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The arenavirus Junin virus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. We characterized the JUNV infection
of human peripheral blood-derived plasmacytoid dendritic cells (hpDC), demonstrating that hpDC are susceptible to infection
with the C#1 strain (attenuated) and even more susceptible to infection with the P (virulent) JUNV strain. However, hpDC elic-
ited different responses in terms of viability, activation, maturation, and cytokine expression after infection with both JUNV
strains.

The arenavirus Junin virus (JUNV) is the etiologic agent re-
sponsible for Argentine hemorrhagic fever (AHF) (1). The

pathogenesis of AHF is not completely understood (2, 3), al-
though immune cells are among the main targets (2–4).

Circulating human peripheral blood-derived plasmacytoid
dendritic cells (hpDC) sense viral infections, responding with
massive type I interferon (IFN-I) production (5, 6). They also have
an assigned role in determining the outcome of some viral infec-
tions (7, 8). We hypothesized that JUNV targets hpDC in order to
modulate the host’s response.

hpDC were isolated from the buffy coats of 14 donors by im-
munomagnetic negative selection (catalog number 130-092-207;
Miltenyi, Germany). According to flow cytometry analysis, the
percentage of CD123� (specific marker) (9) cells ranged from 95
to 99%, with a cell viability of �97% (FACScan flow cytometer
and FCS Express V3 software).

Viral stocks of the attenuated Candid#1 (C#1) and virulent
P3441 (P) strains of JUNV (10, 11) were made and quantified as
described previously (12). Briefly, monolayers of BHK21 cells
were infected with each strain and clarified supernatants
(5.000 � g) were collected 2 to 3 days postinfection (dpi).
hpDC (1 � 104) were infected with the JUNV strains at a mul-
tiplicity of infection (MOI) of 0.1 or 1. The negative controls
(mock infected) were supernatants from uninfected Vero cells.
Human recombinant interleukin-3 (IL-3, 20 ng/ml; Peprotech,
Mexico) was added on day 1 (13). All cell cultures were free of
mycoplasma.

Results are expressed as means � the standard errors of the
means. Each experiment was performed with a different donor,
and its number is indicated in the corresponding legend as n �
x. P values of �0.05 after Student’s paired t test or one-way
analysis of variance were considered to be statistically signifi-
cant.

The level of infective virus in the supernatants increased in a
time- and MOI-dependent manner, as confirmed by infectivity
assays (Fig. 1A) in concordance with the viral RNA levels de-
tected by quantitative PCR (qPCR) (Fig. 1B). C#1 and P nu-
cleoprotein (NP) was detected in 70 to 95% of the cells, respec-
tively (Fig. 1B) with a monoclonal antibody (clone AB06-B610)

(14), followed by Alexa 488-conjugated anti-mouse IgG and a
phycoerythrin (PE)-conjugated rabbit anti-human CD123
(BD Biosciences, NJ). Analysis was conducted by confocal mi-
croscopy (11). Negative and positive controls were uninfected
hpDC and infected Vero cells, respectively. The results demon-
strated that hpDC are susceptible to both JUNV strains, and in
agreement with previous studies, the P strain elicited higher
values than did C#1 (15, 16).

JUNV failed to induce cell apoptosis or necrosis at any time
point or MOI (Fig. 2A), as established by nuclear morphology
after acridine orange and ethidium bromide staining (11). The
percentages of apoptotic cells were similar in mock- and C#1-
infected hpDC, while the P strain inhibited spontaneous apop-
tosis over time and in an MOI-dependent manner, even pre-
venting apoptosis induced by fetal bovine serum (FBS)
deprivation (data not shown). Flow cytometry analysis of
JUNV� cells indicated that P, but not C#1, reduced caspase-3
activation and phosphatidylserine exposure (detected by an-
nexin V binding) (Fig. 2B and C). In this regard, a recent study
demonstrated retinoic acid-inducible gene 1 (RIG-I)-mediated
IFN-I-independent apoptosis in a cell- and viral strain-depen-
dent manner (17). Moreover, the NP of JUNV interfered with
the activity of caspase-3, inhibiting apoptosis (18). Finally, the
Z protein of pathogenic, but not nonpathogenic, arenaviruses
interacts with the RIG-I-like receptor, resulting in inhibition of
IFN-I production (19) and associated apoptosis (20). It re-
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mains necessary to clarify if any of these mechanisms are in-
volved with both of the JUNV strains studied here.

While the expression of HLA-ABC or HLA-DR at 1 (data
not shown) and 2 dpi was moderately and strongly increased
after C#1 or P infection, respectively, the expression of CD86
was upregulated only by the P strain (Fig. 3A). In addition,
CD83 expression levels were higher than in mock-treated cells
(Fig. 3B). Similar results were obtained with JUNV� cells only
(data not shown). These results suggest that JUNV infection, by
inducing activation and maturation of hpDC, may contribute
to different adaptive immune responses according to the viral
strain, as reported for other viral infections (21, 22).

IFN-I levels in cell supernatants were studied with a stably
transfected WISH cell line with the enhanced green fluorescent
protein gene under the control of the IFN-I-inducible Mx2
promoter (23). The percentage of positive cells was evaluated
by flow cytometry with recombinant IFN-� (InvivoGen, San
Diego, CA) as a positive control. Both JUNV strains were able
to induce IFN-I expression, with P showing the highest values
(Fig. 4A). These results were confirmed at the transcriptional
level (Fig. 4B). By using imiquimod as a positive control (data
not shown) (24), we determined that C#1 moderately and
strongly enhanced the transcription of IL-6 and tumor necrosis

factor alpha (TNF-�), respectively. Meanwhile, the P variant
failed to modify IL-6 levels, even reducing the expression of
TNF-� below the control values (Fig. 4C).

Several viruses have been reported to induce (8, 25–28) or
inhibit (29, 30) IFN-I after hpDC infection. The high levels of
IFN-I induced by P infection may explain the elevated levels of
circulating IFN-� in patients with AHF (31). However, it is
unclear if these enhanced levels simply reflect a greater early
viral load or if they are linked to disease development (32). The
reduced IFN-I production of hpDC induced by the clone 13
strain of the arenavirus lymphocytic choriomeningitis virus
(LCMVclon13) contributed to viral persistence (33). Moreover,
hpDC-deficient mice fail to clear LCMV, associated with the
reduced number and functionality of LCMV-specific T-cell re-
sponses (7), protection from NK cell cytotoxicity (34, 35), or
viral replicative capacity (36). In mice intravenously infected
with a high dose (2 � 106 PFU) of LCMVclon13, virus persis-
tence is controlled by blocking IFN-I signaling (37, 38). These
studies suggest that the levels of IFN-I are critical for the im-
mune host response to arenavirus. The enhanced production of
IL-6 and TNF-� triggered by C#1 may also be important for the
infection outcome, since these cytokines prime the CD4� T
cells to differentiate into IL-10-producing regulatory T cells

FIG 1 hpDC are susceptible to JUNV infection and replication. (A) PFU counts in supernatants at the time points indicated were quantified with infectivity
titration assays on Vero cells (n � 5). ND, not detected. (B) Viral mRNA levels were detected by reverse transcription (RT)-qPCR in hpDC infected with JUNV
strain C#1 or P at the time points indicated (n � 3). AU, arbitrary units. (C) Mock-, C#1-, or P-infected hpDC were costained with the specific marker CD123
(red) and anti-JUNV protein antibody (green) at 2 dpi. Original magnification, �600. The bar graph shows the percentages of JUNV� cells in the CD123�

population as determined by manual scoring of at least 200 cells (n � 4).
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FIG 3 JUNV infection upregulated the expression levels of activation and maturation markers in hpDC. hpDC were incubated with the vehicle (mock infection),
C#1, or P, and hpDC activation and maturation markers were analyzed at 2 dpi. (A) Cells were stained with anti-human FITC-HLA-ABC, PE-HLA-DR, or
PE-Cy5-CD86 antibodies, and the mean fluorescence intensity (MFI) was measured by flow cytometry (n � 5). (B) Cells were stained with anti-human
FITC-CD83, and the percentage of positive cells was determined by flow cytometry. *, P � 0.05 versus mock infection.

FIG 2 JUNV failed to cause cytopathic effects, and strain P suppressed spontaneous hpDC apoptosis. (A) Cells were double stained with acridine orange and ethidium
bromide, and the percentage of apoptotic cells in noninfected (mock-infected) hpDC or those infected with C#1 or P was analyzed by fluorescence microscopy.
Serum-deprived hpDC (no FBS) were used as a positive control (n � 5). Original magnification, �200. Arrows indicate apoptotic cells. (B and C) Cells were stained with
fluorescein isothiocyanate (FITC)-annexin V-conjugated (B) or FITC-conjugated (C) anti-human activated caspase-3 antibodies, and the percentage of positive cells was
analyzed by flow cytometry at 4 dpi. Histograms represent one of three independent experiments. *, P � 0.05 versus mock infection.
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(39) and late IL-6 escalates helper T cell responses to control
viral infection (40).

Taken together, our results suggest that JUNV infection of
hpDC may be important in pathogenesis, encouraging further
studies of roles for hpDC in arenavirus-induced hemorrhagic fe-
vers.
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