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A B S T R A C T

Current, validated methods for dietary assessment rely on self-report, which tends to be inaccurate, time-
consuming, and burdensome. The objective of this work was to demonstrate the suitability of estimating
energy intake using individually-calibrated models based on Counts of Chews and Swallows (CCS models).
In a laboratory setting, subjects consumed three identical meals (training meals) and a fourth meal with
different content (validation meal). Energy intake was estimated by four different methods: weighed food
records (gold standard), diet diaries, photographic food records, and CCS models. Counts of chews and
swallows were measured using wearable sensors and video analysis. Results for the training meals dem-
onstrated that CCS models presented the lowest reporting bias and a lower error as compared to diet
diaries. For the validation meal, CCS models showed reporting errors that were not different from the
diary or the photographic method. The increase in error for the validation meal may be attributed to dif-
ferences in the physical properties of foods consumed during training and validation meals. However,
this may be potentially compensated for by including correction factors into the models. This study sug-
gests that estimation of energy intake from CCS may offer a promising alternative to overcome limitations
of self-report.

© 2014 Published by Elsevier Ltd.

Introduction

The study of ingestive behavior in humans is important to iden-
tify and analyze specific patterns of food intake associated with
chronic diseases, such as obesity and type 2 diabetes (Bellisle, 2009).
It is critical to ensure that dietary intake of free-living subjects be
measured accurately and objectively. Doubly-labeled water (Schoeller
& van Santen, 1982; Schoeller & Webb, 1984) is the most precise
method for measuring energy intake over a long period of time, but

cannot identify individual eating episodes. Food frequency ques-
tionnaires, food records, and 24-hour dietary recalls rely on subjects’
self-report of their daily dietary intake and prone to self-report errors
(Thompson & Subar, 2008). Errors in self-reported intake occur when
subjects incorrectly report portion sizes and/or foods consumed
(Beasley, Riley, & Jean-Mary, 2005) or change their eating behav-
ior when asked to record intake (Goris & Westerterp, 1999; Goris,
Meijer, Kester, & Westerterp, 2001).

Previous studies have explored the use of self-report in combi-
nation with technology to improve the accuracy of estimating energy
intake (Ngo et al., 2009; Thompson, Subar, Loria, Reedy, &
Baranowski, 2010). Audio reports (Van Horn et al., 1990), photo-
graphic food records (Martin et al., 2014), personal digital assistants
(McClung et al., 2009) and smart cards (Lambert et al., 2005) are
some of the methods investigated. While these methods are faster
and less burdensome than pen and paper recording, they still rely
on subjects having to take some action to report intake. Most of these
tools do not reduce underreporting of dietary intake (Ann Yon,
Johnson, Harvey-Berino, & Gold, 2006; McClung et al., 2009) and
further development is necessary to improve validity and reliabil-
ity (Ngo et al., 2009). Consequently, it is vital to develop innovative
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methods to measure energy intake of free-living subjects objec-
tively, unobtrusively, and accurately.

Automatic methods for objective dietary assessment based on
wearable sensors have been explored as a potential solution to
replace self-reported intake (Päßler, Wolff, & Fischer, 2012; Sazonov
et al., 2008; Scisco, Muth, Dong, & Hoover, 2011; Sun et al., 2010).
Food intake detection through recognition of chewing and swal-
lowing instances differentiates food intake from other activities of
daily living, such as talking, yawning, laughing, spontaneous swal-
lows (saliva), head motion, etc. and does not require user input
(Fontana, Farooq, & Sazonov, 2014; Makeyev, Lopez-Meyer, Schuckers,
Besio, & Sazonov, 2012; Sazonov & Fontana, 2012). An earlier study
(Sazonov et al., 2009) used the information extracted from the tem-
poral sequence of chews and swallows to estimate the mass of food
consumed but only considering a highly restricted selection of foods.
The insight obtained from that preliminary study on mass intake
estimation was used to design a new study focused on energy es-
timation, which is described in this article.

The objective of this work was to demonstrate the suitability of
using individualized models based on Counts of Chews and Swal-
lows (CCS) to objectively estimate energy intake. The CCS models
were obtained from a laboratory study where chews and swal-
lows were monitored using wearable sensors and video observation.
The performance of the CCS models was compared against weighed
food records, diet diaries, and photographic food records.

Subjects and methods

Subjects

Thirty healthy subjects (15 females and 15 males) with a mean
(±SD) age of 29 ± 12 years (range: 19–58 years) and a mean (±SD)
body mass index (BMI, in kg/m2) of 27.9 ± 5.5 (range: 20.5–41.7) were
recruited to participate in this study. The study was approved by
an Institutional Review Board and all subjects read and signed an
informed consent form before participating. Subjects with temporo-
mandibular joint (TMJ) disease, dysphagia or other difficulties for
chewing and/or swallowing were excluded from the study.

Study design

Four different methods were used in this study to estimate the
total amount of food ingested by subjects at meal time: weighed
food records completed by study staff; diet diaries completed by sub-
jects; photographic food records taken by study staff; and
mathematical models based on CCS. Data from weighed records, diet
diaries, and photographic records were entered into the food anal-
ysis program, Nutrient Data System for Research (NDS-R; University
of Minnesota, Minneapolis, MN) to derive total energy intake. Data
entry was performed by a single, trained operator at the Colorado
Clinical and Translational Sciences Institute’s (CCTSI) Nutrition Core.
Total energy intake for the CCS model was estimated by combin-
ing mass estimations and caloric densities of each food eaten.
Individual caloric densities were extracted from the nutritional anal-
ysis performed by NDS-R.

Comparisons were made between CCS models, diet diaries, and
photographic records with respect to weighed records which were
used as the gold standard. The difference was expressed as the ab-
solute value of the percent of error (hereafter reporting error).

Protocol

Each subject consumed 4 full meals in 4 different visits at the
laboratory. Visits occurred approximately 1–4 weeks apart, at exactly
the same time of the day, but not necessarily on the same day of
the week with the expectation that any potential difference in the

eating behavior between weekend and weekdays (Haines, Hama,
Guilkey, & Popkin, 2003) should be accurately captured. Approxi-
mately one third of the total subjects were scheduled for breakfast,
one third for lunch, and one third for dinner time to cover the variety
of foods typical for these meals.

Each subject was asked to choose two different meal selections
according to their own preferences from the menu offered by one
of the Clarkson University food courts. Precise nutritional informa-
tion of each food selection of the menu was readily available. A
typical meal selected by subjects contained 1 to 3 different food types
and 1 or 2 different drinks (Table 1). The first meal selection was
served in three of the visits (exact same food types and drinks) and
used as training meals for CCS mathematical model development.
The second meal selection was randomly served either in the third
or the fourth visit and considered the validation meal.

The subjects’ eating behavior was recorded with wearable sensors
for monitoring of swallowing and jaw motion (Table 2 and Fig. 1)
and a video monitoring system (Fontana, Lopez-Meyer, & Sazonov,
2011). Each visit followed the procedure shown in Fig. 2. All sub-
jects had an unlimited time to consume the meal in the amount
they desired. The stored sensor data and video were then used by
a human rater to manually annotate the foods being consumed, bites,
chewing sequences and boundaries of every spontaneous (saliva)
and food swallow using custom-designed software (Sazonov et al.,
2008). The swallowing instances and the number of chews in a
chewing sequence were counted and annotated. The annotations
were used to build the energy intake models described in this
manuscript.

Energy intake measurements

Weighed food records
A trained member of the study staff documented the food choices

and weighed all foods and beverages individually before and after
each meal.

Diet diary
During the first visit, subjects were trained in completing a diet

diary by a member of the study staff. Provided instructions

Table 1
Description of type and frequency of the foods served during the experiments (30
participants, four meals each). Portion sizes were standard sizes of foods sold in the
food court.

Food item Number of
times served

Food item Number of
times served

Apple 13 Muffin 7
Bacon 7 Oatmeal 8
Bagel 3 Orange 7
Banana 20 Pancakes 1
Breadstick 3 Pasta 12
Brownie 3 Pickle 1
Burger 3 Pizza 16
Carrots 2 Potatoes 5
Cereal with milk 17 Salad 16
Chicken nuggets 5 Sandwich 22
Chips 12 Sausage 6
Chocolate milk 6 Soda 12
Cinnamon roll 6 Spinach 2
Coffee 9 Squash 1
Cookie 33 Stir fry 6
Corn 4 Meatballs 1
Eggs 10 Tea 13
French fries 6 Toast 8
Hot chocolate 16 Turkey breast 4
Juice 22 Waffle 2
Meatloaf 1 Water 54
Milk 9 Yogurt 19
Mixed veggies 2
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included verbal and written information on estimation and record-
ing of foods and portion sizes as well as “a portion estimation aid”
sheet (CCTSI Nutrition Core, 2014a, 2014b). The training was only
provided on the first visit so that subsequent records were ob-
tained under conditions most similar to free living.

At the end of each meal, subjects were instructed to record each
item they consumed in a blank diary, indicating the type of food,
amount consumed, and preparation style. No help was given to the
subjects during this stage; however, the journal was reviewed to
ensure that it was completed appropriately (i.e. all food listed had
a portion size and description assigned). Subjects were not prompted
to add any food or drink they had forgotten to list.

Photographic food records
Pre- and post-meal photographs were taken using a digital camera

by a trained member of the study staff. The serving plate occupied
the entire field of view and photographs were taken at a 45 degree
angle so that the depth of foods could be estimated (Higgins et al.,
2009). Pictures of each food item were taken before the meal and
after subjects finished eating and then used by a trained CCTSI Nu-
tritionist to estimate portion sizes and calculate total energy intake.

Counts of chews and swallows
Estimation of the energy consumed during each meal was per-

formed using individually-calibrated CCS models. Figure 3 illustrates
the procedure for training and validation of the mass estimation
models. During model training, the following individually-calibrated
parameters were computed for each subject based on the total
number of chews and swallows observed in the training meals:

• Average mass per chew of solid foods (MPChew).
• Average mass per swallow of solid foods (MPSwS).
• Average mass per swallow of liquids (MPSwL).

These parameters were used to create models to predict the mass
of consumed solids (MS) and liquids (ML) using the methods of
Sazonov et al. (2009). A detailed description of the prediction models
can be found in the Appendix. During model validation, the models
created in the training stage were used to estimate the mass in-
gested in the validation meal, thus testing ability of the method to
generalize energy intake predictions to foods and beverages dif-
ferent from those in the training meal.

The energy content of each food item was assessed by multi-
plying the mass estimated from the count of chews and swallows
by caloric density which was extracted from the nutritional anal-
ysis by NDS-R. The total energy consumed in a meal was computed
as a sum of the energy content of all food items in a meal (see Ap-
pendix for details). The same methodology was used to estimate
the total energy intake for both training and validation meals.

Two additional models, the first relying only on counts of chews
and the second relying only on counts of swallows, were created in
a similar manner and evaluated to determine whether or not chews
or swallows can be used independently to estimate energy intake.

Statistics

Sample size estimation was based on the results obtained in
Sazonov et al. (2009), which achieved 92% accuracy of mass esti-
mation for solid food and 84% for liquids. Sample size estimation
was performed using a Wilcoxon–Mann–Whitney two-sample rank-
sum test to detect statistical significance in between-method
reporting error. It was assumed that the probability that the re-
porting error in one group was higher or lower than another group
is 0.756, corresponding to the effect size of approximately one
common standard deviation of reporting error. Based on these as-
sumptions, we estimated that a sample size of 20 subjects would
ensure 80% power at 5% significance. In anticipation of subject

Table 2
Description of the instrumentation module used to monitor the ingestive behavior of participants during each visit.

Modality Sensor Sensor description Sensor location

Swallowing Throat microphone (IASUS NT) The microphone allowed the detection of
swallowing sounds.

Over the laryngopharynx (Fig. 1, left). Fastened to
the neck using a neoprene collar.

Chewing Piezoelectric strain sensor
(LDT0-028K, Meas-Spec Inc.)

The strain sensor allowed monitoring the
jaw motion during chewing.

Immediately below the earlobe (Fig. 1, right).
Attached to the skin using medical adhesive
(Hollister 7730).

Videotape Digital camera
(PS3 Eye, Sony Corporation)

A PS3 Eye camera was used to videotape
the participants throughout the
experiment.

Position of the camera was adjusted to obtain an
acceptable view of the subject under study.

Fig. 1. Wearable sensors used to monitor swallowing and chewing activities. The figure on the left hand side shows the swallowing sensor, a throat microphone that cap-
tured sounds at the larynx level. The figure on the right hand side shows the chewing sensor, a piezoelectric strain sensor that captured changes in the skin curvature produced
during motion of the jaw bone.
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dropout and possible failures of measurement equipment leading
to exclusion of subjects, a sample size of 30 subjects was selected
for this study.

The reporting error in estimated energy intake (EI) in a meal was
calculated for each method with respect to weighed records (EIWR)
as follows:

Reporting error = − ×EI EI
EI

WR

WR

100% .

Means and SDs of the reporting errors were calculated for sub-
jects who completed the 4 visits and had weighed food record, diet
diary, photographic food record, and CCS data available for all meals.

Fig. 2. Flow diagram describing the protocol followed to collect food intake data at each visit.
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For the training meals, the average reporting error was evaluated
using the 3-fold cross-validation technique (Kohavi, 1995). Two of
the training meals were used to train a CCS model and the third
training meal was used to evaluate accuracy. This process was re-
peated 3 times, with each meal used once to evaluate the model.
The results were averaged to produce a single estimation of the re-
porting error. For the validation meal, the CCS model was trained
on the data from the three training meals and evaluated on the val-
idation meal.

Reporting errors for CCS models, diet diaries, and photograph-
ic records were compared using a one-sided Wilcoxon–Mann–
Whitney two-sample rank-sum test, which is preferred over Student’s
t-test due to the potential presence of outliers in the reporting errors.
Additionally, Bland–Altman analysis (Bland & Altman, 1999) ac-
counting for the clustering effect of repeated measures was
performed to assess the accuracy of the estimation methods for the
training meals.

To evaluate the impact of physical properties of different foods
on estimates of energy intake, means and SDs of MPChew and MPSwS

values were calculated for 7 representative food items and com-
pared using two-sample t-tests.

In all cases, statistical differences were considered significant at
p < 0.05. R software (Version 2.15.1, The R Foundation for Statistical
Computing, Vienna, Austria) was used to perform Wilcoxon–Mann–
Whitney tests, whereas Matlab (R2011b, MathWorks Inc, Natick, MA)
was used to perform all t-test analyses. SAS 9.3 software (SAS Insti-
tute Inc, Cary, NC, USA) was used for Bland–Altman analysis.

Results

Two subjects were excluded from the 30 subjects participating
in the study, because of missing sensor data caused by equipment

failure. The remaining 28 subjects had a mean (±SD) age of
29 ± 12 years (range: 19–58 years) and a mean (±SD) BMI of 28.0 ± 5.6
(range: 20.5–41.7).

Reporting errors for all methodologies are presented in Table 3.
For the training meals, the average reporting error of the CCS model
(based on both chews and swallows) was significantly lower than
that of diet diary (p < 0.01), but not significantly different than the
average error of photographic records (p = 0.16). The Bland–
Altman analysis indicated that the bias in energy estimation was
positive (overestimated) for the photographic method, but nega-
tive (underestimated) for diet diary and the CCS model (Table 4).
Additionally, energy intake estimation of the CCS model had the
lowest bias and the narrowest limit of agreement with the gold stan-
dard, weighed food method (Fig. 4). For the validation meal, the

Fig. 3. Procedure for training and validation of the mass estimation models. Counts of chews and swallows from meal selection 1 were used to train the models. Same
information from meal selection 2 was used to validate the models.

Table 3
Reporting errors (in %) for energy intake estimation for training and validation meals
relative to energy intake assessed from the weighed recordsa (N = 28). (Mean values
and standard deviations).

Energy estimation
methods

ENERGY

Training meals Validation meal

Mean SD Mean SD

CCS Models
Chews only 19.42 10.14 30.42 23.08
Swallows only 18.76b 10.35 34.27 31.86
Chews and Swallows 15.83b 9.41 32.23 24.84

Diet diary 27.86 29.67 25.69 21.90
Photographic food records 19.95 11.45 21.11 15.55

a Differences between each CCS models, diet diary, and photographic food records
were tested by using one-sided Wilcoxon–Mann–Whitney two-sample rank-sum test.

b Significantly lower than diet diary, p < 0.05.
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reporting error of the CCS model was not significantly different from
either the diet diary or photographic food records.

For the training meals, the CCS model based only on counts of
swallows showed average reporting error significantly lower than
the diet diary (p = 0.04), but not significantly different from pho-
tographic food records (p = 0.42). For the validation meal, no
significant differences were found between the CCS model and either
diet diary or photographic records.

The CCS model based only on counts of chews showed report-
ing errors that were not significantly different than the diet diary
and photographic methods for both the training and validation meals.

Differences in the MPChew and in the MPSwS values between 7
representative food items are shown in Table 5. The results indi-
cate the presence of significant differences in the MPChew values
between all food types (p < 0.0001 in all cases) and significant dif-
ferences in the MPSwS values between most food types (except pizza–
pasta and pizza–cookies pairs), which may be attributed to
differences in the food densities.

Discussion

Estimation of energy intake from the individually-calibrated
mathematical models relying on counts of chews and swallows may
offer a promising alternative to overcome the limitations of self-
report. In this study, a novel CCS method was implemented that
included no self-report from the subject.

Results of cross-validation on the training meals show that CCS
models were able to capture individual responses to consumption
of identical meals, estimating the energy consumed in a meal sig-
nificantly better than diaries and with a lower bias than both diet
diary and photographic food record methods (Table 4). A further
comparison of these methods by the Bland–Altman plot analysis
demonstrated that the CCS was the best method for energy intake
estimation (Fig. 4). These results concur with the results from our
previous study (Sazonov et al., 2009). However, the current study
covered a much wider variety of foods (45 vs. 5) and assumed no
restriction in the way the food was consumed, thus presenting a
more realistic scenario of food intake.

Evaluation of CCS models on the validation meal demon-
strated satisfactory performance for most of the subjects, although
the prediction errors were not significantly different from either the
diet diary or the photographic food record methods. One explana-
tion is that in the present study diet diary records appeared to be
highly accurate, with one third of subjects achieving errors lower
than 10%, whereas the expected range of error is 35–50% (Lichtman
et al., 1992; Suchanek, Poledne, & Hubacek, 2011). Therefore, it
appears that under the conditions used in this study, the accuracy
of the diet diary method was high and that CCS models matched
this high level of accuracy. In addition, unlike the diet diary, where
reporting error increases with the duration of the recording period
(Goris, Meijer, & Westerterp, 2001), it could reasonably be ex-
pected that CCS models would not show major changes over long
periods of time as they do not rely on subject participation and

motivation. The lower reporting bias observed over the three train-
ing meals with the CCS model supports this assumption.

The increase in reporting error observed for the validation meal
suggests that CCS model performance is affected by the differ-
ences in physical properties of the food items (i.e. hardness, moisture,
density, tackiness, etc.) consumed during the training and the val-
idation meals (Table 5). These differences negatively affected the mass
estimation of the solids and liquids consumed, and, in turn, im-
pacted the accuracy of energy intake estimates. A potential solution
to improve the performance of the models may be to adjust the
MPChew and/or MPSw parameters according to the consumed food.
The ratios of these parameters for different food types can be used
as a correction factor for energy estimation. As an example, the

Table 4
Results of the Bland–Altman analysis for the energy estimation (in kCal) for the train-
ing meals (N = 28).

Bias SD of individual
difference

Lower
LOA

Higher
LOA

Weighed vs. Diet diary −60 367.1 −779.54 659.57
Weighed vs. Photographic

records
83.6 230.6 −368.31 535.45

Weighed vs. CCS models −8.6 186.2 −373.52 356.28

LOA: Limits of Agreement.

Fig. 4. Bland–Altman plots for the training meals. They address the accuracy of the
dietary assessment methods evaluated in this study with respect to the weighed
food records. CCS models (bottom) presented the narrowest limits of agreement when
compared to diet diary (top) and photographic food records (middle).
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average prediction error for a subject consuming salad (training meal)
and pasta (validation meal) was reduced from 29.4% to 11.9% when
applying such a correction factor. Another possible approach could
be to compute separate MPChew and MPSw parameters for groups
of foods with similar physical properties.

In this study, three training meals were used to build the math-
ematical models. The rationale for selecting three meals was based
on several previous studies that established that at least three days
of recording are necessary to obtain a realistic estimate of sponta-
neous energy intake in free-living subjects (Nelson, Black, Morris,
& Cole, 1989). Future studies will be focused on extending the eval-
uation of model performance to free-living conditions.

One of the main benefits of the proposed methodology is the
potential to implement the sensor system as a minimal burden wear-
able device. The sensor burden evaluated by a survey at the
completion of the study indicated that chewing and swallowing
sensors did not significantly affect the way subjects consumed their
meals (Fontana & Sazonov, 2013) suggesting that the recording
burden can be significantly attenuated.

Although a substantial amount of resources (equipment and per-
sonnel) was required to perform the experiments of this study, the
demand for resources will be substantially reduced when the wear-
able sensor system is implemented as a self-administered device
with support for automatic food photography. Integrating a min-
iature camera into the wearable device (Liu et al., 2012) and
triggering the camera from the jaw motion or swallowing sensors
will allow to capture images of the food being consumed and use
these images for estimation of caloric density. The development of
such wearable device is currently underway (Fontana et al., 2014).

The insight earned and the limitations encountered in this study
will be taken into consideration in designing new studies. In par-
ticular, the ability of the wearable sensors to obtain clear chewing
and swallowing counts under free-living circumstances needs to be
evaluated. Moreover, the changes in the eating behavior of free living
individuals being monitored by the sensors (observation effect) need
to be quantified.

Conclusions

The results of this study indicate that models for estimation
of energy intake based on the counts of chews and swallows
may present an appealing alternative to self-report. Further

technology development and human studies are needed to
evaluate applicability of the method to free-living individuals and
accuracy of energy intake measurement under free living
conditions.
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Appendix

The following models were used to estimate the amount of mass
and energy ingested by individuals based of the counts of chews
and swallows.

The total mass ingested (MT) by one subject during the entire
meal was calculated as:

M M MT S L= + (1)

where MS is the mass of solid food ingested and ML is the mass of
liquids ingested in the meal.

Mass of solids (MS) was predicted as:

M

M w MPSw
s

s s

= +
= ⋅

Mass from count of swallows Mass from counts of chews

SS sw
s

c f chewN w MPChew c N⋅ + ⋅ ⋅( )⋅ (2)

where:

ws ∈{ }0 0 5 1, . , = weight parameter for mass prediction using
number of swallows;
wc ∈{ }0 0 5 1, . , = weight parameter for mass prediction using
number of chews;
MPSwS = subject’s average mass per swallow of solid food;
MPChew = subject’s average mass per chew;
Nsw

s = total number of swallows for solid food intake;
Nchew = total number of chews;
c f = correction factor;

The parameters ws and wc assigned a weight to the mass pre-
diction using counts of swallows and counts of chews respectively.
The sum ws + wc must be equal to 1 in all cases. If mass estimation
was based only on counts of swallows, then ws = 1 and wc = 0. If mass
estimation was based only on counts of chews, then ws = 0 and wc = 1.

For estimating the consumed mass in the validation meal, a cor-
rection factor cf was used to modify the parameters the MPChew
based on the number of chews per swallow (CPSw) observed in the
training stage. The cf was calculated as:

c
CPSw

CPSw
f

training

validation

=

where CPSwtraining was the subject’s average chews per swallow rate
calculated from the training meals and CPSwvalidation was the average
number of chews per swallow for each food item in the validation
meal.

Mass of liquids (ML) was predicted as:

M MPSw NL L sw
L= × (3)

where:

MPSwL = subject’s average mass per swallow of liquid
Nsw

L = total number of swallows for liquid intake;

Finally, the total energy intake (EI) was calculated as:

EI m CDT ii

N

i= ⋅∑ (4)

where mTi is the consumed mass for the distinct food type i as cal-
culated using Eq. (2) or (3) and CDi is the caloric density associated
to the same food type i. N is the total number of distinct foods types
consumed in the meal.
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