells, where each cell has a given “state” which can change

with time [1]. Most CA have a discrete time evolution, and the interaction among cells and the states of their neighbors define

the next state a given cell is going to take. The two most used neighborhood models are the Von Neumann (4 neighbors for a

2D grid) and Moore (8 neighbors for a 2D grid) neighborhoods [2]. CA models have been used in several areas, from biology to

image processing. They have been used to model pedestrian dynamics [3], ecological systems [4], and water flow [5]. They are

also used as salient region detector [6], and for noise filtering [7]. One of the most popular CA is the John Conways Game of Life

(GoL) [8], which displays complex behavior using simple interaction rules for its evolution.

Most CA implementations are serial, since that is enough to represent many systems of interest, but there is some work im-

plementing CAs in parallel environments, including both distributed memory implementations and Graphics Processing Unit

(GPU) implementations [9–11]. In the work by Rybacki et al. [12] several CA examples were tested (including GoL) on four dif-

ferent machines, with implementations for single core, multi-core and GPU. For GoL with a grid of 1000 × 1000 they obtained a
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throughput of 0.77 steps/s for the serial implementation and 2.0 steps/s for a parallel version in four MPI processes (executed in a

Core 2 Extreme Q9300 2.5 GHz with 8 GB of RAM). Szkoda et al. implements the Frisch–Hasslacher–Pomeau (FHP) CA algorithm

for fluid flow modeling [13], with a CPU version using AVX, SSE, with threads support, and with CUDA (www.nvidia.com/cuda)

for a GPU. They conclude that executing with SSE and 32 threads with four Xeon E5 4650L gives approximately 20% better perfor-

mance that a single Tesla C2075 GPU. Tissera et al. developed a CA model to simulate pedestrian emergency evacuation, EVAC∗
[14], achieving ∼44% of speedup in eight MPI processes versus one MPI process, for a 2D grid of 200 × 125, with a communi-

cation time of approximately 45% of the total time, and concluding that simulated sizes were not large enough to justify the

use of more MPI processes. CA are often used within the Lattice Boltzmann (LB) formalism, for instance to simulate fluid flow

and transport [15]. In the work of Jelinek et al. [16] a large scale parallel LB was implemented in two dimensions using Fortran

and MPI, performing reasonably in weak and strong scaling tests up to ∼40,000 cores. Pohl et al. [17] achieved ∼75% of parallel

efficiency in 512 CPU cores, performing another LB simulation using a total of 370 GB of RAM. In the work of Coakley et al. [18]

Agent-Based Model (ABM) [19] simulations were performed within the Flame framework achieving ∼80% of parallel efficiency

in 432 CPU cores with the Circles benchmark for 500,000 agents. Rauch et al. [20] presented a parallel CA framework for the

evolution of materials microstructure, and obtained a ∼10 × of speedup using 15 SGI Altix ICE 8200 nodes (for 27 million cells).

Oxman et al. [21] developed three parallel implementations of the Game of Life CA: one shared memory implementation and

two distributed memory implementations. They obtained the best results with the two distributed memory implementations.

Despite all the work devoted to High Performance Computing (HPC) implementations of CA, there is a need for a detailed

study of performance using hardware counters, and this is the main objective of this work. In order to achieve this goal, we

optimize a CA for HPC environments with multiple CPUs, using distributed memory (MPI) for fast simulation of large grids, which

could be useful for problems like Reaction–Diffusion systems [22], or the particular case of Cahn–Hilliard equations [23], which

are needed to model nanofoams [24]. We focus on the implementation of the GoL [8] CA, but more complex CA can be easily

implemented using the optimized code developed here. We note that GoL is a data intensive, memory-bound problem, where

parallelization by domain decomposition of the grid [25] is expected to be efficient due to the local nature of the interaction

among cells. Most other CA are amenable to the same parallelization strategy, but their mathematical complexity might shift the

relative importance of memory access, computation, and communication reported here.

We initially develop serial versions of the GoL CA, and then a parallel MPI version. A preliminary study on serial, OpenMP

and MPI versions of GoL was already presented by Millán et al. [26]. Here, those serial and MPI versions have been significantly

improved performing several optimizations, and we use hardware counters to gather information on code performance and

detect bottlenecks. Hardware [27] and software counters allow fine-tuning of HPC applications, with a clear view of improvement

or degradation in performance, and the ability to evaluate the behavior of a code through different events, such as stalls on the

pipeline, branches miss-prediction, CPU migrations, context switching, instructions per cycle, memory access including cache

references with misses, etc. [28–30].

This paper is organized as follows. Section 2 details the CA used in this work and gives a background of hardware counters. The

Hardware Infrastructure is detailed in Section 2.1. The serial and parallel codes are described in Sections 2.2 and 2.3, respectively.

Section 3 is divided in two subsections: in Section 3.1 the results obtained with the serial implementations are discussed, and

in Section 3.2 strong and weak scaling are performed and discussed comparing the obtained results with the efficiency of two

other mature and open source parallel codes: LAMMPS [31] for Molecular Dynamics (MD) [32], and Repast HPC [33] for agent-

based-model (ABM) [19]. Finally, in Section 4 the conclusions and future work are covered.

2. Material and methods

The Game of Life (GoL) CA [8] uses the Moore neighborhood (8 neighbors) [2] and each cell of the grid can take two states,

dead or alive. The evolution of the grid at each time step follows the following rules:

• Any living cell with less than two living neighbors will die in the next iteration (isolation).
• Any living cell with two or three living neighbors will live in the next iteration.
• Any living cell with more than three living neighbors will die in the next iteration (overcrowding).
• Any dead cell with exactly three living neighbors will be alive in the next iteration (reproduction).

We took the CA code developed in Millán et al. [26] as Baseline and implemented optimizations to the single CPU and multi-

core with distributed memory versions (source code and data results are available from http://goo.gl/9X7tcy). GoL is simple to

simulate: if a live cell is represented by a “1”, and a dead cell by a “0”, it only requires the sum of the states of the 8 neighbor cells

to apply the CA rules described above. Therefore, it is not a computationally intensive CA, but results in a memory-bound CA. For

this reason, we focus the analysis in memory related hardware counters. Because we are interested in general CA applications,

for automata with more than two states and given by non-integer values, bit packing [34] is not implemented in our code.

The influence of the initial distribution of alive/dead cells in the evolution of Game of Life was studied by Gibson et al. [35].

They reported on neighborhood activity by counting the number of live cells that each cell has, with an initial distribution

probability from 0% to 100%. In the range below 5% and above 80% they find that there is little to no activity after 1000 steps of

simulation. Between 20% and 60% activity stays near its maximum value. Therefore, we perform all of our simulations with an

initial distribution of ∼50% of live cells to reach this maximum activity level.

Hardware counters are present in CPUs as a set of registers that count events that occur in the CPU [27]. These events reflect

how the code was designed, compiled and executed in the CPU. This relation can in turn be used to perform optimizations on the

http://www.nvidia.com/cuda
http://goo.gl/9X7tcy
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source code. Browne et al. [27] discussed discrepancies in application performance and near peak performance in HPC machines,

and to clarify them proposed to analyze processor performance metrics. Tinetti et al. [36] studied the use of hardware counters

for different compiler optimizations, and they concluded that the causes of degradation in performance can be understood by

using hardware counters.

Profiling of applications with hardware counters can be performed with several tools: Oprofile (oprofile.sf.net), vtune [37],

perf_events [28], likwid [38] and PAPI [27]. In this work we use extensively perf_events (from now on perf), due to several reasons:

1. It is easily available because is included with the source code of the Linux kernel starting from version 2.6.31.

2. The user space tool perf provides a complete interface to hardware counters [28].

3. It is easy to use, because with a single command it can execute a number N of simulations, and outputs the average and

standard deviation values for the selected counters

4. It provides hardware (cache misses, branches misses and CPU-cycles) and software events (such as context switching, page

faults and CPU migrations).

5. Perf supports multiplexing of events, if the user specifies more events to count than available hardware counters, perf mul-

tiplexes the use of the hardware counters and gives each event a time slice to record their occurrences. At the end of the

execution, perf shows the percentage of time each event was recorded, and scales the final count with Eq. (1) [39].

We notice that multiplexing of events can be misleading, when one event is being recorded, another important event could

occur at the same time window and it will not be counted by perf. We do not use multiplexing of events here, but count each

event 100% of the time.

f inal_count = raw_count ∗ time_enabled

time_running
(1)

The hardware counters of interest in this case include cache references and misses, L1 data cache loads and misses, Last Level

Cache (LLC) loads and misses, and branches with misses [30]. Optimizing the access to the Cache and lowering the amount of

cache misses, generally provides a good starting point for optimizing code. Branches take an important role in code optimization:

CPUs use a pipeline [29] to execute instructions, and when a branch is about to execute, the processor does not necessarily know

which path the branch will follow (for example, in if conditional structures), until the instructions are executed. A module in the

CPU known as Branch Predictor [29] is in charge of guessing which path branches will follow, and fill the pipeline with instructions

from that path. If the wrong prediction was made (branch miss), the instructions executed are discarded and the pipeline has to

be filled with the correct instructions from the path not taken previously. Therefore, lowering the number of branches present in

a code, and the number of branch misses, will contribute to performance optimization.

In the next sections we introduce the main characteristics of hardware and software employed to execute the simulations,

and hardware details for each microarchitectures are provided.

2.1. Hardware details and infrastructure

We executed the MPI and Serial simulations in three different infrastructures:

• Mini-cluster FX-8350 with 3 nodes (denoted as “FX-8350”), each equipped with: 4 GHz AMD FX-8350 (Piledriver microarchi-

tecture) × 8 with 16 GB of DDR3 RAM memory. Slackware Linux 14.1 64 bit operating system with kernel 3.10.5, OpenMPI

1.8.1 and GCC 4.8.1.
• Cluster ICB-ITIC (denoted as “ICB-ITIC”) at the Universidad Nacional de Cuyo: two nodes with AMD Opteron 6272 (Bulldozer

microarchitecture) CPU, with 64 CPU cores at 2.1 GHz, 128 GB of RAM and dual Gigabit Ethernet in each node. The Linux

distribution installed in the cluster is Rocks Cluster 5.5, kernel 3.10.46, with OpenMPI 1.8.1 and GCC 4.8.1.
• Cluster Mendieta at the Universidad Nacional de Cordoba (denoted as “Mendieta”): 8 nodes with two 2.7 GHz Intel Xeon

E5-2680 (Sandy Bridge-E microarchitecture) CPU with 32 GB of memory per node. The connection between nodes is at 20

Gbps InfiniBand DDR, with the switch using star topology. With Linux CentOS 6.4, kernel 2.6.32-358, OpenMPI 1.8.1 and GCC

4.8.2.

There are different processors in the different clusters used in our study: Xeon E5-2680, AMD Opteron 6272, and AMD FX-

8350. A brief description of their architecture is given below. The Intel Xeon E5-2680 has 8 cores, each of them with two threads

(Hyper Threading Technology), with a total of 16 threads per socket, and supports a maximum of two sockets interconnect by the

QuickPath Technology [40]. However, Hyperthreading is disabled in “Mendieta”. It has three cache levels: the first level (L1) has

32KB instruction cache and 32KB data cache in each core, the second level (L2) has 256 KB shared instructions and data cache

in each core, and finally an instruction and data Last Level Cache (LLC or L3) of 20 MB shared between all cores. It supports four

DDR3 memory channels per socket. For a complete description of features of this processor see [40].

The AMD processors used in this work are based on two AMD microarchitectures: the AMD 6272 Opteron CPU is based on

Bulldozer (also called AMD Family 15h) microarchitecture, and the AMD FX-8350 in an incremental update of Bulldozer, the

Piledriver microarchitecture [41]. These two microarchitectures consist of “compute units”. The Operating System (OS) sees each

compute unit as two different CPU cores. Each compute unit shares one floating point unit (FP), one first level instruction cache

(L1 icache or IC) with 64 KB of memory, and one second level data cache (L2) with 2 MB. Within the compute unit there are two

http://oprofile.sf.net
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integer cores with a dedicated x86 execution unit and a first level data cache (L1 dcache) with 16 KB. Also, a third level data cache

(LLC or L3) with 8 MB is shared between all compute units present in the socket.

In the case of the FX-8350 there are four compute units (8 cores), and in the Opteron 6272 there are two modules of four

Bulldozer compute units each one (with two cores in each compute unit), with a total of 16 cores (as seen by the OS) in a single

socket. For a complete description of the architecture of AMD processors Family 15h see [41].

Regarding hardware counters, the AMD Family 15h has two types of counters: the first set is included inside the CPU core

(six performance event counters, Sections 2.7.1 and 3.15 from AMD BKDG [41]), and the second set is in the NorthBridge (NB, four

performance counters, Sections 2.7.2 and 3.16 from AMD BKDG [41]). This NB is part of the processor, not to be confused with

the old configuration of the Chipset, Northbridge and Southbridge, which was a component of the motherboard and it was located

outside the processor.

The list of supported hardware events is available from AMD [41] and from Intel [42]. It is important to note that the supported

events vary for different processors and manufacturers. The events are identified by an event code number (in hexadecimal) and

a mask (hexadecimal), for instance, the event L2_CACHE_MISS (for AMD Family 15h) has a code of 0x7e and five possible mask

values, 0x01 to identified Instructions fills, 0x02 for Data fills, etc. All this information is available from the AMD documentation

[41]. The events included in the cores of the CPU can be passed to the perf command line tool with the following syntax: # perf

stat -e cpu/event=0x7e,umask=0x01/ command_to_execute. To execute events present in the Northbridge, the “cpu” keyword has

to be replaced with “amd_nb”. For instance, to measure the L3_CACHE_MISSES (code event 0x4e1) for any core (umask 0xf0) the

following syntax can be used: # perf stat -e amd_nb/event=0x4e1,umask=0xf0/ command_to_execute.

The output of the command showevtinfo from the libpfm application (perfmon2.sf.net) can be used to see the entire list of

hardware events supported by the system. The following is a list of the hardware events we monitored in the AMD Opteron 6272

CPU with partial information extracted from the showevtinfo command:

• DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRIDGE with event code 0x42 and the followings umask: 0x01 (Fill with good

data) and 0x0f (All sub-events selected).
• DATA_CACHE_REFILLS_FROM_NORTHBRIDGE with event code 0x43.
• REQUESTS_TO_L2 with event code 0x7d and the umask 0x5f (All sub-events selected).
• L2_CACHE_MISS with event code 0x7e and the umask 0x17 (All sub-events selected).

The events monitored for the NB were the following:

• CPU_IO_REQUESTS_TO_MEMORY_IO with event code 0xe9 and the followings umask: 0x98 (Local CPU to Remote Memory)

and 0xa8 (Local CPU to Local Memory).
• READ_REQUEST_TO_L3_CACHE with event code 0x4e0 and umask 0xf7 (count any read request and measure on any core).
• L3_CACHE_MISSES with event code 0x4e1 and umask 0xf7 (count any read request and measure on any core).

These hardware counters will be used in Section 3.2.

2.2. Serial code implementations

We develop four serial implementations: Baseline, Swap, One_ grid and One_ grid_ch. The code from Millán et al. [26] is used

here as the Baseline implementation. It can be considered a naive implementation which was not optimized, except from the op-

timizations provided by the compiler (-O3). The CA is implemented with periodic boundaries and neighbors are controlled with

if-like statements (four lines of code) that are executed in each iteration inside each cell, and return the proper (i,j) coordinates.

The second implementation is called Swap. The only change in this implementation is that it switches the arrays containing the

next state with the current state. The periodic boundaries are controlled the same way as in the Baseline implementation.

The third implementation, called One_ grid, uses a single grid or lattice to carry out the evolution of the CA: the current and

next states are stored on the same grid. This implementation also adds ghost rows and columns [43], also called halo. By using the

halo, the four if-like statements to control the periodic boundaries present in the Baseline implementation are no longer needed

in the One_ grid implementation. Neighbor searches can be optimized with several strategies. For instance, bit operations where

used to find the nearest neighbors for a CA running in a hypercube [44]. In the One_ grid code, the grid is incremented by 3 in

each direction (N + 3) × (M + 3), as shown in Fig. 1 for two iterations with this optimization. The result of the evolution of a cell

is stored in the diagonal left-up cell (cell 1′ in the first iteration, second panel in Fig. 1). The cells of the grid are read from top

to bottom and left to right. When reading the states of the neighborhood of a cell, the diagonal up-left cell is only needed by the

current cell. When all the cells in the first iteration are computed, the next iteration needs to start from the shifted grid stored in

the previous iteration, but changing the starting point and the direction. The second iteration starts from the bottom right corner

(cell 9′ in Fig. 1, iteration 2) and the cells are read from bottom to top and from right to left. The results from the second iteration

are stored in the diagonal right-down cell.

The last serial implementation, One_ grid_ch, is the same as One_ grid, but uses the char data type instead of int. This gives 4

times less memory use. We are interested in complex CA with more than 2 states per cell, and for this reason we do not use bit

packing [21,34].

http://perfmon2.sf.net
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Fig. 1. One_ grid code optimization. The original grid size is 3 × 3 (white background), three rows and columns are added to account for ghost neighbor (dark

gray background) and the displacement needed to calculate the result of the next state (light gray background).

Fig. 2. Performance of CPU serial code implementations for different architectures, measured as wall clock time, execution of 1000 iterations for a grid size

N × N.
2.3. MPI code implementations

Three parallel implementations were developed: Baseline, One_ grid and One_ grid_ch. The Baseline MPI code used here in-

cludes some optimizations respect to the one presented in Millán et al. [26]. The code uses domain decomposition: each MPI

process receives a block of the grid to evolve, then communicates asynchronously the border rows and columns to neighbor pro-

cesses and starts evolving the center cells. When the MPI process finishes this, it controls that the border rows and columns were

received from neighbor processes and then evolves the borders. Communications with neighbors are overlapped with processing

of the cells from the center of the grid. The second parallel implementation, denoted as One_ grid, uses the same concept as the

serial One_ grid implementation, with a single grid or lattice used to store the CA. Another difference with the Baseline MPI code

is that this code cannot overlap communication with compute time. The third MPI implementation is similar to the second one,

but using the char data type instead of the int data type (similarly as One_ grid_ch from the serial code).

In previous work by Millán et al. [26] we tested a naive shared memory implementation of the Game of Life with OpenMP.

We did not obtain positive results when comparing the performance of the shared memory implementation with a distributed

memory implementation (MPI). Oxman et al. [21] conclude that the shared memory implementation of the Game of Life CA is

easy to develop but does not scale well as more processors are added. They obtained their best results with a distributed memory

implementation. This agrees with the preliminary results from [26], supporting the development of our parallel implementation

with a distributed memory scheme.

3. Results and discussion

In this section we discuss the results obtained with the serial (Section 3.1) and parallel (Section 3.2) implementations. Each

result from the CA simulations presented here is an average of ten simulations. Standard deviation is small, generally less than

1%, and for this reason, the error bars are not included in the figures. Additional details are given in the Supplementary Material.

3.1. Serial CPU implementations

The four serial implementations (Baseline, Swap, One_ grid and One_ grid_ch) are executed for four different square grid sizes,

N × N, with N = 1024, 2048, 4096 and 8192. All implementations are compiled with -O3 compiler optimizations. In this section

we name the clusters by their microarchitecture: FX-8350 is denoted as Piledriver, ICB-ITIC as Bulldozer and Mendieta as Sandy

Bridge-E. Fig. 2 shows the performance of the CPU serial code in these three infrastructures. Wall clock times (in seconds) are

normalized with the total number of cells for each value of N, such that good performance would give a roughly constant nor-

malized time as N increases.

The Bulldozer CPU has the lowest performance, which is expected since this CPU runs at the lowest clock rate, 2.1 GHz. The

performances of the Piledriver and the Sandy Bridge-E microarchitectures are similar, even when the AMD (Piledriver) processor
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Fig. 3. (A) Cache references with misses, (B) Branches with misses, (C) L1 data cache loads with misses, and (D) Last Level Cache (LLC) with misses. Analyzed

with perf for two different grid sizes, N = 8192 and N = 4096 in the three microarchitectures. Implementations: a = Baseline, b = Swap, c = One_ grid and d =
One_ grid_ch.
runs at 4 GHz and the Intel (Sandy Bridge-E) processor runs at 2.7 GHz. The reason for this result could be the number of cache

references (Fig. 3A) is much lower for the Sandy Bridge-E CPU than for the Piledriver processor. The same behavior can be seen

for the Last Level Cache references (LLC) in Fig. 3D. The similarities in microarchitecture (Piledriver and Bulldozer) between the

two AMD processors can be seen in the results from the Cache references, Branches, L1 data cache loads and LLC cache loads

figures (from Fig. 3A–D).

The speedup between the Baseline and the Swap implementations is minor, approximately between a 1.12 × and 1.16 ×. The

best serial CPU implementation is One_ grid, which gives a ∼2.2 × speedup versus the Baseline code for N = 8192 in Piledriver. The

last implementation (One_ grid_ch) uses the char data type, using 4 times less memory than the One_ grid implementation which

uses the int data type. However, this decrease in memory use does no benefit the execution time of the CA compared with the

One_ grid implementation. This is due to Partial-Register Writes (see Section 2.19 and 4.8 of [45]). When memory footprint is not

an issue, AMD recommends not to use data types of 16-bit or 8-bit in 32-bit or 64-bit software. The One_ grid_ch implementation,

in the best case, loses around a 12% in performance versus One_ grid, and in the worst case loses about 40% in performance.

After presenting the detailed behavior of the serial implementations, we can now show the behavior of the parallel imple-

mentations.
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Table 1

Strong scaling in the ICB-ITIC cluster for N = 8192 and 1000 steps.

Time in seconds and speedup for N MPI processes versus 1 MPI

process.

MPI Baseline One_ grid Speedup Speedup

processes Baseline One_ grid

1 549 443 1 1

2 293 234 1.8 1.8

4 159 129 3.4 3.4

8 93 77 5.8 5.7

16 63 51 8.6 8.6

32 45 38 11.9 11.5

64 51 41 10.6 10.5

Table 2

Strong scaling in the Mendieta cluster for N = 8192 and 1000

steps. Time in seconds and speedup for N MPI processes versus

1 MPI process.

MPI Baseline One_ grid Speedup Speedup

processes Baseline One_ grid

1 464 411 1 1

2 241 212 1.9 1.9

4 127 113 3.6 3.6

8 77 63 6 6.4

16 51 39 9 10.3

32 40 29 11.3 13.9

64 44 25 10.4 16.1
3.2. Parallel MPI implementations

Since we are interested in general CA, and the serial One_ grid_ch (with the char data type) did not have good performance, the

parallel One_ grid_char implementation will not be included in the parallel results. Strong and Weak scaling tests were performed

only for the parallel Baseline and One_ grid implementations. In strong scaling, the size of the grid is fixed and the number of MPI

processes is increased. In weak scaling, each MPI process receives the same amount of data, increasing the total size of the grid

each time a new processor is added to the simulation. In order to be consistent, we always use the same code and only change the

number of MPI processes (NP) as needed. This means that, when we report results for NP = 1, we are still using a parallel code,

not a serial code from above. The execution times for the One_ grid parallel code with NP = 1 are within ∼8% of the One_ grid

serial code execution times.

3.2.1. Strong scaling

We perform a strong scaling with N = 8192 during 1000 steps in the ICB-ITIC and Mendieta clusters with two parallel imple-

mentations, Baseline and One_ grid (Tables 1 and 2). To include MPI initialization time we compare the MPI code with NP = (2, 4,

8, 16, 32 and 64) versus the same MPI code with NP = 1. In the ICB-ITIC cluster, the best result is obtained running the one_grid

implementation with 32 MPI processes with ∼11 × of speedup. For the Mendieta cluster, the best performance is obtained with

64 cores for the One_ grid implementation, with a speedup of ∼16 ×. These speed-ups are clearly smaller from what would be

expected for an efficient code. The main reason for the poor performance is that this is a relatively small grid for strong scaling

of this problem, but a much larger grid would have increased significantly the cost of the many tests carried out with detailed

hardware counters. Future testing would need to include such large grids.

Table 3 shows the speedups of the One_ grid implementation versus the Baseline implementation for the strong scaling shown

in Tables 1 and 2, with N = 8192 and 1000 steps. The One_ grid implementation in the Mendieta cluster obtains greater speedups

than in the ICB-ITIC cluster with NP > 16, a behavior also present in the Weak scaling performed and discussed in the next

subsection. To compare the obtained speedups of our code in the strong scaling regime to a mature parallel code, we selected the

Molecular Dynamics (MD) code LAMMPS [31] (also used in the next subsection). We executed the Lennard–Jones potential (LJ)

benchmark [46] with 864,000 atoms and 5000 steps in the ICB-ITIC cluster, for NP = 64, and achieve ∼45 × of speedup with a

parallel efficiency of ∼70 %. Our GoL implementation for a grid of 64,000 × 64,000 and 1000 steps achieves a ∼56 × of speedup

with ∼87 % efficiency.

In the strong scaling performed in the work of Jelinek et al. [16] for a Lattice Boltzmann (LB) simulation they achieve ∼30%

of efficiency running in 12 CPU cores in one node and the same efficiency in 48 CPU cores in four nodes. If they use only 2

CPU cores per node, they obtain a perfect efficiency (100%) up to 3072 CPU cores. The simulations were executed in the Kraken

cluster, where each node has two six-core AMD Opteron “Istanbul” 2.6 GHz processor, located at Oak Ridge National Laboratory.

In our tests in the ICB-ITIC and Mendieta clusters we obtain, for 32 processes, ∼35% and ∼43% parallel efficiency, respectively. It
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Table 3

Speedup of One_ grid versus Baseline

implementation from execution times

shown in Tables 1 and 2, with N = 8192

and 1000 steps.

MPI ICB-ITIC Mendieta

processes speedup speedup

1 1.24 1.13

2 1.25 1.14

4 1.23 1.12

8 1.21 1.22

16 1.24 1.31

32 1.18 1.38

64 1.24 1.76

Fig. 4. Strong scaling (increasing number of processes while keeping the same system size) in the ICB-ITIC cluster for N = 8192. Number of events: (A) Branches

with misses, (B) Cache references with misses, (C) L1 data cache loads with misses, and (D) Last Level Cache (LLC) with misses, versus Number of MPI processes

(NP). Analyzed with perf for two implementations: Baseline and One_ grid.
is important to note that the LB model is more complex than the Game of Life and requires a high memory bandwidth to perform

well, which is why the LB simulation obtained a perfect efficiency only when using two CPU cores per node [16] and a lower

efficiency when using all the available CPU cores per node.

Four groups of hardware events were tested in the ICB-ITIC cluster: branches with misses, cache references with misses, L1

data cache loads with misses and LLC loads with misses (Fig. 4A–D). Perf opens a file descriptor for each event and each child

process of the mpirun command. Then, it counts the events of each MPI process individually, and finally reports the total sum of

the events counted [39].

Fig. 4A–D all show a smooth increase in cache access and misses for all cache levels, with a much smaller increase for the

One_ grid MPI implementation. The fraction of misses is typically also much smaller for that implementation, supporting the

better code performance.

We also perform an analysis of communication time using the profiler mpiP [47]. We tested the CA using half of the available

RAM memory in one node of the ICB-ITIC cluster (∼64 GB) with N = 128,000 during 1000 steps, with a processor grid of 8 ×
8 (64 cores). The communication time of the evolution of the CA is ∼21 % of the total simulation time (without output). For a

similar simulation, only reducing the memory size by four (N = 64,000, ∼16 GB), the communication time for evolution of the CA

is ∼8.5% of the total simulation time. Changing the processor topology to 4 × 8 (32 cores) and performing the same two tests, the

communication times were ∼4% and ∼3 % respectively, indicating that the domain decomposition scheme is working reasonably

well.
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Fig. 5. Efficiency in weak scaling (increasing system size proportionally to number of processes) for three HPC codes: CA (this work), LJ LAMMPS [46] and Repast

HPC [33]. See text for simulation details.
3.2.2. Weak scaling

We performed weak scaling calculations and compared the obtained results with two mature parallel codes, LAMMPS [31]

and Repast HPC [33]. LAMMPS [31] is a Molecular Dynamics (MD) [32] code optimized to run in HPC clusters with up to hun-

dreds of thousands CPU cores. We executed LAMMPS [31] using its Lennard–Jones potential (LJ) benchmark [46], with 32,000

atoms/processor. The LJ interaction among atoms is short-ranged, allowing a domain decomposition which should have an ef-

ficient parallel scaling. Regarding Repast HPC [33], we tested the example simulation “Zombie” included with the source code,

which also includes “short-range” interactions which should scale well in a parallel environment.

Fig. 5 shows in the left panel the Game of Life CA One_ grid implementation with a grid of 3000 × 2000 for each MPI process

during 500 steps. This grid size (∼22 MB) was selected because it occupies more than the size of the L3 + L2 cache of the AMD

Opteron 6272 and the Intel Xeon E5-2680. Bigger, square sized grids, like 4096 × 4096 (∼64 MB) would have taken more time to

compute and the cost for the simulation for all the hardware counters tested in this section would have increased considerably.

Output and fill time is not included in the simulation, only evolve time with communication between processes. It can be seen that

for more than 32 processes the efficiency decays considerably for the ICB-ITIC cluster, but not for the Mendieta cluster.

Benchmark results from the LAMMPS web page are also shown in the same figure, on the right panel. They include our results

in both ICB-ITIC and Mendieta clusters and other benchmarks from LAMMPS [46] which were executed in a Cray XT 5 cluster

(1920 AMD Opteron 2.4GHz processors located in Sandia National Laboratory, SNL) and a Dell T7500 dual hex-core desktop (12

cores Xeon 3.47GHz at SNL). Also shown in Fig. 5 right panel are the results from the Repast HPC [33] code. Both mature codes

show behavior which is similar to the behavior of our CA code, including the decay in performance in the ICB-ITIC cluster for

more than 32 processes. These results strongly suggest that our parallel domain decomposition approach is reasonably efficient,

given that compares well with other mature codes, and that the sudden drop in efficiency beyond 32 cores is hardware-related.

Our domain decomposition implementation is similar at the performed in the work of Jelinek et al. [16]. The results of the weak

scaling in [16] (executed in the Kraken cluster) obtains ∼80% of parallel efficiency for 144 CPU cores (compared with the parallel

time in 12 CPU cores, not the serial time in a single CPU core). We obtain ∼86% parallel efficiency for 64 MPI processes in the

Mendieta cluster, when comparing to a single core, and ∼87% parallel efficiency, when comparing to 8 cores.

In order to clarify the origin of the performance drop, which might also be expected in the Piledriver architecture, we carried

out tests in the FX-8350 mini-cluster. Two configurations for the FX-8350 mini-cluster can be seen in Fig. 5 for the mpirun

command. We change the affinity to the CPUs of the MPI processes. Processor affinity allows the execution of a process or thread

in a given CPU core, forcing the process scheduler of the OS to forbid migration of the process to another CPU core, and keeping

cache coherence. The default configuration (v1 in Fig. 5) is to bind each MPI process to a specific CPU core. The MPI processes are

executed in CPU cores of the same compute unit, sharing resources between them, even when other CPU cores in other compute

unit are free. In the second configuration (v2 in Fig. 5) we disable the bind to core parameter, therefore the Linux Kernel is in

charge of selecting in which cores the MPI processes are going to be executed. In this configuration, the Linux kernel executes

the MPI processes using one CPU core per compute unit (when possible). For this reason, the v2 configuration performs better

for less than 12 cores. For instance, executing 8 MPI processes with the v1 configuration, the 8 processes are executed using only

one node of the mini-cluster; with the v2 configuration, the 8 processes are executed using 2 nodes, with 4 CPU cores without

sharing compute units, in each node, given better performance at the cost of “wasting” CPU cores.

The performance difference of the CA in the ICB-ITIC cluster compared with the Mendieta cluster was not expected, at least

not within this CA which uses int data types because the Bulldozer microarchitecture has two Integer units per compute unit. In

the case of the LAMMPS code, which uses double floating point operations, the decrease could be because each compute unit has

only one floating point (FP) unit, and two cores share the same FP unit. When the weak scaling it is executed with 32 processes
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Fig. 6. Weak scaling in ICB-ITIC cluster, with 3000 × 2000 grid, 500 steps. (A) L1 data cache loads with misses, (B) L2 cache loads (event 0x7d) with misses

(event 0x7e), (C) L3 cache loads (event 0x4e0) with misses (event 0x4e1), (D) branches with misses, (E) request of CPU to remote and local memory, event 0xe9

with umask (0x98,0xa8), (F) data cache refills from NB (event 0x43) and L2 or NB (event 0x42).
or less, only one integer unit is being used per compute unit and performance begins to degrade when the two integer cores

inside each compute unit are being used, with more than 32 MPI processes. The same behavior was reported in the previous

subsection, where the strong scaling presented a smaller speedup in the ICB-ITIC cluster (Bulldozer) than in the Mendieta cluster

for NP > 16.

In addition to sharing FP units, when two MPI processes are being executed in the same compute unit, they also share the

following modules: L1 instruction cache, instruction fetch, instruction decoder, branch predictor, dispatch unit and L2 data cache. This

suggests that the performance problem could be in the pipeline. To investigate this drop of performance, when more of 32 cores

are used in the AMD Opteron 6272 CPU running the CA, we executed weak scaling simulations using perf with hardware counters

extracted from the AMD BIOS and Kernel Developers Guide (BKDG) for AMD Family 15h [41].

An event increase of several hardware counters after 32 processes can be seen in Fig. 6A–F. A load miss in the L1 data cache

leads to an increase in L2 requests, which can produce a miss in L2 if the data is not present in the cache. An L2 data miss causes

a L3 request of data, this behavior can be observed from 32 to 40 processes, the number of L1 data cache misses increases ∼7

times (Fig. 6A). The L2 cache loads (REQUESTS_TO_L2, event 0x7d, umask 0x5f) have a 10% increase from 32 to 40 processes, and

the L2 misses (L2_CACHE_MISS, event 0x7e, umask 0x17) scale linearly up to 32 processes, with a 5% increase for 40 processes

(Fig. 6B). The L3 related events are shown in Fig. 6C. The event READ_REQUEST_TO_L3_CACHE (L3 loads, event 0x4e0, umask

0xf7) scales linearly up to 32 processes, after that, it increases ∼30% from 32 to 40 processes. The event L3_CACHE_MISSES

with code 0x4e1 and umask 0xf7 scales linearly. The branches with misses have a linear scaling up to 32 processes, for 40

processes there is a ∼12% increase in branch references (Fig. 6D), the misses also show a small increase after 32 processes. The

event CPU_IO_REQUESTS_TO_MEMORY_IO counts the request of data in a memory in the local processor or data from remote

memories, connected to another socket. In Fig. 6E it can be observed this event with code 0xe9 and umask 0x98 (Local CPU to

Remote Memory). After 24 processes there is an increase in the number of events, the maximum value is for 40 processes. The

same event but with umask 0xa8 (Local CPU to Local Memory) shows an increase of events from 16 processes to 64 processes.
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The last two events are shown in Fig. 6F: DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRIDGE with code 0x42 (umask 0x0f, all

sub-events selected) and DATA_CACHE_REFILLS_FROM_NORTHBRIDGE (system memory or another cache) with code 0x43. The

refills from the NB scale linearly. The refills from L2 or NB scale linearly up to 32 processes, from 32 to 40 processes the number

of events counted increases ∼38%.

The L1 data cache load misses are increasing after 32 processes, which would indicate a loss in performance in the weak

scaling for more than 32 processes in the ICB-ITIC cluster. The misses only represent 1% of the cache references, which will

not explain by itself the decrease in performance observed in the weak scaling. The L2 and L3 requests also increase after 32

processes, a reasonable behavior due to the L1 data cache misses. One of the reasons for this performance loss could be the size

of the L1 data cache in the Opteron 6272 which is 16 KB, the L1 in the Xeon E5-2680 has 32 KB. Another possible problem could

be the decoder phase in the pipeline of the Bulldozer microarchitecture, which is shared between the two integer cores inside

the compute unit. Further tests are needed to investigate the performance drop in both Weak and Strong scaling in the Bulldozer

microarchitecture.

The weak scaling communication time was also tested with the MPI profiler mpiP [47]. For two MPI processes, the communi-

cation time for the evolution of the CA was around a 0.5% (without output). With 64 MPI processes, the communication time is

less than 6%.

We also tested the CA using the float data type for storing the states in the lattice, the behavior of the weak scaling simulations

was the same that using the int data type, after 32 MPI processes the efficiency decays considerably in the ICB-ITIC cluster, but not

in the Mendieta cluster. This is due to the fact that a single floating point unit is present in each compute unit, also the pipeline

stages are shared among the running processes in the same compute unit, which will explain the difference in performance

compared with the Mendieta cluster.

3.3. Summary of results

In order to understand and improve CA implementations, we first test various serial implementations. Based on this testing,

we chose a One_ grid implementation to perform the evolution of the CA, though commonly two grids are used, one for the

current state and one for storing the next state. Different data types, (char and int), are also tested. Based on our best serial

implementation we build a parallel CA implementation using MPI for domain decomposition of large domains.

We use hardware counters to show decrease or improvement in performance for modifications with respect to a Baseline

serial implementation. We monitor cache references and misses in L1 and LLC, and also branches with misses. For instance,

using the One_ grid approach improves the performance of the baseline code by ∼2.2 ×, because using half the memory gives a

more efficient use of all cache types, reducing in most cases cache references and decreasing cache misses in general.

The timing of our parallel One_ grid implementation for a single process is within 8% of the serial One_ grid implementation.

Weak and strong scaling are carried out, and the performance of our code compares well with the performance of other HPC

CA codes [16,20], and also with the performance of two mature HPC codes: the Molecular Dynamics (MD) [32] code LAMMPS

[31]; and the Agent-Based-Model (ABM) [19] simulator Repast HPC [33]. MPI calls typically account for less than ∼5% of the total

time, reaching ∼20% for the largest grid which uses ∼64 GB RAM, indicating that our domain decomposition approach works

reasonably well. Our parallel efficiency is within the obtained by Jelinek et al. [16], it is important to note that the LB simulations

performed in [16] are more compute and memory bounded than ours. We note that there is a LB code [10], which performs well

in hybrid CPU-GPU clusters.

A decrease in performance was observed for more than 32 cores when executing the CA, LAMMPS and REPAST in the cluster

ICB-ITIC (AMD Opteron 6272 processors). This problem was not seen in the Mendieta cluster (Intel Xeon E5 2680 processors), and

the fact that the performance drop was observed for three different parallel codes strongly suggest that is related to hardware

limitations. It is important to note that the Mendieta cluster has HyperThreading disabled, giving improved performance. One

possible reason for this performance loss is the large increase in L1 data cache load misses we observed, but there could be other

contributing reasons. Preliminary tests in other AMD Opteron clusters show similar results, but more tests are needed to further

clarify the origin of this problem. For instance, performing more tests in the Bulldozer or Piledriver microarchitectures using

only two cores in the same compute unit, versus two cores in different compute units could reveal in which phase of the shared

(between the two cores) pipeline the execution is stalling. Initial results in the Bulldozer and Piledriver microarchitectures, using

one core of each compute unit does show improvements in the performance of the CA. Hardware counters could give us a clear

feedback to find the performance problem in these microarchitectures, and then a software modification could be implemented

to solve this issue, like software prefetch. The use of inlined PAPI [27] calls could also be used to obtain more detailed info on

particular sections of the code, helping to find performance issues and hopefully improve the code for general HPC environments.

4. Conclusions

Parallel implementations of Cellular Automata (CA) scaling well in High Performance Computing (HPC) environments would

allow the study of large systems of interest in multiple scenarios, from biology to chemistry and other sciences. The well-known

“Game of Life” (GoL) CA was used with a 2D grid, resulting in a memory-bound problem. Several hardware counters are used to

quantify performance. Weak and Strong scaling of the CA displays reasonably good scaling, comparable to other HPC applications

also using MPI for domain decomposition. The code is written in C and uses standard MPI libraries, with GCC and OpenMPI for
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compilation; is free and open source (http://goo.gl/9X7tcy), and could be easily converted to work with more complex automata

rules.

A CA implementation for modern HPC clusters would need to be flexible enough to run in various architectures, including

CPU cores, GPUs, FPGAs, MIPS, etc. Our next step would be to use profiling tools to improve our CA GPU code, and then integrate

that code with the MPI implementation shown here, in order to obtain a Multi-GPU and Multi-node implementation of the CA,

which would be efficient in a truly hybrid Multi-GPU/Multi-CPU environment, dividing the CA grid (possibly in different size-

chunks) and evolving the system using both GPU and CPU strengths. Future software development taking advantage of clusters

with hardware accelerators will allow the exploration of novel problems in basic and applied science.
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