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Abstract

The natural vibrations and critical loads of foundation beams embedded in a soil simulated with two elastic
parameters through the Winkler–Pasternak (WP) model are analysed. General end supports of the beam are
considered by introducing elastic constraints to transversal displacements and rotations. The solution is tackled
by means of a direct variational methodology previously developed by the authors who named it as whole
element method. The solution is stated by means of extended trigonometric series. This method gives rise
to theoretically exact natural frequencies and critical loads. A particular behaviour arises from the analysis
of the lateral soil in2uence. It is found that the boundary conditions of the beam are in2uenced by the soil
at the left and right sides of the beam. The possible alternatives are that the soil be cut or dragged by the
non-4xed ends of the beam. In the standard WP model, the lateral soil in2uence is not considered. Natural
frequencies and critical load numerical values are reported for beams and piles elastically supported and for
various soil parameters. The results are found with arbitrary precision depending on the number of terms taken
in the series. Some unexpected modes and eigenvalues are found when the di6erent alternatives are studied.
It should be noted that this special behaviour is present only when the Pasternak contribution is taken into
account. ? 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Winkler foundation; Pasternak foundation; Vibration; Buckling

1. Introduction

The behaviour of beams embedded in an elastic foundation is an engineering subject of practical
and theoretical interest. The Winkler model [1] is frequently adopted for the soil. Its simplicity
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allows closed-form solutions to be found for various problems. However, a more realistic hypothesis
is considered in the elastic soil model with two parameters developed by Pasternak [2] though 4rst
introduced by Kerr [3]. The dynamics and stability of beams in Winkler elastic soil have been
extensively analysed [4–9]. The case of beams on a two-parameter soil has received less attention,
probably due to the model complexity and due to the diHculties in the estimation of the parameter
values. Some of the studies have been published in Ref. [10–14].

The main idea of this study is to analyse the free vibrations or the buckling of a beam embedded
in a soil modelled with two elastic parameters from an unusual viewpoint. A particular behaviour
arises from the analysis of the lateral soil in2uence. It is found that the boundary conditions of the
beam are in2uenced by the soil at the left and right sides of the beam. The possible alternatives
are that the soil be cut or dragged by the un4xed ends of the beam. In the standard Winkler–
Pasternak (WP) model, the lateral soil in2uence is not considered. The problem is considered—in
a 4rst stage—studying a stepped, in4nite length beam. Then the analysis is concentrated to the
central span and it is possible to 4nd a consistent behaviour of the soil adjacent to the beam, not
found in the bibliography to the authors’ knowledge. Critical loads and natural frequency results are
presented and discussed for various possible cases of Bernoulli–Euler beams elastically restrained
to translation and rotation at its ends. Due to its algebraic simplicity the exact results are obtained
by means of a methodology developed previously by the authors and named whole element method
(WEM) [15–19]. The conclusions will be valid, of course, for other structural elements in the same
situation.

2. Statement of the problem

Fig. 1 shows the beam embedded in a WP soil. It is modelled at a 4rst stage as an in4nite length,
stepped beam. The elastic characteristics of the soil are given by w∗ (Winkler) and p∗ (Pasternak)
parameters. As is commonly done the soil reaction is assumed purely elastic and not massive. Let
us non-dimensionalise with respect to L and refer all the geometric and physical data to the central
span, i.e. setting x ≡ X=L and ( · )′ ≡ d( · )=dx, etc. The transversal displacement functions for each

Fig. 1. Stepped beam embedded in a Winkler–Pasternak soil.
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beam span are written as

v̂l(X ) = v̂l(Lx) = vl(x) (−∞¡x6 0); (1a)

v̂(X ) = v̂(Lx) = v(x) (0¡x6 1); (1b)

v̂r(X ) = v̂r(Lx) = vr(x) (1¡x6∞): (1c)

Whatever the sign of the displacements are, the medium always reacts similarly. Subscripts l and
r stand for left and right spans, respectively. Also normal vibrations of circular frequency ! are
accepted. The maximum strain and kinetic energies are noted as UT =US +UB +UE and KT = KB,
respectively, where US; UB and UE are, respectively, the strain energies of the soil, of the beam and
of the end springs at x = 0 and x = 1. KB is the kinetic energy of the beam.

2US =w
[∫ 0

−∞
v2l (x) dx +

∫ 1

0
v2(x) dx +

∫ ∞

1
v2r (x) dx

]

+p
[∫ 0

−∞
v′2l (x) dx +

∫ ∞

1
v′2r (x) dx

]
+ (p− P)

∫ L

0
v′2(x) dx; (2)

2UB = jl

∫ 0

−∞
v′′2l (x) dx +

∫ 1

0
v′′2(x) dx + jR

∫ ∞

1
v′′2r (x) dx; (3)

2UE = �0v2(0) + k0v′2(0) + �1v2(1) + k1v′2(1); (4)

2KB

�2 = fl

∫ 0

−∞
v2l (x) dx +

∫ 1

0
v2(x) dx + fr

∫ ∞

1
v2r (x) dx; (5)

The following non-dimensional parameters were introduced:

w ≡ w∗L4

EJ
; p ≡ p∗L2

EJ
; P ≡ P∗L2

EJ
; �2 ≡ �F

EJ
!2L4;

jl ≡ ElJl
EJ

; jr ≡ ErJr
EJ

; fl ≡ �lFl

�F
; fr ≡ �rFr

�F
;

�0 ≡ �∗0L3

EJ
; �1 ≡ �∗1L3

EJ
; k0 ≡ k∗0L

EJ
; k1 ≡ k∗1L

EJ
;

where � is the density, E is the Young’s modulus, J is the moment of inertia of the cross-section and
F is the cross-sectional area. The parameters written as ( · ); ( · )l; ( · )r correspond to the central
span, left span and right span, respectively. Other parameters may be found in Fig. 1. As may be
observed the WP soil is assumed as constituted by elastic springs that react to displacements and
rotations (see Ref. [11]).

The application of the minimum of the total energy principle leads to the general equations and
their boundary conditions, i.e.

�[UT − KT ] = 0; (6)
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where � denotes the 4rst variations of the functionals. From the independent variations �vl(x); �vr(x)
and �v(x) the following equations result:

jlv′′′′l − pv′′l + (w − �2fl)vl = 0; (7a)

jrv′′′′r − pv′′r + (w − �2fr)vr = 0; (7b)

v′′′′ − Qpv′′ + Qwv= 0 (7c)

with

Qp ≡ p− P; Qw ≡ w − �2 (8)

and the boundary conditions at this stage are

p[|v′l �vl|0−∞ + |v′r�vr|∞1 ] + Qp|v′ �v|10 − jl|v′′′l �vl|0−∞

−|v′′′ �v|10 − jr|v′′′r �vr|∞1 + �0v(0) �v(0) + �1v(1) �v(1) = 0 (9)

jl|v′′l �v′l|0−∞ + |v′′ �v|10 − jr|v′′r �v′r|∞1 + k0v′(0) �v′(0) + k1v′(1) �v′(1) = 0: (10)

3. Assumption: p== 0

The problem represented by Eqs (7); (9) and (10) may be solved straightforwardly, even when
other complexities such as Timoshenko, non-uniform beams are considered. The general idea has
been described above. Now, as was anticipated, our interest is the in2uence and the behaviour of
the medium at the left and right of the central span. This is achieved by setting

jl = fl = jr = fr = 0: (11)

That is we assume in4nite length lateral beams of negligible sti6ness and mass. It is a valid case
due to the arbitrariness of these parameters. Then the general solution of the di6erential equations
(7a) and (7b) is simply

vl(x) = Al sinh(cx) + Bl cosh(cx); (12a)

vr(x) = Ar sinh(cx) + Br cosh(cx): (12b)

As p �=0 has been accepted, we may introduce

c2 ≡ w
p
: (13)

Note that the case p= 0 would lead instead to vl(x) = vr(x) ≡ 0.
Elastica (12) may be understood as the displacement of the WP soil adjacent to the central beam.

We also know that

x → −∞ vl → 0 (�vl → 0); (14a)

x → ∞ vr → 0 (�vr → 0) (14b)
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with which and due to solutions (12) the following statements hold:

Al = Bl; (15a)

Ar =−Br: (15b)

That is the shapes of vl(x) and vr(x) are

vl(x) = Al exp(cx); (16a)

vr(x) = Ar exp(−cx) (16b)

and then

v′l(x) = cvl(x); (17a)

v′r(x) =−cvr(x): (17b)

Consequently, it is also veri4ed that

x → −∞ v′l → 0 (�v′l → 0); (18a)

x → ∞ v′r → 0 (�v′r → 0): (18b)

Now after these statements the boundary conditions (9) and (10) turn to be

pv′l(0)�vl(0)− [ Qpv′(0)− v′′′(0)− �0v(0)]�v(0) = 0; (19a)

pv′r(1)�vr(1)− [ Qpv′(1)− v′′′(1)− �1v(1)]�v(1) = 0; (19b)

[v′′(0)− k0v′(0)]�v′(0) = 0; (20a)

[v′′(1)− k1v′(1)]�v′(1) = 0: (20b)

3.1. Discussion of the problem

If the springs are assumed to be of 4nite sti6ness (i.e. constants k0; �0; k1 and �1 ¡∞), it is
consistent to accept that, in general, v(0); v′(0); v(1) and v′(1) are not null. Let us start discussing
possible variants of the behaviour at the soil-beam interface at the ends of the beam.

3.1.1. Possibility I (PI)
We suppose that

(PI)1 vl(0) = v(0);
(PI) v′l(0) = v′(0);

(PI)2 vl(0) �= v(0):
(21)

It is not included but it is easy to demonstrate that (PI)1 should be disregarded since it conduces to
the particular condition v′(0) = cv(0), which may only be veri4ed with a very special combination
of the soil parameters. Also, (PI)2 leads to a violation of the boundary conditions (v′(0) = 0). Then
(PI) is not possible.
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Fig. 2. Case 1. The soil is “cut” at both ends.

3.1.2. Possibility II (PII)
Then, since it is not possible for (PI) to be true, possibility (PII) should hold.

(PII)1 vl(0) = v(0);
(PII) v′l(0) �= v′(0)

(PII)2 vl(0) �= v(0):
(22)

Although not shown alternatives (PII)1 and (PII)2 are valid. Condition (PII)1 introduces a “drag”
of the soil at x = 0; meanwhile, condition (PII)2, also possible, produces a “cut” of the soil at
the same place. A similar analysis may evidently be carried out at x = 1 with analogous con-
clusions. Finally from above, four independent cases may appear, as will be described in what
follows.

3.2. Cases

Case 1 (C1): The soil is “cut” at x = 0 and 1 as depicted in Fig. 2. This is the only case that
has been considered by the related works in the bibliography. It corresponds to (PII)2 at both ends
of the beam. The conditions are

vl(x) = v′l(x) = vr(x) = v′r(x) = 0: (23)

Case 2 (C2): The soil is “dragged” at x = 0 and 1 as shown in Fig. 3, assuming (PII)1 at both
ends of the beam. That is

vl(x) = v(0) exp(cx); (24a)

v′l(x) = cv(0) exp(cx); (24b)

vr(x) = v(1) exp[c(1− x)]; (24c)

v′r(x) =−cv(1) exp[c(1− x)]: (24d)
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Fig. 3. Case 2. The soil is “dragged” at both ends.

Fig. 4. Case 3. The soil is “cut” at the left and “dragged” at the right.

As was said before

vl(0) = v(0); (25a)

v′l(0) = cv(0) �= v′(0); (25b)

vr(1) = v(1); (26a)

v′r(1) =−cv(1) �= v′(1): (26b)

Case 3 (C3): The soil is “cut” at x=0 and “dragged” at x=1 as shown in Fig. 4—(PII)2 at the
left of the beam and (PII)1 at the right of the beam. That is

vl(x) = v′l(x) = 0; (27a)

vr(x) = v(1) exp[c(1− x)]; (27b)

v′r(x) =−cv(1) exp[c(1− x)]: (27c)
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Fig. 5. Case 4. The soil is “dragged” at the left and “cut” at the right.

Then

vr(1) = v(1); (28a)

v′r(1) =−cv(1) �= v′(1): (28b)

Case 4 (C4): The soil is “dragged” at x = 0 and “cut” at x = 1. See Fig. 5. That is

vl(x) = v(0) exp(cx); (29a)

v′l(x) = cv(0) exp(cx); (29b)

vr(x) = v′r(x) = 0: (29c)

and

vl(0) = v(0); (30a)

v′l(0) = cv(0) �= v′(0): (30b)

If two constants  0 and  1 which assume value 0 or 1, are introduced

Case 1 2 3 4
 0 0 1 0 1
 1 0 1 1 0

the four boundary conditions for each of the four cases developed above may be written generically
as follows:

v′′′(0)− Qpv′(0) + (�0 +  0
√
wp)v(0) = 0; (31a)

v′′(0)− k0v′(0) = 0; (31b)

v′′′(1)− Qpv′(1)− (�1 +  1
√
wp)v(1) = 0; (31c)

v′′(1) + k1v′(1) = 0: (31d)
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4. Solution of the problem

Obviously, the solution of the di6erential equation (7c) + boundary conditions may be found
using classical tools in an elementary way by solving a characteristic quartic equation. Its roots will
be complex, in general, depending on the discriminant sign which in turn depend on P and �. It
is a rather easy task to state then the four boundary conditions that correspond (C1 or C2 or C3
or C4) that will allow to 4nd the eigenvalue P or �. However, the authors have preferred in this
paper to make use of a tool developed before and named WEM [15–19] and that leads to exact
eigenvalues and mode shapes. Actually, the method yields arbitrary precision solutions [19].

We are dealing with a direct variational method (not a Ritz one) that starts from an ad hoc
functional. Then the extreme condition is imposed on the functional written with certain extremizing
sequences that should satisfy only the eventual essential boundary conditions of the problem. In the
present study, no restriction is imposed since all the four conditions at the boundary are natural.
On the other hand—and this is another reason to use WEM—the functional (the total energy of the
system, in this problem) may also be written in a single general statement for all the four cases
described in the previous section, as follows:

F[v] =
∫ 1

0
[v′′2(x) + Qpv′2(x) + Qwv2(x)] dx + k0v′2(0) + k1v′2(1)

+ (�0 +  0
√
wp)v2(0) + (�1 +  1

√
wp)v2(1): (32)

Let us clarify the meaning of the terms outside the integral of Eq. (32) and which do not correspond
to the springs represented in expression (4). These terms arise from the introduction of solutions
(16) and (17) in the improper integrals of Eq. (2), taking into account expressions (23) or (24)
or (27) or (29), according to the case. There is an energy contribution of the adjacent soil (unless
it is “cut” at x = 0 and x = 1;  0 =  1 = 0) that modi4es, in appearance, the sti6ness of the end
springs. If w=0 and=or p=0 this contribution disappears, as is the commonly accepted case in the
bibliography.

Also, it may be seen that from the condition �F[v] = 0 for arbitrary �v the di6erential equation
(7c) and the boundary conditions (31) are obtained.

Now the practical application of WEM is summarised in the following steps:

• The extremizing sequences vM (x); v′M (x) and v′′M (x) are de4ned. They are extended trigonometric
series [18]. The authors have demonstrated (the theorems may be found in Ref. [17]) that the
essential functions are uniformly convergent towards the classical solution. The essential functions
are those involving the function and derivatives up to order k − 1, where 2k is highest derivative
order in the di6erential equation. In this problem, the essential functions are v(x) and v′(x).
Eventual essential boundary conditions are required to the complete sequence and not to each
co-ordinate function.

• The sequences are replaced in F[v] obtaining

FM = F[vM ]: (33)

• The stationary condition of FM is imposed with respect to the unknown introduced by the ex-
tremizing sequences

Q�FM = 0; (34)

thus, arriving at the solution of the problem.
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The extremizing sequences assumed in this study are (they are not unique)

v′′M (x) =
M∑
i=1

Aisi; (35a)

v′M (x) =−
M∑
i=1

Aici
$i

+ A0; (35b)

vM (x) =−
M∑
i=1

Aisi
$2i

+ A0x + a0; (35c)

where {Ai} (i = 1; 2; : : : ; M); A0 and a0 are the unknowns, while

sk ≡ sin $kx; (36a)

ck ≡ cos $kx (36b)

with $k ≡ k& (k = 1; 2; : : : ; M). This selection guarantees the convergence in L2 (in the mean) for
v′′(x) but, as was said, uniform convergence for v′(x) and v(x) as well as exactness achieved with
arbitrary precision for the eigenvalues � (frequency) and P (critical load). As may be observed
from Eq. (31), there are only natural boundary conditions. Then no restriction has to be imposed
to the sequences. Now, once series (35) have been introduced, condition (34) implies the following
(M + 2) conditions

9FM

9Ai
= 0 (i = 1; 2; : : : ; M); (37a)

9FM

9A0
= 0; (37b)

9FM

9a0
= 0: (37c)

Eqs. (37) give place to

AiDi = 2 Qw$2i (A0L1
i + a0L0

i ) + 2$3i [k0(A0 − S) + (−1)ik1(A0 − Z)] (i = 1; 2; : : : ; M); (38a)

A0D + a0C = Qw*1 + k0S + k1Z; (38b)

A0C + a0R= Qw*0; (38c)

where

Di = $4i + Qp$2i + Qw; Lm
k =

∫ 1

0
xmsk dx (i; k = 1; 2; : : : ; M); (m= 0; 1);

S ≡
M∑

p=1

Ap
$p

; Z ≡
M∑

p=1

(−1)pAp
$p

; *m ≡
M∑

p=1

ApLm
p

$2p
;
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D = Qp+
Qw
3
+ k0 + k1 + �1 +  1

√
wp; C =

Qw
2
+ �1 +  1

√
wp;

R= Qw + �0 + �1 + ( 0 +  1)
√
wp: (39)

5. Numerical results

The problem of 4nding the frequencies � for a beam subjected to a load P lower than the critical
one (including P = 0), or obtaining Pcrit when � = 0 is reduced to an algebraic manipulation. In
turn the modal shapes are calculated by means of Eq. (35).

In Table 1, values of critical loads for a cantilever beam with di6erent combinations of the two
elastic parameters are shown. Since one of the ends of the beam is free, two alternatives are possible:
Case 1=Case 4 and Case 2=Case 3. We may observe that in Case 1 (“cut” of the soil) the values
of the loads are coincident with the results of Ref. [14]. This is due to the fact that both solutions
are exact and “dragging” is not considered in the known bibliography. It is interesting to analyse the
modal shapes. There is coincidence for di6erent cases. Since the “dragging” case ( 1 = 0) depends
on the geometric mean of the parameters w and p, this drag behaviour disappears when one of the
parameters is null. This is the reason why the critical loads do not vary with the Case in the 4rst
row and column of Table 1.

Table 2 depicts values of several natural frequencies for a free beam and various combinations of
the parameters of the soil, w and p. According to the combinations of these parameters, frequencies
lower than the ones found in the bibliography are obtained. This is due to the possibility of “cut”
or “drag” of the soil at the lateral ends of the beam.

Also, Table 3 shows original results both for critical loads according to the Case and for funda-
mental frequencies of axially compressed cantilever beams. Again, the existence of “cut” or “drag”
of the soil at the free end leads to these original results.

6. Comments and conclusions

One could think that the frequencies and critical loads found with the four cases described above,
correspond to a succession of eigenvalues and modal shapes of the same subset; however, this is
not true. In e6ect, the modal shapes of a case are not orthogonal to the ones corresponding to
the remaining cases. The orthogonality holds among the modal shapes of a particular case. The
checking of this property is easily performed. Certain special combinations of k0; k1; �0; �1; w and p
might conduce, in particular, to the orthogonality of mode shapes of di6erent cases. Finally, very
careful tests simulating elastically supported beam embedded in a WP medium should be carried out
in order to conclude the correct model, i.e. whether the soil at the ends is “dragged” or “cut”. The
possibility of behaviour changing from a case to another is unexpected. Furthermore, it could be
concluded that the WP model would be 4ctitious since—though dealing with a linear problem—the
uniqueness of the solution in the classical sense, is not ensured. On the other hand, two causes
will avoid the existence of Cases 2–4. One of them is that the end boundaries of the beam restrict
the transverse displacements. The other cause appears when one of the elastic parameters of the
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Table 1
Critical loads P(� = 0). Cantilever beam. �0 = k0 = 106(→ ∞); �1 = k1 = 0. M = 10; 000a

w Mode shape p= 0 p= 0:5&2 p= &2 p= 2:5&2

C1 = C4 C2 = C3 C1 = C4 C2 = C3 C1 = C4 C2 = C3 C1 = C4 C2 = C3

0 2.4674 2.4674 7.4023 7.4023 12.3371 12.3371 27.1415 27.1415

1 2.6500 2.6500 7.5848 9.3513 12.5196 15.0023 27.3240 31.1966

100 11.9964 11.9964 16.9312 23.4945 21.8660 30.0584 36.6704 47.0132

10,000 100.012 100.012 104.947 124.856 109.882 136.790 124.686 163.619

aNote: when p= 0 (∀w) and w = 0 (∀p) C1 = C4 = C2 = C3.

soil (or both) is null. As may be concluded from the above expression, there is a coupling and
its magnitude is given by the geometric mean of the parameters when they are not null. It is a
contribution formally identical to the action of extensional springs that modify the values of �.

The discussion of the model was done for a Bernoulli–Euler beam, but evidently the conclusions
are general. Similar 4ndings may be got for the Timoshenko beams, non-uniform beams, plane plates,
elements with intermediate masses, springs or supports, etc.

From the analysis of the results of frequencies and critical loads, one observes important variations
on the values of critical loads for the same physical–geometric example depending on the possibility
or not of “dragging” or “cut” of the soil. This relevant di6erence in the eigenvalues is also seen in
Table 3, in the values of natural bending frequencies for columns subjected to an axial load.
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Table 2
Natural frequency parameter � of a free beam (�0 = k0 = �1 = k1 = 0): P = 0; M = 10; 000: Case 1, Case 2 and Case 3 = Case 4a

p 0 1 25 100

w C1 C2 C3 = C4 C1 C2 C3 = C4 C1 C2 C3 = C4 C1 C2 C3 = C4

0 22.3733 22.3733 22.3733 23.4507 23.4507 23.4507 41.0209 41.0209 41.0209 70.1390 70.1390 70.1390
61.6728 61.6728 61.6728 62.5490 62.5490 62.5490 80.4621 80.4621 80.4621 118.324 118.324 118.324
120.903 120.903 120.903 121.673 121.673 121.673 138.775 138.775 138.775 180.946 180.946 180.946

1 16:724b 17:473b

22.3956 22.3956 22.3956 23.4720 23.6412 23.5570 41.0331 41.4603 41.2479 70.1462 70.5531 70.3501
61.6809 61.6809 61.6809 62.5570 62.6211 62.5891 80.4684 80.7151 80.5920 118.329 118.622 118.475
120.907 120.907 120.907 121.677 121.710 121.694 138.779 138.926 138.853 180.949 181.163 181.056

25 8:2355d

10:857c

32:727b 35:903b 34:374b

22.9252 22.9252 22.9252 23.9778 24.8038 24.4000 41.3245 43.4228 42.4013 70.3170 72.3229 71.3314
61.8752 61.8752 61.8752 62.7846 63.0960 63.0640 80.6173 81.8541 81.2416 118.430 119.893 119.166
121.006 121.006 121.006 121.776 121.941 121.941 138.865 139.605 139.236 181.015 182.088 181.553

100 13:423c 11:394c 16:527c 13:208c

13:039b 12:077b 24:858b 33:853b 39:582b 36:886b

24.5064 24.5064 24.5064 25.4938 27.0453 26.3027 42.2222 46.2693 44.3446 70.8483 74.7678 72.8496
62.4783 62.4783 62.4783 63.3434 63.9804 63.6640 81.0812 83.5528 82.3401 118.746 121.662 120.221
121.316 121.316 121.316 122.083 122.413 122.248 139.135 140.620 139.883 181.222 183.372 183.304

aNote: when p= 0 (∀w) and w = 0 (∀p) C1 = C4 = C2 = C3.
bAntisymmetric mode.
cSymmetric mode.
dGeneral mode.
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Table 3
Critical loads (two 4rst rows) and fundamental frequencies. Cantilever beam �0=k0=106; �1=k1=0: M=10; 000: w=p=25.

Axial load P Case Fundamental Mode shape
frequency �

Pcr1 = 31:2941 C4 = C1 0

Pcr2 = 42:2873 C3 = C2 0

P = 20¡Pcr1;2 C4 = C1 7.6337

C3 = C2 11.3683

P = 35¿Pcr1 C4 = C1 9.2243

C3 = C2 13.9300
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On the contrary, Table 2 shows that the di6erence is not so important when comparing the three
cases. In this Table, it is worth noting a particular behaviour. As is known, a free beam without
the in2uence of soil or in a soil with low values of w and p has a symmetric 4rst mode shape.
Special combinations of w and p values may conduce to an asymmetric, quasi-rigid 4rst mode (e.g.
w= 1; p= 25; C1 and C2). As the soil becomes sti6er (larger values of w and p), new and lower
frequencies appear corresponding to quasi-rigid mode shapes (see caption of Table 2).

A 4nal comment, beyond the academic character of the study and the eventual questioning of
the classical WP model. Relevant changes on the behaviour of the beam with free or elastically
restrained ends have been found when the drag e6ect was introduced. Further analysis should be
carried out in order to con4rm or disregard this hypothesis.
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