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Abstract. Extended trigonometric series of uniform convergence are proposed as a method to solve the nonlinear
dynamic problems governed by partial differential equations. In particular, the method is applied to the solution
of a uniform beam supported at its ends with nonlinear rotational springs and subjected to dynamic loads. The
beam is assumed to be both material and geometrically linear and the end springs are of the Duffing type. The
action may be a continuous load q = q(x, t) within a certain range and/or concentrated dynamic moments at
the boundaries. The adopted solution satisfies the differential equation, the initial conditions, and the nonlinear
boundary conditions. It has been previously demonstrated that, due to the uniform convergence of the series, the
method yields arbitrary precision results. An illustration example shows the efficiency of the method.
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1. Introduction

Classically, the dynamic behavior of problems governed by partial differential equations are
addressed by means of a Galerkin-type technique with a separation of variables, using a
trial function in the space domain. Other alternatives include the harmonic balance or mul-
tiple scale methods. Also, purely numerical methods such as Runge–Kutta and other time-
integrative techniques are in common use.

In any case, the solution obtained is approximated. Since the spatial mode shape is not
evident when the boundary conditions are nonlinear, the measure of the magnitude is not
available with some of these methods. Nor is it possible to obtain using symbolic algebra
packages or standard finite element algorithms.

In this paper, the nonlinear differential problem is solved using an original methodology
which yields arbitrary precision results. The method is based on the use of an extended
trigonometric series of uniform convergence that has been applied previously for finding the
solution of a wide variety of boundary-value problems [6–9]. The tool is called WEM1 or
simply WEM and leads to a generalized solution. Also, initial conditions (IC) problems were
tackled with this technique [10]. When dealing with partial differential equations, with bound-
ary conditions (BC) + IC, this type of methodology is usually applied to the space domain and
integration techniques (central difference, Newmark methods, and so on) are used for the time
domain [11]. In particular, the title problem was solved in [12] using WEM1 for the space
variable. A linear problem governed by a partial differential equation (BC + IC) was analyzed
using WEM1 and reported in [13].
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Figure 1. Linear beam supported on nonlinear springs and subjected to a dynamic load.

Alternatively, two-dimensional series of a-priori uniform convergence have shown great
efficiency in finding a nonvariational solution that satisfies, in the domain, the differential
equation and all its boundary conditions. The first author has described this methodology in
[14] where alternative variants are shown. For the sake of order, let us call the method herein
employed WEM2.

So as to illustrate the type of extended series to be used, described briefly in Appendix A,
let us introduce φ = φ(x, y), a continuous function in {D : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} such that

|φMN − φ| → 0, M,N → ∞ in D,

i.e. uniform convergence will hold. φMN(x, y) is a two-dimensional extended uniform conver-
gence series. Among infinite possibilities and with an appropriate selection of the constants
γij , γ0j , γi0, γ00, εj , εi, a0, b0 and k, we may write

φMN(x, y) =
M∑
i=1

N∑
j=1

γij

αiαj
si(x)sj (y)+ x


a0 +

N∑
j=1

γ0j sj (y)

αj




+ y

[
b0 +

M∑
i=1

γi0si(x)

αi

]
+ γ00xy +

N∑
j=1

εj sj (y)

αj
+

M∑
i=1

εisi(x)

αi
+ k.

The following notation was introduced

αm ≡ mπ,

sm(x) ≡ sinαmx, sm(y) ≡ sin αmy, cm(x) ≡ cos αmx, cm(y) ≡ cos αmy,

(m− integer,m > 0,m = i, j).

In this paper, the dynamic response of a uniform straight beam, supported at its ends with sim-
ple supports and nonlinear rotational springs of the Duffing type, is studied. Several authors
have addressed the study of systems with nonlinear boundary conditions (see, for instance,
[1–5]). The beam is subjected to a continuous load and/or dynamic concentrated moments
acting on the springs. Methodology WEM2, using the above introduced sequence, yields
arbitrary precision results. The validity and efficiency of the method proposed in this paper
are illustrated through a numerical example.

2. Problem Statement

Let u = û(X, t) be the dynamic response of a homogeneous, uniform, and straight beam
supported at its ends by simple supports and nonlinear rotational springs and subjected to a
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load q∗ = q̂(X, t) continuous in 0 ≤ X ≤ L and T ∗ ≥ t ≥ 0, as shown in Figure 1. The beam
is elastic with modulus E, mass density ρ, length L, cross section area F , and baricentric
moment of inertia J . Its motion is governed by the partial differential equation

ûXXXX + a∗2 ¨̂u = q∗ (1)

and, ∀t , subjected to the following nonlinear boundary conditions (BC)

BC



EJ ûXX(0, t) = α∗

0 ûX(0, t) + γ ∗
0 û

3
X(0, t)−M∗

0 (t), (a)
EJ ûXX(L, t) = −(α∗

LûX(L, t)+ γ ∗
Lû

3
X(L, t)+M∗

L(t)), (b)
û(0, t) = 0, (c)
û(L, t) = 0, (d)

(2)

and also verify, ∀X, the following initial conditions (IC):

IC

{
û(X, 0) = U ∗

0 (X), (a)
˙̂u(X, 0) = V ∗

0 (X), (b)
(3)

where a∗2 ≡ ρF/EJ, α∗ and γ ∗ are the end spring constants, and M∗
0 and M∗

L are the bending
moments function of t applied at X = 0 and X = L, respectively (M∗

0 (t) = µ∗
0f̂ (t), M

∗
L(t) =

µ∗
Lĝ(t)). We denote (•)X ≡ ∂(•)/∂X, (•̇) ≡ ∂(•)/∂t and so on and U ∗

0 (X), V
∗
0 (X) are known

functions of X that fulfill BC (2) at t = 0.
In conclusion, this work deals with the dynamic study of a (both material and geomet-

rically) linear beam that should fit end supports with springs of nonlinear response. In the
present analysis, the reacting moment is assumed as a cubic function of the end rotations. This
nonlinearity is chosen in order to fix ideas. Other types of nonlinearities may be introduced in
a similar way.

The solution of the problem will be tackled by means of an extended series (of the type
introduced in Section 1). Then a change of variable becomes necessary so that a ‘unitary’
domain {D : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} is considered. We define

x ≡ X

L
, (a)

y ≡ t

T
, (b)

(4)

and [0, T ] is the arbitrary interval of time of interest 0 < T ≤ T ∗ for which the response
is found. Since we denote (•)′ ≡ ∂(•)/∂x, ¯(•) ≡ ∂(•)/∂y, it may be observed that (•)X =
(•)′/L, ˙(•) = ¯(•)/T , etc.

We also introduce the following notation

a2 ≡ a∗2L4/T 2; α0 ≡ α∗
0L/EJ ; γ0 ≡ γ ∗

0 /LEJ ; α1 ≡ α∗
LL/EJ ; γ1 ≡ γ ∗

L/LEJ

and


ν = ν(x, y) ≡ û(Lx, T y) (a)

q = q(x, y) ≡ q̂(Lx, T y)
L4

EJ
(b)

U0 = U0(x) = U ∗
0 (Lx) (c)

V0 = V0(x) = T V ∗
0 (Lx) (d)

M0(y) ≡ M∗
0 (T y)

L2

EJ
;M1(y) ≡ M∗

L(T y)
L2

EJ
. (e)

(5)
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Finally, the nondimensionalized differential problem is

ν′′′′ + a2 ¯̄ν = q(x, y), (6)

BC



ν′′(0, y) = α0ν

′(0, y)+ γ0ν
′3(0, y) −M0(y), (a)

ν′′(1, y) = −[α1ν
′(1, y) + γ1ν

′3(1, y) +M1(y)], (b)
ν(0, y) = 0, (c)
ν(1, y) = 0, (d)

(7)

IC

{
ν(x, 0) = U0(x), (a)
ν̄(x, 0) = V0(x). (b)

(8)

For the sake of simplicity and without loss of generality, we impose

q(x, y) ≡ 0, (a)

f̂ (t) = ĝ(t) = f̂ (T y) = ĝ(T y) = f (y), (b)
M0(y) = µ0f (y), (c)
M1(y) = µ1f (y). (d)

(9)

That is, we accept, that the motion is produced by M0(y) and M1(y) at the boundaries, which
vary with different magnitude in a similar fashion according to f (y) (known). It is assumed
(always possible) that f (0) = 1.

3. Proposition

This proposition will lead to the solution of the nonlinear problem and consists in express-
ing the largest order derivatives in each variable by a series of uniform convergence in two
dimensions. The methodology imposes the following type of expanded series in sines (recall
the Introduction):

ϕMN(x, y) =
M∑
i=1

N∑
j=1

γij

αiαj
sisj + x


a0 +

N∑
j=1

γ0j sj

αj


+ y

(
b0 +

M∑
i=1

γi0si

αi

)

+ γ00xy +
M∑
i=1

εisi

αi
+

N∑
j=1

εj sj

αj
+ k, (10)

which is selected to represent both ν′′′′ and ¯̄ν, naming them ν
′′′′
1 and ¯̄ν2, respectively (see Equa-

tions (11) and (12) below). In this equation and in what follows, si ≡ si(x), sj ≡ si(y), etc.
From P7 of Appendix A, since ν(0, y) = ν(1, y) = 0, (Equations (7c) and (d)), it is true that
ν̄(0, y) = ν̄(1, y) = ¯̄ν(0, y) = ¯̄ν(1, y) = 0. If the satisfaction of the differential equation (6)
with q = 0 at x = 0, 1 is required, the additional result yields ν

′′′′
(0, y) = ν

′′′′
(1, y) = 0.

From these conditions applied in Equation (10) and taking into account expansions of the
type (A13–A15) in the variable y, significant reductions are obtained, as is shown below.
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Consequently, by imposing ν
′′′′
1 and ¯̄ν2, and integrating successively, we have



ν
′′′′
1MN

=
M∑
i=1

N∑
j=1

Aij sisj + y

M∑
i=1

Ai0si +
M∑
i=1

ai0si, (a)

ν
′′′
1MN

= −
M∑
i=1

N∑
j=1

Aij cisj

αi
− y

M∑
i=1

Ai0ci

αi
−

M∑
i=1

ai0ci

αi
+ F1(y), (b)

ν
′′
1MN

= −
M∑
i=1

N∑
j=1

Aij sisj

α2
i

− y

M∑
i=1

Ai0si

α2
i

−
M∑
i=1

ai0si

α2
i

+ xF1(y)+ F2(y), (c)

ν′
1MN

=
M∑
i=1

N∑
j=1

Aij cisj

α3
i

+ y

M∑
i=1

Ai0ci

α3
i

+
M∑
i=1

ai0ci

α3
i

+ x2

2
F1(y)

+ xF2(y)+ F3(y), (d)

ν1MN
=

M∑
i=1

N∑
j=1

Aij sisj

α4
i

+ y

M∑
i=1

Ai0si

α4
i

+
M∑
i=1

ai0si

α4
i

+ x3

6
F1(y)

+ x2

2
F2(y)+ xF3(y)+ F4(y), (e)

(11)

where Aij , Ai0, ai0 are unknown constants and Fm(y) (m = 1, . . . , 4) are integration func-
tions. All the series are uniformly convergent. We use the same reasoning to expand the
derivatives with respect to y.


¯̄ν2MN
=

M∑
i=1

N∑
j=1

Bij sisj + y

M∑
i=1

Bi0si +
M∑
i=1

bi0si, (a)

ν̄2MN
= −

M∑
i=1

N∑
j=1

Bij sicj

αj
+ y2

2

M∑
i=1

Bi0si + y

M∑
i=1

bi0si +G1(x), (b)

ν2MN
= −

M∑
i=1

N∑
j=1

Bij sisj

α2
j

+ y3

6

M∑
i=1

Bi0si + y2

2

M∑
i=1

bi0si + yG1(x)+G2(x), (c)

(12)

where Bij , Bi0, bi0 are unknown constants and Gm(x) (m = 1, 2) are integration functions.
Again, the uniform convergence is verified. With this methodology, not only should the
differential problem (6–8) be verified but also the obvious consistence condition

ν1MN
= ν2MN

∀(x, y). (13)

Without loosing generality, we assume the case of q = 0. As is shown in Appendix B, in
order for the IC to be satisfied, M0 and M1 should not be simultaneously null. Before going
on with the algebra, let us write the expressions ofU0(x) and V0(x) (see, Appendix B for more
details).{

U0(x) = x(1 − x)[θ0 − (θ0 + θ1)x], (a)
V0(x) = x(1 − x)[00 − (00 +01)x]. (b)

(14)

Recall that we have introduced the notation{
θ0 ≡ ν′(0, 0); θ1 ≡ ν′(1, 0), (a)
00 ≡ ν̄′(0, 0); 01 ≡ ν̄′(1, 0). (b)

(15)
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The relationship among the 0’s and the θ’s is stated in Appendix B as well as the µ0 and µ1

expressions as function of θ0 and θ1.
From the boundary conditions (7c) and (7d), it is found that


F4(y) = 0, (a)
F1(y)

6
+ F2(y)

2
+ F3(y) = 0,∀y, (b)

G1(0) = G2(0) = 0, (c)
G1(1) = G2(1) = 0. (d)

(16)

The fulfillment of the initial conditions (8) gives place to (taking into consideration also (16b))


M∑
i=1

ai0si

α4
i

+ F10

6
x(x2 − 1)+ F20

2
x(x − 1) = U0(x), (a)

G2(x) = U0(x), (b)

−
M∑
i=1

N∑
j=1

Bij si

αj
+G1(x) = V0(x), (c)

(17)

where we introduced{
Fj (0) ≡ Fj0 (j = 1, 2), (a)
Fj (1) ≡ Fj1 (j = 1, 2). (b)

(18)

Before stating generally the remaining boundary conditions (7a) and (7b), let us write them in
y = 0, making use of (11c), (15a), (16b) and Appendix B. Thus, we obtain

F10 = 6(θ0 + θ1); F20 = −2(2θ0 + θ1). (19)

Now expressions (15a) with (11d) and (16b) for y = 0 may be written as


M∑
i=1

ai0

α3
i

− F10

6
− F20

2
= θ0, (a)

M∑
i=1

(−1)iai0
α3
i

+ F10

3
+ F20

2
= θ1. (b)

(20)

It is interesting to find from (17a), (19) and (14a) that

ai0 = 0 (i = 1, 2, . . . ,M). (21)

Finally, the statement of boundary conditions (7a) and (7b) for any y using Equations (11),
(16b) and (21), yields{

F2(y) = −α0[10(y)+ ϕ0(y)] − γ0[10(y)+ ϕ0(y)]3 − µ0f (y), (a)
F1(y)+ F2(y) = α1[11(y)+ ϕ1(y)] + γ1[11(y)+ ϕ1(y)]3 − µ1f (y), (b)

(22)

where the following notation has been introduced:{
10(y) ≡ a2[S0(y)+ yZ0], (a)
11(y) ≡ a2[S1(y)+ yZ1], (b)

(23)
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ϕ0(y) ≡ 1

6
[F1(y)+ 3F2(y)], (a)

ϕ1(y) ≡ −1

6
[2F1(y)+ 3F2(y)], (b)

or

{
F1(y) = −6[ϕ0(y)+ ϕ1(y)], (a)
F2(y) = 2[2ϕ0(y)+ ϕ1(y)]. (b)

(24)

and, at the same time,


a2S0(y) ≡ −
M∑
i=1

N∑
j=1

Aij sj

α3
i

; a2Z0 ≡ −
M∑
i=1

Ai0

α3
i

, (a)

a2S1(y) ≡ −
M∑
i=1

N∑
j=1

(−1)iAij sj

α3
i

; a2Z1 ≡ −
M∑
i=1

(−1)iAi0

α3
i

. (b)

(25)

From Equations (24), we may write F1(y) and F2(y) as functions of ϕ1(y) and ϕ2(y). Then
Equations (22) may be written as a system of cubic equations in ϕ0(y) and ϕ1(y)

γ0ϕ

3
0 + 310γ0ϕ

2
2 + (3γ01

2
0 + 4 + α0)ϕ0

+ γ01
3
0 + α010 + µ0f (y)+ 2ϕ1 = 0, (a)

γ1ϕ
3
1 + 311γ1ϕ

2
1 + (3γ11

2
1 + 4 + α1)ϕ1

+ γ11
3
1 + α111 − µ1f (y)+ 2ϕ0 = 0. (b)

(26)

NOTE: In the linear problem, γ0 = γ1 = 0, the system (26) is 2 × 2 linear in ϕ0(y) and ϕ1(y).
In order to finish this cumbersome algebra, one should impose the fulfillment of the

differential Equation (6) with q = 0 taking into account (11a), (12a) and (21), and one obtains

M∑
i=1

N∑
j=1

(Aij + a2Bij )sisj + y

M∑
i=1

(Ai0 + a2Bi0)si + a2
M∑
i=1

bi0si = 0. (27)

From the theory of extended series and factoring
∑M

i=1 si , it holds that

Aij = −a2Bij , (a)
Ai0 − a2Bi0, (b)
bi0 = 0, (c)
(i = 1, 2, . . . ,M; j = 1, 2, . . . , N).

(28)

Now, the consistence condition (13) can be also written as the following extended sine series
of uniform convergence:

N∑
j=1

Pj(x)sj + yP0(x)+ ε(x) = φ(x, y), (29)

where
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Pj(x) ≡
M∑
i=1

(
a2

α4
i

− 1

α2
j

)
Bij si (j = 1, 2, . . . , N) (a)

P0(x) ≡ G1(x)+ a2
M∑
i=1

Bi0si

α4
i

, (b)

ε(x) ≡ G2(x), (c)

φ(x, y) ≡ x(x2 − 1)

6
F1(y)+ x(x − 1)

2
F2(y)− y3

6

M∑
i=1

Bi0si, (d)

(30)

where Equations (16b) and (28) have been used. In order for (29) to be true, the following
conditions (see Appendix A) should hold:

ε(x) = φ(x, 0), (a)
P0(x) = φ(x, 1) − φ(x, 0), (b)
Pj (x) = 2{[φ(x, y) − yP0(x)− ε(x)], sj }. (c)

(31)

Furthermore, since

φ(x, 0) = x(x2 − 1)

6
F10 + x(x − 1)

2
F20 (32)

and considering expressions (19), (17b), and (14a), the condition (31a) is identically verified.
That is

ε(x) = G2(x) = φ(x, 0) = U0(x). (33)

Also, considering (30b), (30d) and (31b), we find that

P0(x) = G1(x)+ a2
M∑
i=1

Bi0si

α4
i

= x(x2 − 1)

6
(F11 − F10)+ x(x − 1)

2
(F21 − F20)− 1

6

M∑
i=1

Bi0si . (34)

From this equation and (17c),

M∑
i=1

Bi0

(
1

6
+ a2

α4
i

)
si + x

[
(F11 − F10)

6
+ (F21 − F20)

2

]

= x3(F11 − F10)

6
+ x2(F21 − F20)

2
− V0(x)−

M∑
i=1

N∑
j=1

Bij si

α4
i

. (35)

Again, from the theory of extended series it is possible to write

(
a2

α4
i

+ 1

6

)
Bi0 = 531

i

3
(F11 − F10)+521

i (F21 − F20)− 2[V0(x), si ] −
N∑
j=1

Bij

αj
, (36)
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with

5mn
k = Lmk − Lnk, (a)

Lmk ≡ (xm, sk), (b)

}
k = i or j. (37)

Finally, equating Equations (30a) and (31c) and introducing{
β1j ≡ [F1(y), sj ], (a)
β2j ≡ [F2(y), sj ], (b)

(38)

we may write

Pj(x) =
M∑
i=1

(
a2

α4
i

− 1

α2
j

)
Bij si

= x(x2 − 1)

3
β1j + x(x − 1)β2j − L3

j

3

M∑
i=1

Bi0si − 2L1
jP0(x)− 2L0

j ε(x). (39)

The solution of expression (39), now with respect to x, and the use of the definitions and
expressions introduced above, permits us to obtain(

a2

α4
i

− 1

α2
j

)
Bij = −Bi0

3
531
j + 2

3
531
i (β1j − L1

jF11 +510
j F10)

+ 2521
i (β2j − L1

jF21 +510
j F20). (40)

At this stage the problem is fully stated and theoretically solved. However, this would be true
if F1(y) and F2(y) were known. In effect, we could find the Bij ’s from Equation (40) and
with them the Bi0’s from (36) with which the procedure would be completed. Unfortunately,
as may be observed from Equation (22), F1(y) and F2(y) depend on Bij and Bi0, even if the
problem is linear.

The problem is solved by means of an iterative algorithm. This way permits us to address
with arbitrary precision any type of nonlinearity and it is not restricted to a cubic one as tackled
herein. In short, and for given M, N (number of terms in the series) and NS (number of steps
in the numerical integration algorithm) the iteration is performed over the following steps:

1: The initial sets {Bi0}0 and {Bij }0 are given.
2: After using equivalences (28), summations (25) are calculated.
3: System (26) is solved for ϕ0 and ϕ1.
4: F1(y) and F2(y) are solved from system (24).
5: β1j and β2j are found from expressions (38).
6: {Bij }1 are found from Equation (40) and {Bi0}1 using expression (36).
7: If the fixed precision is not attained, the iteration continues at step 2.
8: If finished, ν1MN

or ν2MN
are completely determined.
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Figure 2a. Beam on nonlinear supports subjected to dynamic end moments. α0 = α1 = 0; γ0 = γ1 = 2; θ0 = 5◦;
θ1 = −10◦; M = N = 150; NS = 300. Time-displacement (at the center of the beam) curve. Forcing frequency
ω = 5 rad/sec.

4. Numerical Example

The data are given by the values of the stiffness constant of the springs α0, α1, γ0 and γ1 and
the extreme rotations θ0 and θ1 for t = y = 0. Also we adopt

f̂ (t) = cos(ωt), (41)

where ω is the chosen forcing frequency. Then

f (y) = cosωTy. (42)

Consequently, f (0) = 1 and f̄ (0) = 0, and with this, V0(x) = 0. A numerical example is now
reported. The dynamic behavior of a beam with symmetric nonlinear supports was analyzed
with the following parameters: α0 = α1 = 0; γ0 = γ1 = 2. At t = 0, the rotations at the ends
of the beam were assumed to be θ0 = 5◦, θ1 = −10◦. For all the cases, the number of terms
in the series was adopted as M = N = 150 and also in a numerical integration algorithm
(Simpson) NS = 300. The interval of interest was taken as T = 4 sec.

Figures 2 show the response of the beam subjected to the end moments of frequency
ω = 5 rad/sec (less than π2). From the time-displacement (at the center of the beam) curve
(Figure 2a) and the phase plane (Figure 2b) a period-1 oscillation may be observed. When the
forcing frequency is increased toω = 15 rad/sec, a period-2 motion is now evident (Figures 3).
Finally, the frequency ω = 25 rad/sec yields different curves (Figures 4).

5. Final Comments

An alternative methodology was proposed to address problems governed by partial differential
equations, even nonlinear ones. In particular, the behavior of a beam on nonlinear supports
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Figure 2b. Beam on nonlinear supports subjected to dynamic end moments. α0 = α1 = 0; γ0 = γ1 = 2;
θ0 = 5◦; θ1 = −10◦; M = N = 150; NS = 300. Phase diagram. f : displacement at the center of the beam; f ′:
nondimensional velocity. Forcing frequency ω = 5 rad/sec.

Figure 3a. Beam on nonlinear supports subjected to dynamic end moments. α0 = α1 = 0; γ0 = γ1 = 2; θ0 = 5◦;
θ1 = −10◦; M = N = 150; NS = 300. Forcing frequency ω = 15 rad/sec.
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Figure 3b. Beam on nonlinear supports subjected to dynamic end moments. α0 = α1 = 0; γ0 = γ1 = 2;
θ0 = 5◦; θ1 = −10◦; M = N = 150; NS = 300. Phase diagram. f : displacement at the center of the beam; f ′:
nondimensional velocity. Forcing frequency ω = 15 rad/sec.

subjected to dynamic forces was tackled by this means. A superposition type of method
appears to be inapplicable in this example.

The use of two-dimensional trigonometric series of a-priori uniform convergence permits
us to satisfy the differential equation, initial conditions, and nonlinear boundary conditions.
Unlike Galerkin techniques, each coordinate function satisfies neither the essential nor the
natural boundary conditions and this requirement is fulfilled by the complete sequence. This
feature makes the statement systematic. On the other hand, here the variables space and time
are dealt with in the same way. The usual semi-discrete method of solving the resulting time
equations by some numerical integration scheme is not used here.

The response is analyzed in the time domain and the phase diagrams are also given. In
the particular example, a period doubling is present. A further study would be necessary to
investigate the possibility of chaos. In effect we are dealing with Duffing-type nonlinearities
that, as is known in SDOF systems, may lead to chaotic responses.

Appendix A. About the Extremizing Sequences

A.1. DEFINITIONS IN ONE DIMENSION

Let x ∈ D (D = [0, 1]) and f = f (x) and g = g(x) be two arbitrary square integrable
functions.

Internal product in L2(x)

(f, g) ≡
1∫

0

f (η)g(η) dη. (A1)
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Figure 4a. Beam on nonlinear supports subjected to dynamic end moments. α0 = α1 = 0; γ0 = γ1 = 2; θ0 = 5◦;
θ1 = −10◦; M = N = 150; NS = 300. Time-displacement (at the center of the beam) curve. Forcing frequency
ω = 25 rad/sec.

Figure 4b. Beam on nonlinear supports subjected to dynamic end moments. α0 = α1 = 0; γ0 = γ1 = 2;
θ0 = 5◦; θ1 = −10◦; M = N = 150; NS = 300. Phase diagram. f : displacement at the center of the beam; f ′:
nondimensional velocity. Forcing frequency ω = 25 rad/sec.

Norm in L2(x)


0 ≤ ‖f 2‖2 ≡ (f, f ) ≡
1∫

0

f 2(η) dη, (a)

0 ≤ ‖g2‖2 ≡ (g, g) ≡
1∫

0

g2(η) dη. (b)

(A2)



344 C. P. Filipich and M. B. Rosales

We make use of Reimann integrals, but within the Hilbert spaces, the integral definitions are
generalized in the Lebesgue sense. Then convergence in L2 or convergence in the mean may
be defined. Let FM(x) be a series that linearly combines infinite continuous functions ϕi(x)
(i = 1, 2, 3, . . .), as follows

FM(x) =
M∑
i=0

aiϕi(x), (A3)

where ai are arbitrary constants. We choose {ϕi(x)} such that they constitute a complete set in
L2. It is possible then that, with an adequate selection of ai’s, the following is verified:

‖F(x)− FM(x)‖ < ε (A4)

with ε → 0 as M → ∞. F(x) is a square integrable function.

A.2. FOURIER TRIGONOMETRIC SERIES

In the series (A3), we assume that

ϕi(x)




sin iπx, (a)
or
cos iπx, (b)

(i = 0, 1, 2, . . .). (A5)

From Fourier theory, both sets are complete in L2 in x ∈ [0, 1]. To reduce the notation,
αi = iπ ; si = sin iπx = sinαix; ci = cos iπx = cos αix. Then

S∗
M(x) =

M∑
i=1

Aisi, (a)

C∗
M(x) =

M∑
i=1

Bici + B0, (b)

(A6)

are the two types of Fourier series in the unitary domain [0, 1] and Ai , Bi and B0 are unknown
coefficients. Using the definitions introduced above we find

(ci, cj ) = (si, sj ) =



0, i �= j,

1

2
, i = j,

(i, j = 1, 2, . . .) (A7)

or

‖si‖2 = ‖ci‖2 = 1

2
(i = 1, 2, . . .). (A8)

The following convergence properties hold:

‖F(x)− S∗
M(x)‖ → 0, M → ∞,

‖F(x)− C∗
M(x)‖ → 0, M → ∞, (A9)

selecting

Ai = 2(F, si), (a)

(i = 1, 2, . . .){
Bi = 2(F, ci ),
B0 = (F, 1),

(b)
(A10)
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A.3. SPECIAL PROPERTY OF C∗
M

The series (A6b) with (A10b) verifies a property relevant for our goal (as will be shown
below). In case F(x) is continuous and not only square integrable, besides (A9b), also the
following convergence property will be true:

|F(x)− C∗
M | → 0, M → 0, ∀x ∈ [0, 1]. (A11)

That is, the expansion C∗
M(x) yields uniform convergence (UC) when F(x) is continuous in

[0, 1]. Evidently, with the sine series, if F(x) is continuous and F(0) = F(1) = 0, we would
also attain UC but, in general, the sine expansions only yield convergence in L2. This feature
will lead us to introduce an extension of S∗

M below.

A.4. SOME PROPERTIES OF THE FOURIER SERIES

P ∗
1 : the derivative series dS∗

M(x)/dx loses the convergence in L2 property .
P ∗

2 : the derivative series dC∗
M(x)/dx is convergent in L2.

P ∗
3 : the successive integrations of S∗

M(x) and C∗
M(x) keep their convergence properties in L2,

as the uniform one (if they originally had them).
P ∗

4 : the addition of arbitrary functions in x to S∗
M(x) and C∗

M(x) at least maintains the L2

convergence. Eventually it could change to UC.
P ∗

5 : the multiplication of S∗
M(x) and C∗

M(x) by bounded, continuous arbitrary functions in x
does not modify their convergence.

These are some of the properties that will be eventually used.

A.5. EXTENDED TRIGONOMETRIC SERIES

The special property of C∗
M(x) described in Section A.3 leads to a search of the sine series,

which would yield UC. This simple challenge that will be developed here, is the basis of
the methodology named WEM and it is essential for arriving at a solution of any differential
equation.

Actually the reference of the square integrable function F(x) (in general F(0) �= 0,
F(1) �= 0) is shifted. That is, the following series

SM(x) = S∗
M(x)+ xA0 + a0 (A12)

is introduced. The underlined terms constitute the support function, i.e.,

SM(x) =
M∑
i=1

Aisi + xA0 + a0, (A13)

where

a0 = F(0),
A0 = F(1)− F(0), (A14)

but now

Ai = 2{[F(x) − xA0 − a0], si}. (A15)
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As may be observed, Equation (A15) differs from (A10a). In this way, from property P ∗
4 it is

verified that

‖F(x)− SM(x)‖ → 0, M → ∞, (A16)

but, if also F(x) is continuous in x ∈ [0, 1], UC will be attained too.

|F(x)− SM(x)| → 0, M → ∞,∀x.. (A17)

In what follows, series SM(x) will be used instead of S∗
M(x) and CM(x) ≡ C∗

M(x).
Additionally, property P ∗

1 should be changed into

P1: the series dSM(x)/dx is convergent in L2

and we add

P2: if F(x) is continuous, from Section A.3 and P1, SM(x) and dSM(x)/dx have UC.

Let us give two other properties that verify integrals where S∗
M(x) and C∗

M(x), SM(x) and
CM(x) are involved. They are not evident but, making use of the Cauchy–Schwarz inequality
(f (x) and g(x) square integrable),

|(f, g)| ≤ ‖f (x)‖ ‖g(x)‖, (A18)

it is easily demonstrated that if h = h(x) is a square integrable function, it is true as M → ∞,
that

P3: (S∗
M, h) = (SM, h), (A19)

P4: (C∗
M, h)1 = (CM, h). (A20)

P5: the successive integration of SM(x) or CM(x) are UC to the corresponding successive
integrals of F(x) if F(x) is continuous. Instead, if F(x) is square integrable, SM(x) and
CM(x) yield convergence in the mean. But if the first integral,

∫
F(x) dx, is continuous,

then the first integrals of SM(x) and CM(x) will be UC.

A.6. EXTENDED SERIES IN 2D

A natural extension of the above-mentioned for dimension one allows us to state the extended
series in domains of larger dimensions.

Let F(x, y) be a square integrable function in {D : 0 ≤ x ≤ 1; 0 ≤ y ≤ 1}. We introduce
the following extended series:

FM(x, y) =
M∑
i=1

Ai(y)si + xA0(y)+ a0(y) (A21)

or also

FM(x, y) =
M∑
i=1

Bi(y)ci + B0(y), (A22)
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in both cases

‖FM(x, y) − F(x, y)‖ < ε, (A23)

and ε → 0 if M → ∞ with analogous definition of norm in two-dimensional domains.
After expanding Ai(y) (i = 1, 2, . . .), A0(y) and a0(y) in turn, according to the alter-

natives seen in the one dimension domain, infinite possibilities of extended series in the
two-dimensional domain are obtained. In a similar fashion, this technique applies to larger
dimensions. The functions Ai(y), A0(y) and a0(y) are found with expressions similar to
(A10b), (A14) and (A15) (for instance, a0(y) = F(0, y)). If F(x, y) in D is square integrable
in the sense of x and continuous in the sense of y, a new property holds:

P6: ∂FM(x, y)/∂y is a L2 convergence series in x and UC or L2 convergent in y, depending
on the feature of ∂F (x, y)/∂y.

One of the infinite UC series in two-dimensional domains is expression (10) derived from
Equation (A21). Another series of usefulness is (using (A22))

ϕMN(x, y) =
M∑
i=1

N∑
j=1

pij cicj +
M∑
i=1

pi0ci +
N∑
j=1

p0j cj + p00,

which with constants chosen in a certain way approximates with uniform convergence the
function φ = φ(x, y) in the domain D.

P7: If F(0, y) = F(1, y) = 0 ⇒ ∂nF (x, y)/∂yn
∣∣
x=0,1 = 0. In effect, if Equation (A21) is

selected with F(0, y) = F(1, y) = 0, then FM(x, y) = ∑M
i=1 Ai(y)si of UC.

Appendix B. About the Initial Conditions

Let us analyze the initial conditions starting with

ν(x, 0) = ax3 + bx2 + cx + d = U0(x). (B1)

We denote

ν′(0, 0) ≡ θ0 and ν′(1, 0) ≡ θ1. (B2)

Since, we are dealing with a supported beam,

ν(0, 0) = 0 and ν(1, 0) = 0. (B3)

If θ0 and θ1 are considered to be known, through (B2) and (B3) we find that

a = θ0 + θ1; b = −(2θ0 + θ1); c = θ0; d = 0 (B4)

and the displacement at t = 0 is written as

ν(x, 0) = U0(x) = x(1 − x)[θ0 − (θ0 + θ1)x]. (B5)
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Let us now obtain the values of µ0 and µ1 (recall that µ0f (0) = µ0 and µ1f (0) = µ1 since
f (0) was assumed to be equal to unity). µ0 and µ1 represent the moments acting at the ends
of the beam for t = 0 and their values should satisfy the boundary conditions imposed by the
nonlinear springs with rotations θ0 and θ1.

ν′′(0, 0) = α0θ0 + γ0θ
3
0 − µ0,

ν′′(1, 0) = −(α1θ1 + γ1θ
3
1 + µ1), (B6)

from which µ0 and µ1 result

µ0 = (4 + α0)θ0 + 2θ1 + γ0θ
3
0 , (B7)

µ1 = −[(4 + α1)θ1 + 2θ0 + γ1θ
3
1 ]. (B8)

Now let us analyze the other initial condition (velocity at t = 0)

ν̄(x, 0) = V0(x) = Px3 +Qx2 + Rx + S. (B9)

Since

ν̄(0, 0) = 0 and ν̄(1, 0) = 0 (B10)

after denoting ν̄′(0, 0) ≡ 00 and ν̄′(1, 0) ≡ 01, it is possible to write

V0(x) = x(x − 1)[00 − (00 +01)x]. (B11)

Now we will find out whether or not 00 and 01 are independent of θ0 and θ1. From conditions
(7a) and (7b)

ν̄′′(0, y) = α0ν̄
′(0, y) + 3γ0ν

′2(0, y)ν̄′(0, y) − M̄0(y), (B12)

ν̄′′(1, y) = −[α1ν̄
′(1, y)+ 3γ1ν

′2(1, y)ν̄′(1, y) + M̄1(y)], (B13)

where{
M̄0(y) = µ0f̄ (y),

M̄1(y) = µ1f̄ (y).
(B14)

Now expressions (B12) and (B13), written at y = 0 (t = 0) yield

ν̄′′(0, 0) = (α0 + 3γ0θ
2
0 )00 − µ0f̄ (0), (B15)

ν̄′′(1, 0) = −[(α1 + 3γ1θ
2
1 )01 + µ1f̄ (0)]. (B16)

But, on the other hand,

ν̄′′(0, 0) = V ′′
0 (0) = −2(200 +01), (B17)

ν̄′′(1, 0) = V ′′
0 (1) = 2(00 + 201). (B18)

Consequently, we end up with the following linear system in 00 and 01

µ0f̄ (0) = [(4 + α0)+ 3γ0θ
2
0 ]00 + 201, (B19)
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µ1f̄ (0) = −[(4 + α1)+ 3γ1θ
2
1 ]01 + 200, (B20)

where µ0, µ1, θ0 and θ1 are assumed to be known. The solution is written as

00 = ∇0

∇ f̄ (0) and 01 = ∇1

∇ f̄ (0), (B21)

in which

∇ ≡ 12 + 4(α0 + α1)+ α0α1 + 3γ0θ
2
0 (4 + α1)+ 3γ1θ

2
1 (4 + α0)+ 9γ0θ

2
0γ1θ

2
1 , (B22)

∇0 ≡ (4 + α1 + 3γ1θ
2
1 )µ0 + 2µ1, (B23)

∇1 ≡ −(4 + α0 + 3γ0θ
2
0 )µ1 + 2µ0. (B24)

In effect, 00 and 01 are not independent of θ0 and θ1 and, hence, once θ0 and θ1 are imposed,
it is possible to know U0(x) and V0(x).

NB if f̄ (0) = 0 ⇒ V0(x) ≡ 0 (∀θ0 and θ1),
NB if θ0 = θ1 = 0 ⇒ U0(x) = V0(x) = 0.
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