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ABSTRACT

We present a numerical code intended for computing all stages of formation and
evolution of giant planets in the frame of the core instability mechanism. This code
is a non - trivial adaption of stellar binary evolution code and is based on a standard
Henyey technique. In order to investigate the performance of this code we applied it
to the computation of the formation and evolution of a Jupiter mass object from a
half earth core mass to ages in excess of the age of the Universe.

We also present a new smoothed linear interpolation algorithm devised especially
with the purpose of circumventing some problems found when some physical data (e.g.
opacities, equation of state, etc.) is introduced in an implicit algorithm like the one
employed in this work.
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1 INTRODUCTION

For a long time, the only gas giant planets known were
the four ones in our own solar system. They provided
the unique observational evidence to constraint theories
of giant planet formation and evolution. However, this
situation changed drastically during the last decade, be-
cause of the discovery of more than 100 planets orbiting
around main sequence stars (see for example the web
site http://www.obspm.fr/planets), revealing that gas giant
planets are very common, at least in the solar neighborhood.

It is commonly assumed that gaseous giant planets have
been formed by the core instability mechanism (Mizuno
1980), which states that a solid core is formed from the ac-
cretion of planetesimals in the protoplanetary disk, followed
by the capture of a massive envelope from the gaseous com-
ponent of the protoplanetary nebula. The whole process may
be divided in some characteristic stages
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(i) The accretion of solid planetesimals results in the
growth of a solid core with several Earth masses. This solid
core is surrounded by a tenuous gaseous envelope of very
low mass.

(ii) As the solid core grows, gas is accreted at an increas-
ing rate. At some time, gas accretion rate supersedes the
accretion rate of solids.

(iii) When the mass of the envelope is comparable to the
mass of the solid core, a runaway gas accretion starts. During
this stage, due to the exhaustion of solids in the feeding zone
of the planet, very little accretion of planetesimals occurs.

(iv) The accretion of gas is terminated, because of dissi-
pation or tidal truncation of the nebula.

(v) The planet cools and contracts at constant mass, to
its present state.

The characteristic time-scales involved in the various
stages described above are very different. Steps (i) and
(ii) can last for some My, but during the runaway gas
accretion, a gas giant can accrete one Jupiter mass of gas
during few 103 y. During this stage, the luminosity can
rise to 10−3 − 10−4L� (Bodenheimer and Pollack 1986), in
part due to the release of gravitational energy forced by
the violent initial contraction of the envelope, during the
first moments after the termination of the accretion process.

Although the core instability model is conceptually
very simple, modeling it accurately is, on the contrary, diffi-
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cult, and usually, some particular simplifying assumptions,
for each one of the different stages, have to be adopted
(Bodenheimer, Hubickyj & Lissauer 2000).

At present, very few codes capable to model the for-
mation of giant planets, incorporating the relevant physics
involved in the core instability model, exist. We can mention
here the ones developed by Bodenheimer and Pollack (1986)
(with many further improvements), and by Wuchterl (1990).

It is the aim of the present work to describe a numerical
code devised for computing the formation and evolution of
giant planets in the frame of the core instability model. This
code is capable to compute all the stages of the formation;
subsequent detachment form the protoplanetary nebula and
its final contraction and cooling. This code is a non - triv-
ial adaption of a Henyey code tailored for computing stellar
evolution in close binary systems with mass transfer (Ben-
venuto & De Vito 2003).

This paper is organized as follows: In Section 2 we de-
scribe the main features of our code. In Section 3 we briely
describe the physical ingredients we have incorporated to
our code. In Section 4 we show the performance of the code
applying it to the formation and evolution of a Jupiter mass
object from a half earth core mass to ages in excess of the age
of the Universe. Finally, Section 5 is devoted to give our con-
clusions. We also present in the Appendix a new smoothed
linear interpolation algorithm devised especially with the
purpose of circumventing some problems found when some
tabulated data (e.g. opacities, equation of state, etc.) are
introduced in an implicit algorithm like the one employed in
our code.

2 THE EQUATIONS OF GIANT PLANET

FORMATION AND EVOLUTION

2.1 Equations of Structure and Evolution

Here, we shall briefly summarize the equations of giant
planet formation and evolution to be solved by our code. As
usual, we consider spherically symmetric objects, neglect-
ing rotation and magnetic fields. In spite that it is currently
accepted that giant planet formation and evolution is a phe-
nomenon that occurs in conditions very near to hydrostatic
equilibrium, we prefer to develop a full hydro code. Obvi-
ously, this is more general than an hydrostatic code. More-
over, it may happen that some planets are formed in con-
ditions very different to those currently accepted for which
hydrodynamic phenomena may be relevant.

In the conditions we are interested in, the equations
of giant planet formation and evolution are (for derivation
of these equations see, e.g., Clayton 1968, Kippenhahn &
Weigert 1990. For a detailed treatment of hydrodynamic
stellar codes, see Kutter & Sparks 1972):

i) the Euler equation of fluid motion

1

4πr2

dv

dt
= − ∂P

∂mr
− G mr

4πr4
, (1)

ii) the definition of velocity

∂r

∂t
= v, (2)

iii) the equation of mass conservation

∂r

∂mr
=

1

4πr2ρ
, (3)

iv) the equation of energy balance

∂lr
∂mr

= εpl − T
∂S

∂t
, (4)

v) the equation of energy transport for the radiative case

∂T

∂mr
= − 3

64πac
κ

lr
T 3r4

, (5)

and
vi) the equation of energy transport for the convective case

∂ ln T

∂mr
= ∇conv

∂ ln P

∂mr
, (6)

where ∇conv is the convective temperature gradient,
which may be computed employing the standard mixing
lenght theory (see, e.g., Kippenhahn & Weigert 1990).
We have considered the differential of entropy in the form

T dS = CP dT − δ

ρ
dP. (7)

We employ the Schwarzschild criterion for the onset of con-
vection.

The total gravitational energy release due to the accre-
tion of planetesimals Lpl is given by

Lpl =
GMcoreṀcore

Rcore
. (8)

We should remark that the planetesimal core accretion
rate Ṁcore is not specified by these equations and remains
as an input of the model, not only in its initial value but also
regarding its temporal variation. In order to incorporate this
energy release we introduce the rate of planetesimal energy
release εpl imposing the condition that

Lpl =

∫ M

Mcore

εpl dmr. (9)

We have found it convenient to adopt an expression for
εpl in a way that the energy release is produced near the
bottom of the gaseous envelope as

εpl = A
(

α − mr − Mcore

Mcore

)2

. (10)

εpl vanishes at menv = αMcore (where menv = mr −
Mcore) and is set to zero outward. A is a constant determined
by the condition given by Eq. (9):

A =
2

α(2 + α)

GṀcore

Rcore
. (11)

While the results are fairly insensible to the precise
value of the parameter α, we shall set α = 2.
δ is given by

δ =
∂ ln ρ

∂ lnT

∣

∣

∣

∣

P

(12)

and the rest of the symbols have their standard meaning.
In dealing with the specific problem of giant planets we

have to make some supplementary assumptions apart from
those quoted previously. We shall handle the members of

c© 2003 RAS, MNRAS 000, 1–16
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our system as spherical objects, neglecting the departure
from spherical symmetry of the equipotentials (e.g. the pear
- like shape of the Roche Lobe) and its evolutionary conse-
quences. Moreover, we shall consider that the giant planet
moves along a circular orbit.

As usual we shall describe the problem in Lagrangian
coordinates. We shall consider the independent variable ξ,
defined as

ξ = ln
(

mr

Mcore
− 1

)

. (13)

In the calculations to be presented below (see Section 4),
the mass of the core of the starting model is of the order
of Mcore = 0.6M⊕ while the amount of gas gravitationally
bound is Menv ∼ 10−5M⊕. Meanwhile, models of evolved
planets have Mcore ∼ 20 M⊕ while Menv may be as large as
Menv ∼ 3×103M⊕. Thus, if we want to consider an interval
in ξ on which we can accommodate all this evolution we
need to take, say, −16 6 ξ 6 10 (see below).

As stated above, we are interested in computing the evo-
lution of the gaseous part of the planet. In handling the core
we shall simply assume it to have a constant density and ne-
glect processes that may release energy (e.g. radioactivity).
However, this may be included with minor modifications of
the strategy described here. Also, the rate of core growth is
an input of the model, at least in the present work (see Pol-
lack et al. 1996 for a detailed treatment of the core growth
rate).

We found it very convenient to handle radii, pressure,
and temperature by means of logarithmic transformations

p = ln P ,
θ = ln T ,
x = ln r,

whereas lr, v are considered linearly.
For simplicity, we have written the difference equations

in a centered fashion. It means that we have chosen to write
a generic differential equation

dyi

dx
= F (x, y1, · · · , y5); i = 1, · · · , 5 (14)

as a difference equation

yi,j+1 − yi,j

xj+1 − xj
− F (xj+1/2, y1,j+1/2, · · · , y5,j+1/2) (15)

where ηj+1/2 = (ηj+1 + ηj)/2, being η any quantity. The
second subindex j indicates the shell of the star for which
the difference equation is written. Temporal derivatives have
been written in the standard backward differenced form.

Employing this recipe, for example, Eq. (3) becomes

xj+1 − xj

ξj+1 − ξj
=

Mcore

4π

exp
(

ξj+1/2 − 3xj+1/2

)

ρj+1/2

. (16)

Because of its definition, ξ is not a time independent
coordinate. Thus, in order to write the equations taking this
fact into account it is very useful to rewrite the derivative
operator as

∂

∂t

∣

∣

∣

∣

menv

=
∂

∂t

∣

∣

∣

∣

ξ

+
∂ξ

∂t

∣

∣

∣

∣

menv

∂

∂ξ

∣

∣

∣

∣

t

. (17)

Then, straightforwardly,

∂ξ

∂t

∣

∣

∣

∣

menv

= − d

dt
ln Mcore. (18)

In order to close the problem we need to define adequate
boundary conditions.

2.2 Inner Boundary Conditions

We shall assume that the high density core has a constant
density ρcore which we have fixed at a value of ρcore =
3 g cm−3. Furthermore, we have neglected any energy re-
lease coming from the core apart from the one due to its
growth by accretion of planetesimals. Thus, in this case, the
inner boundary conditions to be applied at the bottom of
the envelope (where Mr = Mcore) are given by

Mcore =
4

3
πρcoreR

3
core, (19)

and

Lr(mr = Mcore) = 0. (20)

Finally, the inner boundary condition for velocity is
given by core growth given by

v(mr = Mcore) =
Ṁcore

4πR2
coreρcore

(21)

2.3 Outer Boundary Conditions

2.3.1 The Formation Stage

In the formation stage, as usual, we shall consider the exter-
nal radius of the planet R as the minimum of the accretion
radius Racc and the Hill radius RHill defined as

Racc =
GM

c2
(22)

(where c is the local velocity of sound) and

RHill = a

(

M

3Mstar

)1/3

. (23)

Then, the planetary radius is

R = min

[

Racc, RHill

]

, (24)

respectively. Physically, the accretion radius is the place at
which the molecular velocity equals the escape one, while the
Hill radius corresponds to the equivalent radius of a sphere
with a volume equal to that of the Roche lobe of the planet.

Usually, it has been considered that at R the temper-
ature and density of the planet correspond to those of the
protoplanetary nebula denoted as Tneb and ρneb respectively.
From a numerical point of view we have found it very conve-
nient to impose the boundary conditions in a different way.
Let us consider, as discussed above, the possibility of ex-
tending the grid far beyond the planetary edge. If we intro-
duce of some kind of softening of the gravitational potential
due to the presence of a limiting physical agent, this soft-
ening makes the gradient of the gravitational potential to
drop to zero near the planetary radius and thus, we shall
have, apart from hydrodynamical effects, a constant pres-
sure. But, as the gradient of temperature is proportional to
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the pressure gradient, we shall also have a constant temper-
ature region. Consequently, the density in such a region will
have also a flat profile. In these conditions we can impose
the physical boundary conditions corresponding to the plan-
etary surface at the outermost point of the grid chosen to be
located far outside the planet. In other words, handling the
outer boundary conditions in the way described above we
set T = Tneb and P = Pneb for a value of the independent
coordinate ξ = ξedge far larger than that corresponding to
the planet. For an adequate softening of the gravitational
potential we shall have T = Tneb and P = Pneb for values
of ξ from ξedge up to the corresponding to the actual plan-
etary surface ξsurf , where ξsurf = ln (M/Mcore − 1). When
the planet begins to undergo a noticeable growth, R will
increase. In accounting this effect we have only to change
the radius in the function adopted for the quoted softening,
but the planetary boundary conditions will be automatically
fulfilled.

Specifically, we have introduced a restricted - three -
body spherically - averaged gravitational potential which is
the standard one, multiplied by the factor

1 −
(

r

R

)3

. (25)

We apply this factor up to a predetermined fraction of the
planetary radius r 6 ζR. For larger values of r we have
found it convenient to use a Fermi - like function
[

1 + exp

(

r − ζR

βR

)]−1

(26)

asking for continuity of the function and its first derivative
at the point r = ζR. This gives A = 2

(

1 − ζ3
)

and β =
(

1 − ζ3
)

/
(

6ζ2
)

.
We have tested values of ζ in the range ζ = 0.90 − 0.99

finding that the global properties of the evolution the planet
are fairly insensitive to the value of ζ. Also, from the numer-
ical point of view it produces very good convergence if we
take care in defining a grid dense enough near r = R.

If we consider strictly flat profiles for T and P at the
interval ξsurf ∼< ξ 6 ξedge, this treatment will allow the
planetary envelope to grow at a rates that can be arbitrarily
high (of course, the precise rate of growth of the planet will
be solution of the equations). However, if the protoplanetary
nebula has a low density gap near planetary surface, this will
naturally impose a upper limit for the gas accretion rate of
the envelope. Preliminary calculations, beyond the scope of
the present paper, indicate that the scheme we present here
is fairly adequate for considering migration, the occurrence
of a gap in the gas distribution in the protoplanetary disk
and also non constant planetesimal core accretion rates.

2.3.2 The Evolution Stage

In handling the outer boundary conditions at the evolution-
ary stage we have to take into account the irradiation from
the central star. This irradiation has a non negligible effect
on the evolution of the giant planet and should be especially
important for the case of small planets at advances evolu-
tionary stages (like Saturn) or in the case of extrasolar giant
planets orbiting very close to the central star (see Section 1).

Notice that irradiation has an obvious non radial na-
ture. However, in order to work in spherical symmetry we
shall consider that this energy is distributed uniformly in the
whole surface of the planet. Otherwise we would be forced
to change our whole treatment from the very beginning. Let
us remark that in the case of the giant planets of our Solar
System, rotation is very fast making irradiation of the plan-
etary surface to be approximately uniform. In more general
conditions we should expect some kind of fluid circulation
from the irradiated hemisphere to the opposite one driven
by the presence of a temperature gradient. While this effect
should be of fundamental relevance in computing the spec-
tra of irradiated planets, it seems that assuming an uniform
irradiation is acceptable for our purposes.

In the frame of these approximations, we define Lirr

as the fraction of the energy irradiated by the parent star
absorbed by the illuminated hemisphere of the planet (see,
e.g., Guillot 2001)

Lirr = L∗(1 − A)

(

R

2a

)2

. (27)

Here L∗ is the luminosity of the parent star and A is the
Bond albedo of the planet.

Regarding the strategy for handling outer layers inte-
grations, we shall introduce a method that represents a gen-
eralization from the one presented by Kippenhahn, Weigert
& Hofmeister (1967) devised for the case of stellar evolu-
tion. They proposed to divide the log L − log Teff (where
L is the luminosity and Teff is the effective temperature)
plane in rectangle triangles, employing outer layers integra-
tions at the vertexes of a given triangle in which falls the
point corresponding to the actual log L − log Teff values
of a given model. They compute outer layer integrations for
the conditions at a each vertex and get the outer boundary
conditions to be applied to the model by means of a two
dimensional linear interpolation.

In stellar evolution, luminosity, effective temperature
and radius are related by the well-known relation

L = 4πR2σT 4
eff , (28)

in which all these quantities are positive. However, in the
case of an irradiated planet we have (see, e.g., Guillot 2001)

L + Lirr = 4πR2σT 4
eff (29)

where Lirr is given by Eq. (27). If we assume a constant Lirr,
the planet would cool down asymptotically to an effective
temperature Teff‖0 given by

Lirr = 4πR2σ
(

Teff

∣

∣

0

)

4. (30)

However, for most of the recently discovered extrasolar giant
planets, the parent star is undergoing core hydrogen burning
(the so called main sequence stage; see, e.g., Kippenhahn &
Weigert 1990). At main sequence, stars suffer from a increase
in its luminosity1. Consequently, even without migration, ra-
diation increases as a function of time. Thus, it is possible to
have a situation in which the planet reaches an equilibrium

1 For example in the case of the Sun, its luminosity has increased
approximately 40% since it ended its pre - main - sequence con-
traction.
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situation at a finite age. From that moment on, as irradia-
tion increases monotonically, the planet will begin to absorb
energy from its parent star, i.e., L becomes negative. This
situation does not happen in stellar evolution, and force us
to modify Kippenhahn et al. (1967) strategy.

In order to maintain this kind of strategy we are forced
to divide a plane defined by logarithmic axes (this is very
convenient because the enormous variations in the outer con-
ditions of the giant planets during their whole evolution).
Thus, obviously, these axes must correspond to positively
defined quantities. In the case of the evolution of giant plan-
ets including irradiation from its parent star we shall divide
the plane log R − log Teff in rectangle triangles. Assuming
a value for the radius we immediately compute a value of
Lirr (see Eq. (27)), and then, by means of Eq. (29) we get
the corresponding value of L. Then, we are in conditions to
perform a standard outer layers integration which can be
accomplished by standard methods (e.g., Runge - Kutta).

In computing the structure of the outermost layers of
the planet we have employed Eqs. (1), (3), (5), and (6) ne-
glecting terms containing temporal derivatives (which means
that we have neglected the inertia and heat content of these
layers). Consequently, these layers have a constant luminos-
ity value. As in deeper layers, we have considered the fully
non-ideal EOS (see Section 3), non-adiabatic convection and
imposed the Schwarszchild criterium for the onset of convec-
tion.

As it is usual in stellar evolution calculations, these lay-
ers are integrated taking the total pressure as the indepen-
dent variable. Regarding the fraction of mass we include
in these outer layers integrations, it is advisable to keep the
amount of mass in the outer layers integration MOL as small
as possible in order to avoid neglecting a significant gravita-
tional energy release due to contraction. In the case of our
code we have taken MOL/Mplanet ∼< 10−3

2.3.3 The Stage in Between

A non trivial problem is the way in which the planet de-
taches from the protoplanetary nebula. In our code we have
made the simplest hypothesis: when the object reaches a pre-
fixed amount of gravitationally bounded matter we abruptly
change the boundary conditions from those of the proto-
planetary nebula to those described in the previous sub-
subsection corresponding to the evolutionary stage. Need-
less to say, this represents a gross oversimplification to the
actual physical situation. This should be regarded as com-
pletely unsatisfactory in the case that we are particularly
worried about the behavior of the planet at moments very
close to detachment. However, for the present work our main
concern is to reach an accurate description of the whole be-
havior of the system. In this sense we consider that out treat-
ment suffices for our purposes in an initial approach to the
problem.

As it will be described below, the planet reaches a very
short lived high luminosity stage which we interpret to be
essentially unobservable. Also, the maximum in the effec-
tive temperature of the planet is reached very soon after
detachment from the protoplanetary nebula. A very impor-
tant point is to investigate the dependence of the shape of
the evolutionary track of the planet upon the way it de-

taches form the protoplanetary nebula employing more re-
alistic models than the one assumed in this paper.

2.4 the overall problem

Taking into account all the details described above, we han-
dle the equations in a fully implicit way by means of the
Henyey technique as presented in Kippenhahn et al. (1967).
We found very fast convergence of the code in most of the
considered conditions with the remarkable exception of the
moment of detachment from the protoplanetary nebula.

3 THE PHYSICAL INGREDIENTS OF THE

CODE

In the present version of the code we have incorporated the
equation of state (EOS) presented by Saumon, Chabrier &
van Horn (1995). This EOS has been especially devised for
computing low mass objects like brown dwarfs and giant
planets. It represents a very detailed treatment for hydrogen
plasma an another less detailed for helium.

While the treatment performed in computing the
Saumon et al. (1995) EOS is detailed enough for the pur-
poses of this work, we found some serious numerical prob-
lems in handling it as a part of an iterative scheme like the
code presented in this paper. As it can be expected, the den-
sity of the plasma is a rather smooth function throughout
the whole interval of temperatures and pressures, however,
quite contrarily quantities that represent second derivatives
of the free energies (e.g. CP , ∇ad and δ) are functions with
steep variations

For formation stages and low temperatures we have con-
sidered grain opacities given by Semenov et al.(2003) for the
case of low densities while for higher densities have been
taken from Pollack, McKay, & Christofferson (1985). For
evolutionary stages we considered the opacity data given by
Guillot (1999). For temperatures above 103 K we considered
Alexander & Ferguson (1994) molecular opacities, which are
available up to T 6 104 K, for higher temperatures we con-
sidered opacities given by Rogers & Iglesias (1992). Notice,
that at such conditions we expect the interior of giant plan-
ets to be in convective equilibrium. Because of this reason,
radiative opacities are of little importance in such a regime.

The above described difficulties found in handling CP ,
∇ad and δ are even more serious in the case of opacities.
This is so especially at very low temperatures at which dust
gives large contributions.

While the EOS is reasonably well established, it seems
this not to be the case for opacities. In a recent work,
Podolak (2003) reexamined the opacity due to grains finding
it to be significantly lower than earlier estimates. Remark-
ably, the values of opacities are among the most important
ingredients in determining the critical mass of the core for
reaching the core instability. Lower opacities than the ones
considered here would produce lower critical core mass val-
ues that, in turn, would be formed faster alleviating the
well-known problem of the timescales of formation of giant
planets in the frame of the core instability mechanism (see
also Section 1).

In the near future we plan to incorporate the few very
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low energy nuclear reactions (particularly deuterium burn-
ing) suffered by very massive giant planets (with masses
M ∼> 14 MJup; see, e.g., Burrows, et al. 1995).

4 THE CASE OF A JUPITER - MASS OBJECT

As a first application of the code presented above, we shall
present the results we have found employing the above - de-
scribed code corresponding to the formation of a Jupiter
mass object of solar composition at a fixed orbit of 5.2 AU.
We should remind the reader that it is not our aim here
to present state - of - the - art model of the formation of
Jupiter but to show the results the numerical scheme pre-
sented above is capable to produce. At this point we should
remark that many of the characteristics of the solution we
shall describe below are also present in previous calculations
(see, e.g. Bodenheimer, et al. 2000).

With the aim of simplicity, we shall assume a constant
rate of accretion of planetesimals 10−6 M⊕ y−1, a constant
density for the core ρcore = 3 g cm−3 and start with a model
with 0.6 M⊕ which has attached a gravitationally bound
gaseous envelope of ≈ 10−6 M⊕. Regarding the physical con-
ditions at the protoplanetary nebula, we shall assume that
they remain constant with a density ρneb = 10−10 g cm−3

and temperature Tneb = 100 K. Also, we shall employ the
adiabatic temperature gradient in convective zones.

The computation comprised about ten thousand mod-
els resolved in about two thousand mesh points. The main
characteristics of the numerical solution are presented in
Figs. 1 - 8 and in Table 1. We shall include the solar ir-
radiation assuming a constant luminosity of 1L�.

In Fig. 1 we show the mass of the core and the to-
tal planetary mass as a unction of time. Notice that the
final growth of the gaseous envelope occurs in a fairly short
timescale as expected for the core instability mechanism.

In Fig. 2 we show the luminosity of the planet as a
function of time. Notice that there exists a very sharp peak
in the luminosity due to gravitational energy release driven
by the violent contraction of the outermost layers of the
gaseous envelope. Previous to that moment, luminosity was
rather proportional to t2/3 because we assumed a constant
core growth rate. After the peak, luminosity decays nearly
exponentially up to the moment in which solar irradiation
becomes important. At these advanced stages cooling no-
ticeably slows down.

In Fig. 3 we depict the effective temperature of the
planet as a function of time. In this plot we have only in-
cluded the evolutionary stages in which a physically plau-
sible effective temperature can be defined (see Eq. (29)).
Remarkably, the maximum in the effective temperature is
reached almost immediately after detachment from the neb-
ula.

In Fig. 4 we show the evolutionary track of the model.
After detachment the object begins to evolve to higher ef-
fective temperatures and lower luminosities. After maximum
effective temperature it begins to cool down approximately
on a constant radius track. Qualitatively, this part of the
track resembles the ones corresponding to very low mass
white dwarf stars. This is as it should be expected for a an
object with a semi-degenerate interior.

Fig. 5 describes the evolution of the bottom of the

Figure 1. The logarithm of the masses of the core and gaseous
envelope of the planet since the beginning of formation. Forma-
tion stages are displayed in dotted lines while evolutionary ones
in solid lines. We considered the formation of the object up to
the moment at which it was able to bound a mass of 1 MJup .
Since then on we considered constant mass evolution. We should
remark that the mass of the core as a function of time is an in-
put whereas the mass of the gaseous envelope is solution of the
equations of structure and evolution (see Section 2). The starting
model has a total mass of 0.6 M⊕ and a very tiny amount of
bounded gas. As core grows, about 20 My later the mass of the

planet has undergone an appreciable growth and now half the
total mass is in the core and the other in the gaseous envelope.
From this moment on there occurs the runaway instability and
very soon the planet reaches its assumed final mass value.

gaseous envelope of the planet. During fromation temper-
ature and density increase monotonically up to the moment
of the beginning of the runaway growth of the envelope. At
these conditions, the bottom of the envelope reaches a maxi-
mum density and the decompress approximately at constant
temperature. As consequence of the end of the formation
stage, the bottom of the envelope begin to compress, reach-
ing a maximum temperature of 6.8 × 103 K at an age of
32.4 My. Notice that the maximum temperature reached by
the planet is far lower than the necessary for the occurrence
of deuterium burning.

In Figs. 6-7 we show the profiles of density and temper-
ature for the formation and evolution stages of the planet.
Notice that for most of the stages included in these plots,
the profiles are very similar in each figure. This is because at
formation stages the densities attained at the planetary inte-
rior are so low that non ideal effects are of minor relevance.
So, the EOS is well accounted for by a simple ideal, non-
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4 4.5 5
-8.7

-8.68

-8.66

t [Gyr]

Figure 2. The luminosity of the planet as a function of time for the formation of an 1 MJup mass object. Here, formation (dotted
lines) and evolution stages (solid line) are clearly differentiated (see Fig. 1). Formation corresponds to times before the runaway gas
accretion instability, which corresponds to moments just before the flash-like luminosity peak. Detachment from the protoplanetary
nebula is assumed to occur when the object has a total gravitationally bound mass of 1 MJup. The evolutionary stages at constant
mass correspond to moments after the luminosity flash. Filled square indicates the position of Jupiter, while in the inset we compare
the computed luminosity of the Jupiter model at an age equal to that of the Solar System with the observed one with its corresponding
error bar (notice that in the inset the horizontal scale is linear).
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4 4.5 5
2.09

2.092

2.094

2.096

2.098

t [Gyr]

Figure 3. The effective temperature of the planet as a function of time for the formation of an 1 MJup mass object. Here we have only
considered evolutionary stages. Notice that the maximum of the effective temperature occurs just after detachment from the nebula (see
Table 1). Filled square indicates the position of Jupiter, while in the inset we compare the computed effective temperature of the Jupiter
model at an age equal to that of the Solar System with the observed one with its corresponding error bar (notice that in the inset the
horizontal scale is linear).
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2.1 2.09
-8.67

-8.665

-8.66

-8.655

-8.65

Figure 4. The evolutionary track of the 1 MJup mass object since detachment from the protoplanetary nebula. Soon after detachment
the planet undergoes a fast contraction and reaches the maximum effective temperature almost immediately. Since then on the planet
reaches its final cooling track. This evolution occurs approximately at constant radius as it should be expected for a semidegenerate
object. Filled square indicates the position of Jupiter, while in the inset we compare the computed evolutionary track of the Jupiter
model with the position of the present Jupiter with its corresponding error bars.
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Table 1. Selected stages of the formation of a 1MJ mass planet at a 5.2 AU from a 1M� mass central star. Stages at which we do not
give a value for the effective temperature correspond to formation stages while the others denote evolutionary stages.

Age [My] log L/L� log Teff /K log Tb/K log ρb[g/cm3] Mcore/M⊕ Menv/M⊕

0.43 -9.45224 · · · 3.44819 -3.31953 1.12723 0.00064
1.89 -9.17959 · · · 3.74837 -2.75196 2.58029 0.00961
3.98 -8.92438 · · · 3.91683 -2.21119 4.66760 0.07308
7.31 -8.60192 · · · 4.07892 -1.78309 8.00704 0.43547

13.44 -8.09241 · · · 4.25318 -1.39259 14.1356 2.86654
26.33 -6.67421 · · · 4.45348 -1.17511 27.0223 64.1232
28.75 -1.79705 2.67002 4.46112 -1.61632 29.4446 283.662
28.76 -3.96061 2.59590 4.50658 -1.47310 ” ”
29.06 -4.58208 2.69400 4.66691 -0.63959 ” ”
33.60 -5.36100 2.75742 4.83144 0.035113 ” ”
43.44 -5.84009 2.69707 4.80376 0.189012 ” ”

115.49 -6.73943 2.53285 4.70313 0.358696 ” ”
176.30 -7.03552 2.47065 4.66380 0.393792 ” ”
316.92 -7.41087 2.38840 4.61022 0.428709 ” ”
629.52 -7.82061 2.29533 4.54606 0.459719 ” ”

1238.99 -8.19652 2.20771 4.48137 0.482887 ” ”
2428.41 -8.49799 2.13681 4.41615 0.500708 ” ”
4693.17 -8.69854 2.08993 4.35056 0.514520 ” ”
8897.95 -8.80842 2.06494 4.28330 0.525822 ” ”

Figure 5. The evolution of the bottom of the gaseous envelope
of a 1 MJup planet during the formation (dashed line) and sub-
sequent evolution (solid line). Temperature and density increase
monotonically up to the moment of the beginning of the run-
away growth of the envelope. As consequence of the end of the
formation stage, the bottom of the envelope begins to compress,
reaching its maximum temperature (see Table 1). The here com-
puted conditions for the present Jupiter are represented with a
solid square.

degenerate EOS. Notice, however, an important differece:
while the density profiles evolves to higher values in most of
the evolutionary stages, temperature profiles do not. This is
so at the final evolutionary stages of the object at which it
undergoes a global cooling. We also show, in Fig. 8 the evo-
lution of the gaseous envelope in the thermodynamic plane.
Finally, for completeness, we show in Fig. 9 the evolution of
the radii of spheres containing a fixed amount of mass

We should remark that, in spite that in this computaton
we did not set any upper limit to the growth of the envelope
mass Ṁenv (see § 2.3.1 for discussion), we found it has been
Ṁenv 6 10−3 M⊕/y even during the runaway growth.

In order to compare with observational data corre-
sponding to the present characteristics of Jupiter, we should
quote that at the present age of the Solar System of 4.55 ×
109 y, the luminosity of Jupiter is log LJup/L� = −8.660 ±
0.004 while its effective temperature log (Teff )Jup =
2.0948 ± 0.001 (Pearl & Conrath 1991). In these data the
refledted light is not included. In Figs. 2 - 4 we have included
insets in which we included the corresponding computed evo-
lutionary curve together with the observations together with
its error bars. We notice that at the age of the Solar System
the Jupiter model is slightly smaller than the real planet.
While the effective temperature shows a good agreement
with observatinos, the model reveals itself as somewhat un-
derluminous. We consider these results as satisfactory tak-
ing into account the simplifying assumptions we made in
this computation.

5 CONCLUSIONS

The goal of this paper has been to present a numerical code
intended for computing all stages of formation and evolution
of giant planets in the frame of the core instability mecha-
nism. This code is based on the standard Henyey technique
usually employed in stellar evolution calculations.

Perhaps the key point of this method is the kind of
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Figure 8. The evolution of the temperature - density profiles during formation (left panel) and evolution (right panel) for the same
models included in Figs. 6 - 7. In the evolution panel we have excluded outer layers integrations from the figure. Notice that all profiles
corresponding to the formation stage begin from the same point corresponding to protoplanetary nebula conditions ρneb − Tneb. During
formation curves evolve upwards while at evolutionary stages they evolve to higher densities. The heavy line in the right panel corresponds
to the computed conditions for the present Jupiter.

change of variables given in Eq. (13), particularly consider-
ing the total mass in units of the core mass. If we naively
choose a more straightforward independent variable like,
e.g., total mass we would face serious troubles at comput-
ing the temporal derivative of the entropy during formation
stages. With this kind of natural coordinate we would have
an outwards migration of the envelope. Thus, in order to
compute the difference of entropy between consecutive mod-
els at the same envelope mass element we would be forced
to introduce interpolations. But any interpolation introduce
numerical noise. This noise may be irrelevant at some stages
but it is catastrophic during the runaway growth, preventing
its calculation.

In testing the code we have computed the formation and
evolution of a Jupiter mass object from a 0.6 M⊕ core mass
to ages in excess of the age of the Universe. While this should
not be considered a state-of-the-art calculation (because of
the many simplifying assumptions, see Section 4), it shows
that the general structure of the code works fairly well in
simulating the whole process of formation and evolution of
giant planets.

We also present a new smoothed linear interpolation al-
gorithm devised especially with the purpose of circumvent-
ing some problems we found when some physical data is
introduced in an implicit algorithm like the one employed
in this work. This has been very important in allowing us
to incorporate the detailed physics of the problem. These

ingredients have some dramatic discontinuities due to very
important physical reasons (in opacities: the grain evapora-
tion; in the equation of state: the plasma phase transition).
While the motivation in developing the method has been
very specific, in our opinion it may be a valuable method of
interpolation in more general conditions.

We want to thank the anonymous referee for his (her)
constructive criticism that enabled us to largely improve the
original version of the present work. OGB was partially sup-
ported by project FONDAP 15010003. AB acknowledges the
financial support of AGNPCyT, PICT 03-11044.
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APPENDIX A: A SMOOTHED LINEAR

INTERPOLATION ALGORITHM

In this Appendix we shall describe an algorithm we have de-
veloped in order to overcome some of the delicate numerical
problems we have had in preparing our code for planetary
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Figure 9. The evolution of the radius profiles of the models as
a function of the total mass for the same models included in
Figs. 6 - 7.

formation and evolution. In spite of the very specific mo-
tivation in constructing this interpolation method, this is
very general and may be interesting in other applications.
Because of this reason, hereon we shall describe it in detail.

In many numerical simulations of astrophysical inter-
est, it is very common the neccesity of interpolating tab-
ulated data, representing some physical quantity. Usually,
these quantities are computed by means of complex numeri-
cal procedures. Even if the codes that produce the tabulated
data were available, using them as subroutines would result
impractical and wasteful.

Good examples of such a case are found in Section 3
where physical quantities such as the equation of state of
the plasma, radiative opacities, etc., in planetary interiors
must be obtained as a function of pressure (or density) and
temperature from a given table. Although these tables use
to be dense enough so as to provide good interpolated val-
ues, the numerical derivatives of many interpolation algo-
rithms exhibit discontinuities which often make it difficult
the numerical solution of the problem (i.e. in the case of
implicit schemes like the one presented in this paper, the
convergence of iterative algorithms usually turns out to be
cumbersome). Even if convergence is attained, notice that
smooth derivatives are neccesary in order to prevent spuri-
ous oscillations around steep gradients (Dorfi 1997). Simple
approximations such as cubic splines (Press et al. 1986) are
unreliable, because they may exhibit strong oscillations be-
tween the tabulated values. Such spurious oscillations may

be even stronger in the derivative of the function inhibiting
convergence of the main iterative loop.

In principle, there exists a large number of ways to ac-
complish such a task. One possibility is to employ rational
spline interpolation or the Akima (1970) interpolants. In
this Appendix we shall present an alternative method to
represent tabular data, which is not an interpolation but
a kind of “smooth representation” which offers continuous,
analytic derivatives. This method is very simple, being thus
an alternative to be used in numerical simulations where the
smoothness of the involved functions is of prime importance.

This Appendix will be organized as follows: In Sec-
tion A1 we present the method and its main properties.
Some specific weight functions are presented and studied in
Secion A2. Section A3 is devoted to the study of the effect of
the smoothing here proposed on the spectrum of frequencies
of the interpolation. In Section A4, some examples and com-
parisons with the most standard procedures are displayed.
The last Section of this Appendix (§ A5) will be devoted to
general comments on the properties of the method.

A1 The Algorithm

Let us suppose that we have a table of values yn, n =
1, . . . , N of the function y(x), for given xn, not necessar-
ily evenly spaced. A simple way to interpolate a value of
y(x) for a non tabulated x (xn < x < xn+1) is by means of
a linear interpolation

yint(x) = yn + y′

n(x − xn), (A1)

where y′
n = (yn+1 − yn)/(xn+1 − xn). The linear interpo-

lation is continuous throughout the table but its numerical
derivative is a step piecewise function, thus exhibing discon-
tinuities at the tabulated xn. Because of the reasons detailed
in Section A, such discontinuities in the derivative are higly
undesirable. In what follows we shall present an algorithm
specifically designed to avoid this problem in the frame of
linear interpolations which can also be straightforwardly ex-
tended to interpolations of higher degrees.

The central idea of our algorithm is to represent the
function y(x) by means of an appropriate weighting of the
linear piecewise interpolated values yint with a given weight
function. This weight function must be chosen in order to
assign high weights to values of yint near the interpolation
region, and considering with less relevance those values away
this point. Being θ(x, xn, xn+1) the weight function, we de-
fine the representation of y(x) as

yθ(x) =

N−1
∑

n=1

yint(x) θ(x, xn, xn+1). (A2)

θ(x, xn, xn+1) must fulfill some conditions. It must be pos-
itive defined and smooth and if x is far from the interval
xn, xn+1, then θ(x, xn, xn+1) → 0. If we require continuous
first derivatives of the smooth representation of the tabular
data, it is straightforward to show that the first derivative of
the weight function θ(x, xn, xn+1) must also be continuous.

A natural way of fulfilling all these requirements is to
define θ(x, xn, xn+1) as

θ(x, xn, xn+1) =

∫ xn+1

xn

w(x, x′) dx′ (A3)
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with the exception of the first and the last intervals, for
which

θ(x, x1, x2) =

∫ x2

−∞

w(x, x′) dx′,

θ(x, xN−1, xN ) =

∫

∞

xN−1

w(x, x′) dx′ (A4)

where w(x, x′) is a function that must verify the normaliza-
tion condition
∫

∞

−∞

w(x, x′) dx′ = 1. (A5)

Notice that w(x, x′) may be chosen in several ways.
From a practical point of view, however, Eq. (A3) should
be solvable analitically. The values of yθ(x) obtained with
our smoothing algorithm can be interpreted as the weighted
sum of the contributions of each piece of the tabulated data.

It is important to notice that performing the smoothing
in the way we propose, the resulting function does not pass
exactly by the tabulated data. In the case that we choose
w(x, x′) = δ(x − x′), where δ(x − x′) is the Dirac function,
integrating it in the corresponding interval we get the step
function, which in turn makes us to recover the original lin-
ear interpolation.

If the error in the linear interpolation is

en(x) = y(x) − yn − y′

n(x − xn) (A6)

then, the error in the smooth representation eθ(x) is

eθ(x) =

N−1
∑

n=1

en(x) θ(x, xn, xn+1). (A7)

In the case that θ(x, xn, xn+1) is choosen to be a nar-
row - peaked function around x, the error in the smooth
representation should be comparable to the corresponding
to the standard linear interpolation. However, in the case
that θ(x, xn, xn+1) were not narrow - peaked, it seems not
easy to give a useful bound to the error. Nevertheless, this
case is of little interest, simply because the representation
of the function would be far from the original values.

A2 Some particular cases of weight functions

A possible choice for w(x, x′) is the rational function, whose
expression is

Ln(x − x′) = Cn
1

[

Γ2 + (x − x′)2
]n , (A8)

with

Cn =
(2n − 2)!!

(2n − 3)!!

Γ2n−1

π
. (A9)

This function is bell-shaped, with its maximum at x = x′

and with a characteristic width given by the free parameter
Γ. As required, Ln(x− x′) has analytical primitive. We will
denote the integral

θn(x, xj , xj+1) ≡
∫ xj+1

xj

Ln(x − x′) dx′. (A10)

In spite that the analytic integral exists for arbitrary
value of n, values of n > 2 will result in complicate expres-
sions, expensive from a numerical point of view. Moreover,
studying the example proposed in Section A4 we found no
obvious advantage in chosing n = 3. Thus, here on, we shall
concentrate on cases n = 1, 2.

The expression for yLn(x) is

yLn(x) =
[

y1 + y′

1(x − x1)
]

θn(x,−∞, x2) +

N−2
∑

j=2

[

yj + y′

j(x − xj)
]

θn(x, xj , xj+1) +

[

yN−1 + y′

N−1(x − xN−1)
]

θn(x, xN−1,∞). (A11)

For the case of n = 1 we have

θ1(x, xj , xj+1) =
1

π

(

arctan(Uj) − arctan(Uj+1)

)

, (A12)

whereas, for the case of n = 2 we have

θ2(x, xj , xj+1) =
1

π

(

Uj

U2
j + 1

− Uj+1

U2
j+1 + 1

+

arctan(Uj) − arctan(Uj+1)

)

. (A13)

In the above expressions

Uj =
x − xj

Γ
. (A14)

A3 The Spectrum of Frequencies of the

Interpolation

The smoothing operation should filter out only those high
frequencies present in the tabulated data which could make
difficult the convergence of the employed algorithms. Oth-
erwise, there is the risk to obtain stable solutions but very
different (or even meaningless) from the true one. Thus, let
us study the problem of the modification of the spectrum
of frequencies of the linear interpolation when we apply the
process of smoothing we propose in this Appendix. We shall
adopt the definitions for the Fourier Transform and Anti-
transform as stated in, e.g., Duff & Naylor (1966)

F (s) =
1√
2π

∫

∞

−∞

f(x) e−isx dx; (A15)

f(x) =
1√
2π

∫

∞

−∞

F (s) eisx ds. (A16)

Applying these definitions to the algorithm presented
in Section A2, the Fourier transform of the smooth repre-
sentation can be written as

Yθ(s) =

N−1
∑

j=1

(

yj − y
′

jxj

)

Θ(s, xj , xj+1) +

i

N−1
∑

j=1

y
′

j
d

ds
Θ(s, xj , xj+1), (A17)

where Θ(s, xj , xj+1) is the Fourier transform of the
weight function θ(x, xj , xj+1) in the corresponding interval.
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Now, let us study the particular case of the weight func-
tions presented in Section A2. The Fourier transform of the
weight function in this case is

Θn(s, xj , xj+1) =
Cn√
2π

∫ xj

xj+1

dx′e−isx′

×
∫

∞

−∞

cos [s(x − x′)]

[Γ2 + (x − x′)2]n
d(x − x′). (A18)

The last integral has a value independent of the inter-
val. For the particular cases of n = 1, 2 their values are
π/Γ exp (−sΓ) and π/(2Γ3) (1+sΓ) exp (−sΓ) respectively
(see, e.g. Gradshteyn & Ryzhik 1994). Thus

Θ1(s, xj , xj+1) = Θstep(s, xj , xj+1) exp (−sΓ) (A19)

and

Θ2(s, xj , xj+1) = Θ1(s, xj , xj+1)(1 + sΓ) (A20)

where Θstep(s, xj , xj+1) is the Fourier transform of the step
function in this interval. It is clear that the smoothing of
the linear interpolation acts as a lowpass band filter. Thus,
for the cases of n = 1, 2 frequencies for which ωΓ ∼> 1 are
strongly damped.

A4 A Numerical Example

In this section we shall present an example of how our pro-
posed algorithm works in the case of being employed to in-
terpolate a definite function. For such purpose, we have cho-
sen the values of radiative opacities relevant for the physical
conditions attained in the outer envelope of giant planets
(Guillot, et al. 1994). In particular, the selected curve cor-
respond to element abundances corresponding to Jupiter at
a density of ρ = 10−14 g cm−3. The curve is defined by
17 points non evenly spaced. The maximum and minimum
intervals are 0.180 and 0.039 respectively.

In order to test the algoirithm we presented above, we
shall employ the two weight functions considered in Sec-
tion A2 for cases n = 1, 2 assuming values of Γ similar to
those corresponding to the table spacing.

We show in Fig. A1 the results of applying the algo-
rithm we propose for the case of n = 1 for the data set cited
above. In doing so we have assumed values for the free pa-
rameter Γ of Γ = 0.03, 0.06, 0.12, 0.24. The results presented
in Fig. A1 clearly indicate that the method discussed in the
present work is poor and not recommendable for the case
of n = 1. The overall behaviour of the method could be
improved restricting the interval of x but this would imply
the introduction of highly undesirable boundary effects. Be-
cause of this reason, we shall not consider the case n = 1
any further.

Let us now consider the case n = 2. The results of the
interpolation of the function are depicted in Fig. A2 . From
inspection of this figure it is quite clear that in this case
the overall behaviour of the interpolation largely supersede
that corresponding to the case of n = 1. Only for the largest
value of Γ there are some significative differences near the
absolute minimum of the function.

For comparison, we have also included in such figures re-
sults corresponding to interpolation of the data at the same

Figure A1. The interpolation of the opacity data values (repre-
sented by filled circles by means of the weigth function defined by
Eq. (A12) with values of Γ = 0.03, 0.06, 0.12, 0.24. The larger the
Γ value, the worse the interpolated value. Also the results pre-
dicted by the Akima (1970) spline algorithm are included with
short dashed lines. It is clear that the weight function Eq. (A12)
provides a poor smoothed interpolation. This is so mainly because
of its asymptotic behaviour (see text for more details).

points performed with the Akima (1970) cubic spline algo-
rithm which constructs a piecewise cubic polynomial curve
close to a manually drawn curve. Notice that for small val-
ues of Γ, comparable to the minimum spacing of the present
data tabulation, our algorithm with n = 2 produces results
almost indistinguishable from those corresponding to the
Akima spline.

In Fig. A3 we show the results corresponding to the
derivative of the function for case n = 2 and the set of values
of Γ employed in Figs. A1-A2 together with those given by
the Akima spline. In spite that the Akima spline gives a
fairly good interpolation as shown in Fig. A2, it is clear that
it produces a derivative of the function appreciably more
oscillating than the one obtained with the smoothing here
proposed, even for the smallest considered Γ values. This is,
as discused above, a highly desirable property at handling
interpolation algorithms in iterative schemes.

A5 Some General Remarks on the Algorithm

In this Appendix we have presented a simple smoothed lin-
ear interpolation algorithm intendend to represent tabulated
functions. We presented a general treatment, and studied
two particular cases in which we considered specific weight
factors resulting from the integration of adequate rational
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Figure A2. The interpolation of the opacity data values (repre-
sented by filled circles) by means of the weigth function defined
by Eq. (A13) for the same values of Γ as in Fig. A1. The larger
the Γ value, the worse the interpolated value. The weight function
Eq. (A13) provides a very good smoothed interpolation that, for
the case of low Γ values is very similar to that given by the Akima
spline algorithm (short dashed lines).

functions in each interval of the tabulated data (see Sec-
tion A2).

In order to test the performance of our algorithm, we
have chosen a particular data set and computed interpo-
lated values for different values of the free parameter Γ. We
have found that, as expected, the results of the interpola-
tion are closer to the original linear interpolation as Γ → 0,
while the function is smoother the larger Γ is. For the case
n = 1 results are poor, while for n = 2 the algorithm works
nicely when we assume Γ values not larger than data spac-
ing. Moreover, our technique provides interpolated values
very similar to those given by the Akima spline interopola-
tion (Fig. A2) but smoother derivatives. (Fig. A3).

As our main motivation in developing this alghorithm
was to have a reliable inetrpolation technique adequate to
employ as a routine in implicit relaxation calculation, we see
an interesting property of this technique as compared to that
presented by Akima. Let us suppose that we are trying to
solve a given system of equations by an iterative technique
that fails to converge. Then, in the frame of this algorithm,
we can, in principle adopt a very large Γ value that will
provide a very inexact but smooth interpolation. After we
get convergence we can compute a sequence of solutions of
the iteration with lowering the Γ value in several steps. In
such a way we can embbed the initial artificial solution to
produce a realistic one. In the case of the Akima spline this

Figure A3. The derivative of the interpolation of the opacity
data values assuming the weigth function defined by Eq. (A13)
for the same values of Γ together with the derivative given by
the Akima spline interpolant. Notice that Akima algorithm gives
strongly oscillating derivatives

is not possible, simply because there is no free parameter
available to be handled in an equivalent way.

Also, it should be noticed that the algorithm presented
in this Appendix can be straightforwardly generalized for
representing multidimensional functions. This is so if we
choose weight functions in separate variables.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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