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This work presents a new and efficient strategy to handle non-conformal interfaces with 
the aim of assuring the conservation of fluxes in Finite Volume problems. A conservative 
interpolation is developed for general transport equations. Due to the arbitrary connectivity 
between the interfaces, the interpolations require flux-based weights defining a complex 
numerical stencil. In this context, a new method is proposed to simplify the coupling at 
the interface based on the construction of a simplified supermesh. Here, a supermesh is 
not completely defined, instead, the interface faces are logically duplicated (or multiplied) 
to generate a one-to-one connectivity between them. The simplified supermesh named 
pseudo-supermesh eliminates the interpolations and assures the conservation of fluxes 
based on the trivial connectivity. The area and the geometrical centroid of the new faces 
are redefined according to the overlapped sector of the original faces using the local 
supermeshing approach. Since the arbitrary polygons resulting from the face intersections 
are not generated and introduced into the mesh, computational cost and implementation 
efforts are saved. The proposed method is tested focusing on the conservation of fluxes and 
on the accuracy, showing conservation to machine precision and second order convergence 
as expected. In order to be able to solve large problems, the methodology is designed and 
implemented to be run in parallel architectures showing an excellent efficiency.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The use of interfaces between different domain regions is a very useful strategy in the area of Computational Fluid 
Dynamics (CFD). The interfaces divide the problem into different parts which may be favourable to simplify the meshing 
process. Moreover, the main advantage is the flexibility to handle moving zones with tangential motion such as turbo-
machinery, internal combustion engines or stirred vessels, among others.
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The primary challenge of an interface method is to perform a numerical coupling without introducing errors in compari-
son with an analogous one-region problem. In this context, some methods eliminate the interfaces between the subdomains 
merging them into a single region. Therefore, the interface errors disappear but at the cost of stitching the mesh subdo-
mains which is computationally demanding. Moreover, in moving boundary problems, the stitching procedure should be 
done frequently exacerbating this issue. A method of this type is the Sliding interfaces technique [1–3] which is designed 
to attach and detach subdomains in dynamic mesh simulations and is usually applied to solve internal combustion engine 
problems. Another similar technique is the Buffer layer method of Qin et al. [4] which is improved by Wang et al. to define 
the Zipper layer method [5]. Here, mesh blocks are joined without interfaces to avoid interpolations but these blocks can 
only be structured meshes.

On the other hand, many techniques introduce numerical approaches to address the physical communication between 
the unconnected regions avoiding the remeshing procedure. Therefore, these strategies are computationally more efficient 
than the previous methods but, as a counterpart, numerical errors may be introduced at the interface. An important and 
desirable property of these methods is the conservation of the fluxes in general transport problems. A non-conservation 
issue at the interface may cause loss of accuracy and stability problems in the simulations, especially when discontinuities 
are close to the interface [6]. Furthermore, some problems, such as Residence Time Distribution (RTD) determination, which 
are important in chemical processing, or the tracking of species in stirred vessels, require a strict conservation of the 
variables to obtain good predictions. Otherwise, non-conservation issues would act as mass sources which may invalidate 
the study and also trigger instabilities.

The problem of conservativeness at non-conformal interfaces was first formally studied by Berger [7] using conservative 
differencing in two-dimensional grids. Within these strategies, one of the most cited methods is the Patched-grid technique, 
presented initially by Rai, which introduces a conservative treatment of structured two-dimensional interfaces [8]. This 
approach is extended to rotor/stator applications in a subsequent work [9]. Lerut and Wu propose a Patched-grid technique 
which assures stability and conservativeness for multi-domain simulations with implicit Euler solvers [10] trying partially 
to cover the geometric complexity of real industrial problems. A more recent work establishes the use of Patched-grid in 
combination with a high-order linear reconstruction remapping using a WENO scheme [11]. Even though the Patched-grid 
is an adequate technique to handle multi-domain simulations of structured mesh blocks, most of the industrial problems 
are complex to address with such a mesh and in general come in an unstructured grid format. Inspired by this limitation, 
Mathur [12] proposes a more general and conservative strategy. This paper emphasises in the replacement of the two 
non-conformal interfaces by a new one which is considered as an internal patch. However, the centroid computation is 
omitted regardless the strong influence of such a geometric feature in the accurate computation of the fluxes. Another 
conservative method is the work of Loh et al. [13], where the data between interfaces is exchanged via surface fluxes but 
using only an upwind convective scheme. Recently, the work of Ramírez et al. [14] proposes a high-order interface method 
using moving least squares. However, the fully-conservative version proposed in this paper is computationally expensive 
due to the necessity of computing face/edge intersections. To solve the last inconvenience, the authors designed a halo-cell 
sliding mesh which avoids calculating intersections but incurs conservation problems.

On the other hand, non-conservative methods are in general easier to implement due to the simplicity of the interpo-
lation expressions. It is usual to find linear combinations of values to reconstruct the face fluxes, without considering their 
conservativeness. A simple and effective technique to join non-conformal interfaces is the work of McNaughton et al. [15]
which uses halo (ghost) nodes at the interfaces. Here, the interface is considered as a dual boundary condition for each 
one of the grids sharing the interface. This technique uses a non-conservative interpolation with the primary focus on the 
efficiency. Other works are included in the group of techniques that use overlapped-area weights to interpolate fields at the 
interface. In this sense, the work of Beaudoin and Jasak [16] presents the General Grid Interface (GGI) which is designed 
for turbomachinery applications. Another method of this type, which is implemented in the OpenFOAM(R) suite [17], is the 
Arbitrary Mesh Interface (AMI). It is similar to GGI, but it is based on the concept of supermesh presented by Farrell et al. 
[18] and uses the highly efficient local supermeshing approach proposed by Farrell and Maddison [19] to handle dissimilar 
meshes. Although the AMI is a computationally efficient methodology, the inconvenience lies in the loss of conservativeness 
that this method shows. Within this type of methods is also the work of Steijl and Barakos [20] which is particularly applied 
for helicopter aerodynamics.

In general, it can be concluded that conservative methods are easier to be developed using structured meshes. Attempts 
of conservative approaches for arbitrary meshes have a reduced computational efficiency and a high implementation com-
plexity. On the other hand, unstructured conservative strategies with a simple conception are of low order accuracy. In this 
context, most of the engineering applications with multi-domain configurations use non-conservative strategies focusing 
on the combination of simplicity and efficiency. However, as described above, in some problems the conservativeness is a 
non-negotiable property.

In this sense, this paper presents a new strategy to couple arbitrary non-conformal interfaces in Finite Volume problems 
conceived to be conservative, computationally efficient and second-order accurate. Here, the main objective is to provide 
a fully conservative method with a higher computational efficiency than methods based on remeshing the interfaces. The 
proposed strategy uses the local supermeshing approach of Farrell and Maddison [19] to generate the connectivity informa-
tion between interfaces but without creating a physical supermesh. Thus, most of the mesh operations at the interfaces are 
avoided saving computational efforts.
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Fig. 1. A simple domain � which is divided by a plane π into two parts generating the interfaces τA and τB . The discretisation of these interfaces results 
in faces K A and K B respectively.

A general interpolation, which is demonstrated to be a sufficient condition to conserve any arbitrary quantity (mass, 
energy, linear momentum and others) at non-conformal interfaces, is described. This condition is applied to compute the 
interpolations for the advective and diffusive operators defining a conservative expression for general transport problems. 
The expression derived introduces a complex numerical coupling at the interfaces requiring flux-based weights and different 
interpolators. In this regard, a one-to-one connectivity scheme between the interfaces is proposed to implement that con-
servative coupling without requiring interpolations. The present method is based on the concept of supermesh where each 
pair of connected faces is represented by a unique one. In this sense, the definition of the fluxes is done identically for both 
interfaces, and consequently, the conservation is guaranteed. The same strategy is recently followed by Rinaldi et al. [21]
who uses a supermesh as the base tool to make a conservative treatment of the fluxes. In contrast to the approach of Rinaldi 
et al., the proposal of this work does not require to determine the polygons resulting from the intersections. Instead of this, 
each face intersection is represented by a logical duplication of the original faces. In this sense, the original interfaces are 
converted in here called pseudo-supermeshes which have a one-to-one connectivity between them. An advantage of this 
methodology is that the trivial addressing between the interfaces is achieved avoiding to perform complex mesh operations. 
The area and the geometrical centroid of the pseudo-supermesh faces are computed with the local supermeshing approach 
without introducing new arbitrary polygons into the mesh. In this work, the replication of pseudo-supermesh faces is trivial 
since the new faces are born as a copy using the original nodes. Moreover, the new faces are added to the boundary mesh 
preserving the internal mesh structure unaltered. This new strategy is assessed with examples focused on the conservation 
of variables and the order of convergence of the error running on a parallel facility.

This work is organised as follows: this section presents an overview of different techniques developed for address-
ing grids with non-conformal interfaces. In Section 2, an introduction to the local supermeshing approach is presented 
followed by the description of a sufficient interpolation expression for general transport problems. In Section 3, the pseudo-
supermesh strategy is described, and the parallelisation and computational efficiency of the method are discussed. Section 4
includes numerical tests to evaluate the new technique and finally, in Section 5, the paper closes with the main conclusions.

2. Theory

The aim of this section is to present a conservative interpolation expression at interfaces for a general transport equation. 
In the first place, the fundamentals of the local supermeshing approach are presented followed by the basis of conservative 
interfaces. Then, a sufficient condition to perform conservative interpolations is described. After that, the sufficient condition 
is applied on the advective and diffusive operators concluding with a final interpolation expression for a general transport 
problem.

2.1. Domain interfaces

An example of domain interfaces is depicted in Fig. 1, where an arbitrary domain � and an internal plane π are dis-
played. The plane divides the domain � into two subdomains, �A and �B . As shown in the same figure, the plane π can 
be discretised differently for each subdomain giving place to the surface meshes τA and τB composed by the faces K i

A ∈ τA

and K j
B ∈ τB respectively. The super-indexes i and j identify each face in its respective interface and τA and τB are named 

as the source and target interfaces respectively. In this work, the geometry representations of these interfaces are equal. 
These geometries can be of an arbitrary shape being defined by the intersection surface between the subdomains �A and 
�B . For example, in Fig. 1, the interfaces share the plane π (�A ∩ �B = π ). In this sense, the concept of non-conformal 
interfaces employed in this paper refers to different discretisations of τA and τB .
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Fig. 2. Combination of interfaces τA and τB to generate the supermesh τC .

Fig. 3. Construction of a triangle mesh from the intersection of two faces.

2.2. The local supermeshing approach to handle non-conformal interface meshes

In the present work, conservative interpolations are developed to couple numerically non-conformal interfaces. These 
interpolations use weighting factors based on the overlapped area of each face-to-face intersection of the interface meshes. 
Therefore, it is necessary to determine the pairs of interface faces that intersect each other and subsequently, the overlapped 
area of the intersection. These procedures are achieved by the local supermeshing approach of Farrell and Maddison [19]
which uses the concept of supermesh [18]. A supermesh is a geometrical conception created by the intersection of two 
meshes. In this context, the surface meshes τA and τB are combined to generate another surface mesh τC with faces 
K k

C ∈ τC as described in Fig. 2 at right. In the local supermeshing approach, each face of the supermesh K k
C is identified 

in turn to generate the addressing information between both interfaces. The intersection identification is performed with 
the advancing front algorithm which exploits the known connectivity information of the faces within the interfaces τA and 
τB to speed up the algorithm. After a pair of connected faces K i

A and K j
B are found, the intersection zone is decomposed 

into a set of triangles tn ∈ T i, j which is a triangular mesh of the supermesh face K k
C . The procedure triangulates each 

face and then, the intersection between the triangles of both faces are computed. Subsequently, the edges of one of the 
triangles clip the other generating a new polygon which is again decomposed into triangles. The algorithm finishes when 
the overlapped sector is fully triangulated. Fig. 3 explains graphically the construction of the set of triangles T 3,3 resulting 
from the intersection of the faces K 3

A and K 3
B .

The connectivity information of the interfaces and the overlapped area for the pairs of intersected faces are stored in 
two lists which contain the fundamental data used in this work. Two connectivity lists are defined:

χAB

(
K i

A

)
=

{
K j

B ∈ τB : A
(

K i
A ∩ K j

B

)
> 0

}
∀ K i

A ∈ τA,

χB A

(
K j

B

)
=

{
K i

A ∈ τA : A
(

K j
B ∩ K i

A

)
> 0

}
∀ K j

B ∈ τB ,
(2.1)

where χAB and χB A are the connectivity (or addressing) lists for the source and target sides respectively, and A 
(

K i
A ∩ K j

B

)
is the overlapped area of the faces K i

A and K j
B which is calculated as the summation of the area of each triangle belonging 

to the set T i, j ,

A
(

K i
A ∩ K j

B

)
=

∑
tn∈T i, j

A(tn). (2.2)

The overlapped fraction for each pair of connected faces are stored in the weighting lists ωAB and ωB A ,

ωAB

(
K i

A

)
=

⎧⎨
⎩wi, j

B ∈ R : wi, j
B =

A
(

K i
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B

)
A
(
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A
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(
K i

A

)⎫⎬
⎭ ,

ωB A

(
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B

)
=

⎧⎨
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A ∈ R : w j,i
A =

A
(

K i
A ∩ K j

B

)
A
(

K j
B

) ∀ K i
A ∈ χB A

(
K j

B

)⎫⎬
⎭ ,

(2.3)
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where wi, j
B and w j,i

A are the weighting factors based on the overlapped area of the faces K i
A and K j

B for the source and 
target interfaces respectively.

2.3. Conservative interfaces

The interfaces τA and τB shown in Fig. 1 represent the same spatial location in the domain �. They are located on the 
two-dimensional surface spanned by the plane π . In this sense, for any quantity φ defined in the domain �, its surface 
integrals at both interfaces must be equal,∫

τA

φ(x)dA =
∫
τB

φ(x)dA. (2.4)

The fulfilment of Eq. (2.4) implies that the interfaces are globally conservative. In this work, the arbitrary quantity φ(x) is 
defined as the flux (per unit area) of some conservative variable which crosses the interface. The integrals over the interfaces 
τA and τB can be expressed as the summation of the integrals over their respective faces,

∑
K i

A∈τA

∫
K i

A

φ(x)dA =
∑

K j
B∈τB

∫
K j

B

φ(x)dA. (2.5)

Assuming a linear variation of the flux φ(x) over the face elements, the integrals of Eq. (2.5) can be calculated using values 
located at face centroids with a second order error approximation,∑

K i
A∈τA

φ(K i
A) A(K i

A) =
∑

K j
B∈τB

φ(K j
B) A(K j

B), (2.6)

where the fluxes φ(K i
A) and φ(K j

B) are evaluated at face centroids.

2.4. Interface interpolation

The degrees of freedom of a cell-centred co-located Finite Volume Method (FVM) are located at cell centres. On the other 
hand, the transport of quantities between cells is achieved by face fluxes which require values located at face centroids. In 
a FVM with a compact stencil formulation, the flux at each internal face is calculated interpolating the values defined in its 
adjacent cells. In this work, these cells are referred to cell P and cell N . The computing of an internal face flux is given by,

φ(K int) = α(K int)ψP (K int) + β(K int)ψN(K int) K int ∈ �, (2.7)

where K int is an arbitrary internal face, ψP (K int) and ψN (K int) are the adjacent cell values of any intensive quantity ψ in 
the cells P and N respectively, and α(K int) and β(K int) are linear combination factors which depend on the differential 
operator and on the discretisation scheme. A face belonging to an interface, K i

A or K j
B , is not shared by two cells. It belongs 

only to the boundary adjacent cell (here defined as cell P ). In order to compute the fluxes at the interface, the adjacent 
cells of the opposite interface are considered. As a consequence, the expression that defines the interface fluxes is,

φ(K i
A) = f (K i

A) = f
[
ψP (K i

A),ψP (K j
B)

]
∀K j

B ∈ χAB(K i
A),

φ(K j
B) = g(K j

B) = g
[
ψP (K i

A),ψP (K j
B)

]
∀K i

A ∈ χB A(K j
B),

(2.8)

where f (·) and g(·) are the interpolation functions for the source and target interfaces respectively. Eq. (2.8) defines the 
face fluxes φ as a relation of boundary-adjacent cells values of ψ . The cells involved in the interpolation are those related 
by the intersection of faces given by the addressing lists χAB and χB A . Therefore, the algebraical coupling at the interface is 
reduced to local relations between cell values according to the physical communication between the subdomains. A graph-
ical explanation of Eq. (2.8) which is based on the example case is shown in Fig. 4. The functions f (·) and g(·) must be 
designed properly to satisfy the global conservation statement of Eq. (2.4). Replacing Eq. (2.8) in Eq. (2.6), a conservative 
relation is defined for the functions f (·) and g(·),∑

K i
A∈τA

f (K i
A)A(K i

A) =
∑

K j
B∈τB

g(K j
B)A(K j

B). (2.9)

It is important to highlight that the Eq. (2.9) proposes the global conservation of fluxes φ which are located at face centres 
of the interfaces. Here, the conservative variable ψ , which is the unknown of the numerical problem, is related indirectly 
via the functions f (·) and g(·). The Eq. (2.9) does not impose a new constraint over the numerical problem. Instead, it 
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Fig. 4. Interface interpolation using boundary-adjacent cells. The cells involved in the interpolations are highlighted.

defines the matrix coefficients corresponding to each interface face that relates the adjacent cells of both interfaces in their 
respective conservation balances.

In what follows, the objective is to define the interpolation functions f (·) and g(·) to assure the conservation of the 
advective and diffusive fluxes of a general transport equation. A sufficient condition for a conservative interpolation of an 
arbitrary quantity ψ is defined:

Lemma 1. The following interpolations of boundary-adjacent cell values ψP (K i
A) and ψP (K j

B) define face fluxes φ(K i
A) and φ(K j

B)

which satisfy the Eq. (2.6),

φ(K i
A) = f (K i

A) =
∑

wi, j
B ∈ ωAB (K i

A)

wi, j
B

[
α

(
K i

A, K j
B

)
ψP (K i

A) + β
(

K i
A, K j

B

)
ψP (K j

B)
]
,

φ(K j
B) = g(K j

B) =
∑

w j,i
A ∈ ωB A(K j

B )

w j,i
A

[
α

(
K i

A, K j
B

)
ψP (K i

A) + β
(

K i
A, K j

B

)
ψP (K j

B)
]
,

(2.10)

where α
(

K i
A, K j

B

)
and β

(
K i

A, K j
B

)
are factors corresponding to the pair of interface faces K i

A and K j
B which are based on the spatial 

discretisation scheme and the differential operator.

Physically, the result of the interpolation defined inside the brackets represents the flux φ at a supermesh face K K
C which 

is referred here as φ(K i
A, K j

B),

φ(K i
A, K j

B) = α
(

K i
A, K j

B

)
ψP (K i

A) + β
(

K i
A, K j

B

)
ψP (K j

B). (2.11)

In Eq. (2.11), the factors α and β interpolate the cell values ψP to the supermesh face and transform them into fluxes φ. In 
this sense, Lemma 1 proposes to define a set of supermesh fluxes which are merged into the interfaces τA and τB via an 
area-based interpolation. Replacing Eq. (2.11) in Eq. (2.10),

φ(K i
A) = f (K i

A) =
∑

wi, j
B ∈ ωAB (K i

A)

wi, j
B φ(K i

A, K j
B)

φ(K j
B) = g(K j

B) =
∑

w j,i
A ∈ ωB A(K j

B )

w j,i
A φ(K i

A, K j
B).

(2.12)

Proof. First, the expression of Eq. (2.12) is combined with Eq. (2.6):

∑
K i

A∈τA

φ(K i
A) A(K i

A) =

∑
K i

A∈τA

∑
wi, j

B ∈ ωAB (K i
A)

wi, j
B A(K i

A)φ(K i
A, K j

B).
(2.13)

Then, the definition of the weights wi, j given in Eq. (2.3) is replaced in Eq. (2.13),
B
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∑
K i

A∈τA

φ(K i
A) A(K i

A) =

∑
K i

A∈τA

∑
K j

B ∈ χAB (K i
A)

A(K i
A ∩ K j

B)φ(K i
A, K j

B).
(2.14)

The r.h.s. of Eq. (2.14) is a summation over all faces of the supermesh. The external summation sweeps all the faces of 
τA and for each face K A , the internal summation sweeps all the faces K B belonging to χAB(K i

A). The summation over all 
supermesh faces can be done without altering the final result by changing the order of the summations as done in the r.h.s. 
of next expression,∑

K i
A∈τA

∑
K j

B ∈ χAB (K i
A)

(·) =
∑

K j
B∈τB

∑
K i

A ∈ χB A(K j
B )

(·), (2.15)

where the external summation sweeps all the faces of τB and for each face K B the internal summation sweeps all the faces 
K A belonging to χB A(K j

B). Then, the equivalence of Eq. (2.15) can be applied in Eq. (2.14),∑
K i

A∈τA

φ(K i
A)A(K i

A) =

∑
K j

B∈τB

∑
K i

A ∈ χB A(K j
B )

A(K i
A ∩ K j

B)φ(K i
A, K j

B).
(2.16)

Now, the second expression of Eq. (2.10) is combined with Eq. (2.6),∑
K j

B∈τB

φ(K j
B)A(K j

B) =

∑
K j

B∈τB

∑
w j,i

A ∈ ωB A(K j
B )

w j,i
A A(K j

B)φ(K i
A, K j

B).
(2.17)

Attending to the definition of the weights w j,i
A given in Eq. (2.3), last expression simplifies in,∑

K j
B∈τB

φ(K j
B)A(K j

B) =

∑
K j

B∈τB

∑
K i

A ∈ χB A(K j
B )

A(K i
A ∩ K j

B)φ(K i
A, K j

B).
(2.18)

Finally, combining Eq. (2.16) with Eq. (2.18) results in Eq. (2.6) which is the proof of Lemma 1,∑
K i

A∈τA

φ(K i
A)A(K i

A) =
∑

K j
B∈τB

φ(K j
B)A(K j

B). � (2.19)

2.5. Advective interpolation

The quantity φ of Eq. (2.4) is now considered as the total advective flux of some scalar variable ψ transported through 
an interface τ :

φ(x) ≡ �c(x) = ψ(x) [v(x) · n(x)] x ∈ τ , (2.20)

where �c(x) is the total advective flux (per unit area), v is the flow velocity and n is the unitary area vector of the 
interface τ . The global conservation of the advective flux on the interfaces must be satisfied. Here, the variable φ of Eq. (2.4)
is replaced by the definition given in Eq. (2.20),∫

τA

ψ(x) [v(x) · n(x)] dA =
∫
τB

ψ(x) [v(x) · n(x)] dA. (2.21)

Analogously as done with Eq. (2.4), the equality of Eq. (2.21) is discretised as,∑
K i ∈τA

ψ(K i
A)

[
v(K i

A) · A(K i
A)

]
=

∑
K j ∈τ

ψ(K j
B)

[
v(K j

B) · A(K j
B)

]
, (2.22)
A B B
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where A(K ) is the area vector of the face K . The term between brackets of last equation is referred as the carrier flux ϕ ,

ϕ(K ) = [v(K ) · A(K )] . (2.23)

Introducing ϕ(K ) in Eq. (2.22), the discretised form of the advective flux at the interfaces is obtained,∑
K i

A∈τA

ψ(K i
A)ϕ(K i

A) =
∑

K j
B∈τB

ψ(K j
B)ϕ(K j

B). (2.24)

The equality given in Eq. (2.24) is similar to that of Eq. (2.6) where the interface flux φ is considered here as the conservative 
variable ψ at the interface and the areas A(K ) are replaced with the fluxes ϕ(K ). The analogy of Eq. (2.6) with Eq. (2.24) is 
used to define the values of ψ at the interface via a redefinition of the weighting factors. In order to satisfy a conservative 
interpolation of ψ , the weighting factors defined in Eq. (2.3) must be redefined. In this sense, the weighting factors are 
defined as done in Eq. (2.3) considering the analogy between ϕ(K ) and A(K ),

ω̃AB

(
K i

A

)
=

⎧⎨
⎩w̃i, j

B ∈ R : w̃i, j
B =

ϕ
(

K i
A ∩ K j

B

)
ϕ

(
K i

A

) ∀ K j
B ∈ χAB

(
K i

A

)⎫⎬
⎭ ,

ω̃B A

(
K j

B

)
=

⎧⎨
⎩w̃ j,i

A ∈ R : w̃ j,i
A =

ϕ
(

K i
A ∩ K j

B

)
ϕ

(
K j

B

) ∀ K i
A ∈ χB A

(
K j

B

)⎫⎬
⎭ ,

(2.25)

where ϕ
(

K i
A ∩ K j

B

)
is the flux that enters or leaves the face K i

A , and consequently, leaves or enters the face K j
B respectively. 

Based on Lemma 1, the interpolation of the variable ψ at the interface is expressed as,

ψ(K i
A) =

∑
w̃i, j

B ∈ ω̃AB (K i
A)

w̃i, j
B

[
αc

(
K i

A, K j
B

)
ψP (K i

A) + βc

(
K i

A, K j
B

)
ψP (K j

B)
]
,

ψ(K j
B) =

∑
w̃ j,i

A ∈ ω̃B A(K j
B )

w̃ j,i
A

[
αc

(
K i

A, K j
B

)
ψP (K i

A) + βc

(
K i

A, K j
B

)
ψP (K j

B)
]
,

(2.26)

where the interpolator factors αc and βc depend on the convection scheme used in the discretisation. The Eq. (2.26) yields 
to a global conservation of the total advective flux �c(x) at the interfaces. It differs from the Eq. (2.10) in that it defines the 
interface value of ψ instead of the total advective flux �c . The relation between these quantities is,

�c(K ) = ψ(K )ϕ(K )

A(K )
. (2.27)

Note that the interpolation inside the brackets in Eq. (2.26) represents the supermesh value ψ(K i
A, K j

B) and not the super-

mesh flux �c(K i
A, K j

B). Therefore, the merging of conservative variables from the supermesh to the interfaces must be done 
with a flux-weighted interpolation instead of a overlapped area-based one as done in Eq. (2.10).

2.5.1. Advective flux
The total advective flux at an interface source face K i

A is computed replacing the first expression of Eq. (2.26) in Eq. (2.20)
and scaling it with the face area:

�(K i
A)c A(K i

A) = ψ(K i
A)ϕ(K i

A)

= ϕ(K i
A)

⎧⎪⎨
⎪⎩

∑
w̃i, j

B ∈ ω̃AB (K i
A)

w̃i, j
B

[
αc

(
K i

A, K j
B

)
ψP (K i

A) + βc

(
K i

A, K j
B

)
ψP (K j

B)
]⎫⎪⎬
⎪⎭

= ϕ(K i
A)

⎡
⎢⎣ ∑

w̃i, j
B ∈ ω̃AB (K i

A)

w̃i, j
B αc

(
K i

A, K j
B

)⎤⎥⎦ψP (K i
A)

+

ϕ(K i
A)

⎡
⎢⎣ ∑

w̃i, j ∈ ω̃ (K i )

w̃i, j
B βc

(
K i

A, K j
B

)
ψP (K j

B)

⎤
⎥⎦ .

(2.28)
B AB A
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This last equation is simplified introducing the coefficients CA , CB and the advective interpolator IC :

CA(K i
A) = ϕ(K i

A)

⎡
⎢⎣ ∑

w̃i, j
B ∈ ω̃AB (K i

A)

w̃i, j
B αc

(
K i

A, K j
B

)⎤⎥⎦ ,

CB(K i
A) = ϕ(K i

A),

IC(K i
A) =

∑
w̃i, j

B ∈ ω̃AB (K i
A)

w̃i, j
B βc

(
K i

A, K j
B

)
ψP (K j

B).

(2.29)

Replacing the previous definitions in Eq. (2.28),

�(K i
A)c A(K i

A) = CA(K i
A)ψP (K i

A) + CB(K i
A)IC(K i

A). (2.30)

The Eq. (2.30) expresses the total advective flux of a source face K i
A as a linear combination of the cell value ψP (K i

A) and 
the advective interpolator IC(K i

A). A similar expression can be obtained for the advective flux at a target face K j
B .

2.6. Diffusive interpolation

Now, the quantity φ of Eq. (2.4) is considered as the total diffusive flux of a scalar quantity ψ :

φ(x) ≡ �d(x) = γ (x) [∇ψ(x) · n(x)] , (2.31)

where �d(x) is the total diffusive flux per unit area, γ (x) is the scalar diffusivity field and n(x) is the unitary area vector. 
The global conservation of the diffusive flux at the interfaces must be satisfied. Thus, the arbitrary quantity φ of Eq. (2.4) is 
replaced by the definition given in Eq. (2.31),∫

τA

γ (x) [∇ψ(x) · n(x)] dA =
∫
τB

γ (x) [∇ψ(x) · n(x)] dA. (2.32)

The term between brackets of Eq. (2.32) is redefined as,

[∇ψ(x) · n(x)] ≡ ∇ψn(x), (2.33)

where ∇ψn(x) is the derivative of ψ in the direction given by the surface normal. The introduction of Eq. (2.33) in Eq. (2.32)
yields to the global conservation expression of the diffusive flux,∫

τA

γ (x)∇ψn(x)dA =
∫
τB

γ (x)∇ψn(x)dA. (2.34)

The equality of Eq. (2.34) is discretised as done in Eq. (2.6),∑
K i

A∈τA

γ (K i
A)∇ψn(K i

A) A(K i
A) =

∑
K j

B∈τB

γ (K j
B)∇ψn(K j

B) A(K j
B). (2.35)

Considering γ (K )∇ψn(K ) as the diffusive flux �d(K ) and using Lemma 1, the following interpolation expression is derived 
which guarantees the global conservation of the diffusive flux,

γ (K i
A)∇ψn(K i

A) =
∑

wi, j
B ∈ ωAB (K i

A)

wi, j
B �d(K i

A, K j
B) =

∑
wi, j

B ∈ ωAB (K i
A)

wi, j
B

[
γ (K i

A, K j
B)∇ψn(K i

A, K j
B)

]
,

γ (K j
B)∇ψn(K j

B) =
∑

wi, j
B ∈ ωAB (K i

A)

wi, j
B �d(K i

A, K j
B) =

∑
w j,i

A ∈ ωB A(K j
B )

w j,i
A

[
γ (K i

A, K j
B)∇ψn(K i

A, K j
B)

]
,

(2.36)

where γ (K i
A, K j

B) is the diffusivity value and ∇ψn(K i
A, K j

B) is the magnitude of the normal gradient at a supermesh face. It 
is important to clarify that γ (K i

A, K j
B) and ∇ψn(K i

A, K j
B) are not computed as a linear combination of 

[
γ (K i

A), γ (K j
B)

]
and [

∇ψn(K i
A),∇ψn(K j

B)
]

respectively. These supermesh quantities will be defined in the next few paragraphs. The diffusive 
flux balances given in Eq. (2.36) must be expressed as a function of the variable ψ instead of gradients ∇ψ . Therefore, the 
following equivalences are defined,
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∇ψn(K i
A, K j

B) = ψP (K j
B) − ψP (K i

A)

‖dn(K i
A, K j

B)‖
,

∇ψn(K i
A) = ψ(K i

A) − ψP (K i
A)

‖dn(K i
A)‖ ,

∇ψn(K j
B) = ψ(K j

B) − ψP (K j
B)

‖dn(K j
B)‖

,

(2.37)

where dn(K i
A, K j

B) is the vector that joins the centroids of the adjacent cells of the faces K i
A and K j

B , projected in the 
direction of the surface normal n. Analogously, dn(K i

A) and dn(K j
B) are the vectors that join the centroids of the adjacent 

cells of the faces K i
A and K j

B with their centroids respectively, projected in the direction of the surface normal n. Next, the 
expressions of Eq. (2.37) are introduced in Eq. (2.36),

γ (K i
A)

[
ψ(K i

A) − ψP (K i
A)

‖dn(K i
A)‖

]
=

∑
wi, j

B ∈ ωAB (K i
A)

wi, j
B

{
γ (K i

A, K j
B)

[
ψP (K j

B) − ψP (K i
A)

‖dn(K i
A, K j

B)‖

]}
,

γ (K j
B)

[
ψ(K j

B) − ψP (K j
B)

‖dn(K j
B)‖

]
=

∑
w j,i

A ∈ ωB A(K j
B )

w j,i
A

{
γ (K i

A, K j
B)

[
ψP (K j

B) − ψP (K i
A)

‖dn(K i
A, K j

B)‖

]}
.

(2.38)

Then, Eq. (2.38) is reordered to obtain the interface values of ψ ,

ψ(K i
A) =

∑
wi, j

B ∈ ωAB (K i
A)

wi, j
B

{
γ (K i

A, K j
B)

γ (K i
A)

‖dn(K i
A)‖

‖dn(K i
A, K j

B)‖
[
ψP (K j

B) − ψP (K i
A)

]}
+ ψP (K i

A),

ψ(K j
B) =

∑
w j,i

A ∈ ωB A(K j
B )

w j,i
A

{
γ (K i

A, K j
B)

γ (K j
B)

‖dn(K j
B)‖

‖dn(K i
A, K j

B)‖
[
ψP (K j

B) − ψP (K i
A)

]}
+ ψP (K j

B).

(2.39)

The interface values ψ(K i
A) and ψ(K j

B) are a function of the supermesh diffusivity γ (K i
A, K j

B). The definition of this value 
is determined by adding to the system of Eq. (2.39) the equality of the surface integrals of ψ at the interface,∫

τA

ψ(x)dA =
∫
τB

ψ(x)dA, (2.40)

which is discretised as,∑
K i

A∈τA

ψ(K i
A) A(K i

A) =
∑

K j
B∈τB

ψ(K j
B) A(K j

B). (2.41)

Two new coefficients are defined,

�A(K i
A, K j

B) = γ (K i
A, K j

B)

γ (K i
A)

‖dn(K i
A)‖

‖dn(K i
A, K j

B)‖
,

�B(K i
A, K j

B) = γ (K i
A, K j

B)

γ (K j
B)

‖dn(K j
B)‖

‖dn(K i
A, K j

B)‖
.

(2.42)

Introducing the last definitions in Eq. (2.39) and reordering,

ψ(K i
A) =

∑
wi, j

B ∈ ωAB (K i
A)

wi, j
B

{[
1 − �A(K i

A, K j
B)

]
ψP (K i

A) + �A(K i
A, K j

B)ψP (K j
B)

}
,

ψ(K j
B) =

∑
w j,i

A ∈ ωB (K j
B )

w j,i
A

{
�B(K i

A, K j
B)ψP (K i

A) +
[

1 − �B(K i
A, K j

B)
]
ψP (K j

B)
}

.
(2.43)

Based on Lemma 1, Eq. (2.41) would be fulfilled if the � constants satisfy the following constraint,
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�A(K i
A, K j

B) =
[

1 − �B(K j
B , K i

A)
]
. (2.44)

Explicitly,

γ (K i
A, K j

B)

γ (K i
A)

‖dn(K i
A)‖

‖dn(K i
A, K j

B)‖
= 1 − γ (K i

A, K j
B)

γ (K j
B)

‖dn(K j
B)‖

‖dn(K i
A, K j

B)‖
. (2.45)

From Eq. (2.45), a definition for the diffusivity γ (K i
A, K j

B) is obtained,

γ (K i
A, K j

B) = γ (K i
A)γ (K j

B)‖dN(K i
A, K j

B)‖
γ (K i

A)‖dN(K j
B)‖ + γ (K j

B)‖dN(K i
A)‖

. (2.46)

Introducing the supermesh diffusivity value given in Eq. (2.46) in Eq. (2.43), an expression is obtained that assures the 
fulfilment of the two constraints of the diffusive operator given in Eq. (2.41) and Eq. (2.36).

2.6.1. Diffusive flux
The total diffusive flux at a source face K i

A is computed replacing the first expression of Eq. (2.36) in Eq. (2.35),

�d(K i
A) A(K i

A) = γ (K i
A)∇ψn(K i

A) A(K i
A)

= A(K i
A)

∑
wi, j

B ∈ ωAB (K i
A)

wi, j
B

{
γ (K i

A, K j
B)

[
ψP (K j

B) − ψP (K i
A)

‖dn(K i
A, K j

B)‖

]}

= A(K i
A)

⎡
⎢⎣ ∑

wi, j
B ∈ ωAB (K i

A)

−wi, j
B γ (K i

A, K j
B)

‖dn(K i
A, K j

B)‖

⎤
⎥⎦ ψP (K i

A)

+ A(K i
A)

⎡
⎢⎣ ∑

wi, j
B ∈ ωAB (K i

A)

wi, j
B γ (K i

A, K j
B)

‖dn(K i
A, K j

B)‖
ψP (K j

B)

⎤
⎥⎦ .

(2.47)

The coefficients DA(K i
A), DB(K i

A) and the diffusive interpolator ID(K i
A) are defined,

DA(K i
A) = −A(K i

A)
∑

wi, j
B ∈ ωAB (K i

A)

wi, j
B γ (K i

A, K j
B)

‖dn(K i
A, K j

B)‖
,

DB(K i
A) = A(K i

A),

ID(K i
A) =

∑
wi, j

B ∈ ωAB (K i
A)

wi, j
B γ (K i

A, K j
B)

‖dn(K i
A, K j

B)‖
ψP (K j

B).

(2.48)

Replacing Eq. (2.48) in Eq. (2.47):

�d(K i
A) A(K i

A) = DA(K i
A)ψP (K i

A) + DB(K i
A)ID(K i

A). (2.49)

Eq. (2.49) expresses the total diffusive flux at a source face K i
A in terms of its adjacent cell value ψP (K i

A) and the diffusive 
interpolator ID . An analogous expression can be obtained for a target face K j

B .

2.7. Total flux crossing the interface

The sum of the advective and diffusive fluxes which are defined in Eq. (2.30) and Eq. (2.49) respectively, is the total flux 
that crosses the face K i

A in a general transport problem:

[
�c(K i

A) + �d(K i
A)

]
A(K i

A) =
[
CA(K i

A) +DA(K i
A)

]
ψP (K i

A) + CB(K i
A)IC(K i

A) +DB(K i
A)ID(K i

A). (2.50)

The expression given in Eq. (2.50) has some features that are challenging to implement in a Finite Volume code. The 
principal difficulties are,
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• The local supermeshing approach does not generate a physical supermesh. Therefore, additional containers and functions 
must be implemented to define the supermesh values. For example, the supermesh flux ϕ(K i

A, K j
B) or the supermesh 

diffusivity γ (K i
A, K j

B).
• The partial contribution of cells located on the opposite side to the total interface flux requires the use of different 

interpolators for each differential operator of the transport equation. This forces one to use a sophisticated boundary 
condition which may be difficulty to implement in CFD codes based on modular programming.

In order to implement the interpolation expression given in Eq. (2.50) and to avoid the implementation difficulties described 
above, a simplified supermesh is proposed in the next section of this paper. On the other hand, in pure advective or diffusive 
problems, only one interpolator is required and then, the implementation of the interface expressions becomes simpler. For 
example, the Eq. (2.49) can be used to couple fluid and solid domains in conjugate heat transfer problems.

3. The pseudo-supermesh approach

In the first part of this section, the supermesh strategy is defined and its advantages are described concerning the 
implementation of Eq. (2.50). Secondly, a simplified version of a supermesh is presented being named pseudo-supermesh. 
After that, the advective and diffusive interpolations are redefined considering the new approach.

3.1. Supermesh definition

The combination of the interfaces τA and τB can be represented with a unique interface τC named “supermesh”. An 
example of a supermesh is shown in Fig. 2. Here, a formal definition is presented as done in the work of Farrel et al. [18]: 
an element of the supermesh K k

C ∈ τC is defined with the following statements,

• NC ⊇NA ∪NB

• A(K k
C ∩ K ) ∈ {

0, A(K k
C )

}∀ K k
C ∈ τC , K ∈ τ , τ ∈ {τA, τB}

where NC , NA and NB are the sets of nodes of the interfaces τC , τA and τB respectively. The supermesh τC includes all 
the nodes of the original interfaces τA and τB , and each face of the supermesh K k

C is completely included within a face of 
the original interfaces. The construction of a supermesh, solves the obstacles found in the implementation of Eq. (2.50):

• Each face of the supermesh is a container for the values corresponding to each pair of connected interface faces. For 
example,

ϕ
(

K i
A, K j

B

)
→ ϕ

(
K k

C

)
. (3.1)

• Each face of the supermesh links only two cells belonging to each subdomain respectively. Therefore, the supermesh 
face is considered as an internal face which is shared by two cells. Thus, the interpolation of Eq. (2.7) is applied 
straightforward. As a consequence, the interpolators required for the advective and diffusive fluxes given in Eq. (2.50)
are avoided:

CB(K i
A)IC(K i

A) +DB(K i
A)ID(K i

A) →
[
CB(K k

C ) +DB(K k
C )

]
ψP

(
K k

C

)
. (3.2)

The definition of a supermesh allows performing conservative interpolations without the implementation barriers de-
scribed before. The key concept of the supermesh is that it generates a one-to-one addressing between the interface faces. 
Therefore, the telescopic property of the FVM can be applied on the interface. The flux that leaves a supermesh face from 
one side of the interface is equal to the flux that enters into the other side. It is important to remark that the topology 
of a supermesh face K K

C is not necessary in a second order cell-centred collocated FVM, where an extensive quantity on 
a face is a function of its area and its centroid. These geometrical features can be directly computed from the triangles 
belonging to the set T i, j defined by the local supermeshing approach without determining the arbitrary polygon of the 
intersection. In this sense, this work presents a new supermesh conception. The objective of the new proposal is to perform 
a flux-conservative treatment of arbitrary non-conformal interfaces. The present technique employs the local supermeshing 
approach to determine the interface addressing, and the area and the geometrical centroid of the overlapped sector defined 
by each pair of connected faces.

3.2. Definition of the pseudo-supermesh

The new strategy is based on redefining the number of faces of the source and target interfaces τA and τB , respectively, 
with the aim of constructing a new pair of interfaces with a one-to-one connectivity. In this sense, each face K i

A ∈ τA

(K j ∈ τB ) is duplicated “n” times according to the connectivity with the opposite interface given by the addressing set 
B
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Fig. 5. Example of pseudo-supermesh interfaces. The original interface faces are multiplied to define a one-to-one connectivity.

χAB (χB A ). The new faces share the points with their parent faces K i
A (K j

B ) so new points are not required. The new interfaces 
are named τC A and τC B for the source and target side respectively, and they are referred as pseudo-supermesh interfaces. 
The definition of the pseudo-supermeshes is:

Source side: the pseudo-supermesh τC A of τA with faces K i, j
C A

is a mesh of � ∈ R2 such that:

• NC A =NA

• ∀ K i
A ∈ τA ∧ ∀ K j

B ∈ χAB(K i
A) ∃! K i, j

C A
∈ τC A : A(K i, j

C A
) = A(K i

A ∩ K j
B) ∧ N

K i, j
C A

=NK i
A

Target side: the pseudo-supermesh τC B of τB with faces K j,i
C B

is a mesh of � ∈ R2 such that:

• NC B =NB

• ∀ K j
B ∈ τB ∧ ∀ K i

A ∈ χB A(K j
B) ∃! K j,i

C B
∈ τC B : A(K j,i

C B
) = A(K i

A ∩ K j
B) ∧ N

K j,i
C B

=N
K j

B

where NK is the set of nodes of the face K . The first assertion expresses that the nodes of each pseudo-supermesh in-
terface are the same of its parent mesh respectively. The second statement affirms that for each pair of connected faces 
of the original interfaces exists one and only one face in the pseudo-supermesh. The supermesh face area matches to the 
overlapped area of the original ones and the pseudo-supermesh face has the same nodes as its parent face. A graphical 
example of the pseudo-supermeshes is shown in Fig. 5. For each face of a parent interface (τA or τB ) there are “n” identical 
faces in its child interface (τC A or τC B ) respectively. The number “n” is equal to the number of faces from the opposite side 
overlapping the parent face. As for each connection between the parent interfaces τA and τB exists a unique face in each 
of the pseudo-supermesh interfaces, the addressing between τC A and τC B is one-to-one. In this sense, the addressing set 
χC A C B contains for each source face K i, j

C A
in τC A the corresponding face K j,i

C B
in the target interface τC B ,

χC A C B (K i, j
C A

) = K j,i
C B

∈ τC B ∀K i, j
C A

∈ τC A , (3.3)

similarly,

χC B C A (K j,i
C B

) = K i, j
C A

∈ τC A ∀K j,i
C B

∈ τC B . (3.4)

According to the definition of the pseudo-supermesh interfaces, the addressing between the parent and child faces can be 
directly defined. In this context, the addressing χAC A has for each parent face K i

A a set containing the child faces K i, j
C A

,

χAC A (K i
A) =

{
K i, j

C A
∈ τC A : K j

B ∈ χAB(K i
A)

}
∀K i

A ∈ τA, (3.5)

χBC B (K j
B) =

{
K j,i

C ∈ τC B : K i
A ∈ χB A(K j

B)
}

∀K j
B ∈ τB . (3.6)
B
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3.2.1. Area of the pseudo-supermesh faces
The initial geometrical area of each pseudo-supermesh face is equal to the area of its respective parent face since it is 

born as a copy. These areas must be redefined to accomplish the real intersection between the pair of source and target 
faces. The modified area of each pseudo-supermesh face is calculated by scaling the area of its parent face with the weight 
of the intersection,

A
(

K i, j
C A

)
= wi, j

B A
(

K i
A

)
∀K i, j

C A
∈ τC A ,

A
(

K j,i
C B

)
= w j,i

A A
(

K j
B

)
∀K j,i

C B
∈ τC B ,

(3.7)

which satisfy,

A
(

K i
A

)
=

∑
K i, j

C A
∈χAC A (K i

A)

A
(

K i, j
C A

)
,

A
(

K j
B

)
=

∑
K j,i

C B
∈χBC B (K j

B )

A
(

K j,i
C B

)
,

(3.8)

and,

A
(

K i, j
C A

)
= A

(
K j,i

C B

)
. (3.9)

3.2.2. Centroid of the pseudo-supermesh faces
The pseudo-supermesh faces are geometrically equal to their parent ones, and consequently, they share the same face 

centroid. In other words, the pair of pseudo-supermesh faces K i, j
C A

and K j,i
C B

inherit the centroids of the faces K i
A and K j

B
respectively. The original centroids may be different to that one of the overlapped sector resulting from the intersection. 
Some numerical schemes employ the position of the face centroid to define the face values. An example is the second order 
upwind scheme [22,23] which computes a value at a face K as,

φ(K ) = φu(K ) + ∇φu(K ) · [xc(K ) − xu
c (K )

]
, (3.10)

where φu(K ) and ∇φu(K ) are the value and the gradient of the upwind cell of the face K respectively, xc(K ) is the cen-
troid of K and xu

c (K ) is the centroid of the upwind cell. If the face centroid is not correctly defined, an error is computed 
in the discretisation. In this context, the centroids of the pseudo-supermesh faces are redefined to avoid errors in centroid-
dependent numerical schemes. The pseudo-supermesh centroids are calculated according to the geometrical centroid of the 
intersection,

xc(K i, j
C A

) = xc(K j,i
C B

) = xc(K i
A ∩ K j

B) (3.11)

The local supermeshing approach generates for each pair of the intersected faces (K i
A ∩ K j

B) a set of triangles tn ∈ T i, j . 
Therefore, the centroid of the intersection zone is,

xc(K i
A ∩ K j

B) =
∑

tn∈T i, j xc(tn) A(tn)∑
tn∈T i, j A(tn)

(3.12)

where the centroid of each triangle xc(tn) is the average of its points coordinates.

3.3. Interpolation with the pseudo-supermesh approach

The pseudo-supermesh interfaces have a one-to-one connectivity which guarantees an identical definition of the interface 
fluxes at both interfaces,

φ(K i, j
C A

) = φ(K j,i
C B

). (3.13)

Similarly as defined in Eq. (2.8), the fluxes are obtained by interpolation of adjacent cell values. In this case, there is only 
one cell on the opposite side due to the trivial addressing,

φ
(

K i, j
C A

)
= α

(
K i, j

C A

)
ψP (K i, j

C A
) + β

(
K i, j

C A

)
ψN(K i, j

C A
),

φ
(

K j,i
C B

)
= α

(
K j,i

C B

)
ψN(K j,i

C B
) + β

(
K j,i

C B

)
ψP (K j,i

C B
),

(3.14)

where the cell P of each pseudo-supermesh face is the same as its respective parent face,
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φP

(
K i, j

C A

)
= φP

(
K i

A

)
∀K i, j

C A
∈ χAC A

(
K i

A

)
,

φP

(
K j,i

C B

)
= φP

(
K j

B

)
∀K j,i

C B
∈ χBC B

(
K j

B

)
,

(3.15)

and the cell N of each pseudo supermesh face is the cell P of the of the opposite face determined with the one-to-one 
addressing,

φN

(
K i, j

C A

)
= φP

(
K j,i

C B

)
K j,i

C B
∈ χC A C B

(
K i, j

A

)
,

φN

(
K j,i

C B

)
= φP

(
K i, j

C A

)
K i, j

C A
∈ χC B C A

(
K j,i

B

)
.

(3.16)

3.3.1. Total flux crossing the pseudo-supermesh interfaces
The total flux contribution described in Eq. (2.50) is expressed here for a source pseudo-supermesh face K i, j

C A
,[

�c(K i, j
C A

) + �d(K i, j
C A

)
]

A(K i, j
C A

) =
[
CA(K i, j

C A
) +DA(K i, j

C A
)
]
ψP (K i, j

C A
) +

[
CB(K i, j

C A
) +DB(K i, j

C A
)
]
ψN(K i, j

C A
), (3.17)

where the coefficients CA ,CB and DA ,DB are defined analogously to the definition given in Eq. (2.29) and Eq. (2.48) respec-
tively for the advective and diffusive terms,

CA(K i, j
C A

) = ϕ(K i, j
C A

)αc(K i, j
C A

),

CB(K i, j
C A

) = ϕ(K i, j
C A

)βc(K i, j
C A

),

DA(K i, j
C A

) = −A(K i, j
C A

)
γ (K i, j

C A
)

‖dn(K i, j
C A

)‖
,

DB(K i, j
C A

) = A(K i, j
C A

)
γ (K i, j

C A
)

‖dn(K i, j
C A

)‖
.

(3.18)

The coefficients C and D are grouped in two factors collecting the values from both sides of the interface,

P (K i, j
C A

) = CA(K i, j
C A

) +DA(K i, j
C A

),

N(K i, j
C A

) = CB(K i, j
C A

) +DB(K i, j
C A

).
(3.19)

Replacing the new factors of Eq. (3.19) in Eq. (3.17),[
�c(K i, j

C A
) + �d(K i, j

C A
)
]

A(K i, j
C A

) = P (K i, j
C A

)ψP (K i, j
C A

) + N(K i, j
C A

)ψN(K i, j
C A

). (3.20)

Eq. (3.20) expresses the total contribution of the advective and diffusive fluxes at a pseudo-supermesh face K i, j
C A

. The ex-
pression is analogous to the internal face interpolation given in Eq. (2.7) where the interface interpolators IC and ID of 
Eq. (2.50) are avoided. The numerical coupling at the interface is achieved with a one-to-one a addressing using the maps 
χC A C B and χC B C A .

3.4. Algorithm

In the following algorithm, all the steps required to construct the pseudo-supermeshes are detailed. The algorithm is con-
ceived to solve a dynamic mesh problem where the pseudo-supermeshes are removed and regenerated for every time-step 
of the simulation.

1. The local supermeshing approach is performed on the original interfaces τA and τB to generate the addressing and 
weighting lists χAB , χB A and ωAB , ωB A respectively. The supermesh centroids are also computed.

2. According to the information given by the lists χAB and χB A , the new faces KC A and KC B are generated and conse-
quently the new pseudo-supermesh interfaces τC A and τC B are created.

3. The new addressing lists χC A C B , χC B C A and χAC A , χBC B are defined.
4. The geometrical areas of the faces KC A and KC B are scaled and the pseudo-supermesh centroids are redefined.
5. The numerical problem is solved.
6. The pseudo-supermeshes are removed and thus, the original interfaces τA and τB are recovered.
7. The dynamic mesh action is achieved generating a new state of the interfaces, τ ′

A and τ ′
B .

8. The algorithm is restarted from step 1 with the new interfaces (τA → τ ′
A and τB → τ ′

B ).

The algorithm is explained schematically in Fig. 6.
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Fig. 6. Different steps performed in a dynamic mesh simulation when using the pseudo-supermesh strategy.

Fig. 7. Two examples of domain decomposition. Both cases are decomposed in eight processors but with different partitioning schemes; (a) partitioning 
scheme with minimum inter-processor communication; (b) partitioning scheme with maximum inter-processor communication.

3.5. The pseudo-supermesh approach in parallel

The pseudo-supermesh strategy is implemented in parallel using a distributed memory architecture. There is no restric-
tion in the domain decomposition procedure. The source and target inter-connected faces may lay on the same processor 
or not, and each pseudo-supermesh can be distributed over multiple processors. It is worth mentioning that for turboma-
chinery applications, the possibility of positioning the source and target interfaces in different processors is crucial since the 
rotating motion generates a variable connectivity between the processors (subdomains). Furthermore, for interfaces with 
many faces, if the strategy is not parallelised, the construction of the pseudo-supermesh by only one processor will induce 
a load imbalance in the whole simulation.

In Fig. 7, two examples are presented where the domain is partitioned over eight processors with different schemes for 
each case respectively. In example (a), the pseudo-supermesh interfaces are divided into eight parts with each processor 
owning the target and source interfaces. In this case, the pseudo-supermesh construction and the flux assembling are 
performed without communication between processors. On the other hand, in example (b), the pseudo-supermesh interfaces 
are divided into four parts where each processor owns either the source or the target interface. Therefore, inter-processor 
communication is required to perform the local supermeshing, to construct the pseudo-supermeshes and to assemble the 
fluxes. Both examples are limit situations, a practical case would be a combination of both.

A test is performed to evaluate the scalability of the parallel implementation. The time required to remove and recon-
struct the pseudo-supermeshes is evaluated using the two partitioning schemes shown in Fig. 7. The resulting CPU time is 
plotted against the number of processors in Fig. 8. The results show a very good efficiency of the parallel implementation.

3.5.1. Implementation
A brief description of the parallel implementation of the pseudo-supermesh approach is detailed by the following steps:

1. Each processor removes the pseudo-supermesh faces recovering the original interfaces (pseudo-supermesh removal).
2. Each processor receives from the others those target faces which are inside a bounding box determined by its source 

faces (target faces communication).
3. Processors with source faces (and target faces) perform the local supermeshing defining the local addressing and 

weighting lists. Processors without source faces are idle in this step (local supermeshing).
4. Local addressing and weighting lists are sent to all processors. Inter-processor maps are created for future communica-

tion (local supermesh communication).
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Fig. 8. Evaluation of the pseudo-supermesh parallel implementation. The CPU time of two partitioning schemes with minimum (scheme A) and maximum 
(scheme B) inter-processor communication are plotted varying the number of processors. The pseudo-supermesh interfaces used in the tests are composed 
of more than 6 million faces. The test are executed in a cluster with processors Intel(R) Xeon(R) E5-1620 v2 connected with Infiniband QDR.

Table 1
Relative time consumed by each step of the parallel implementation using the 
partitioning scheme A with two processors.

Steps Relative time [%]

(1) Pseudo-supermesh removal 24.9
(2) Target faces communication 2.6
(3) Local supermeshing 39.9
(4) Local supermesh communication 2.1
(5) Pseudo-supermesh construction 24.5
(6) Maps communication 1.3
(7) Pseudo-supermesh connectivity 1.4
(8) Pseudo-supermesh communication 3.3

5. Each processor creates and introduces into the mesh its new pseudo-supermesh faces. Maps between new and old faces 
are computed (pseudo-supermesh construction).

6. Local face-maps are sent to all processors (maps communication).
7. Each processor generates the new local addressing lists by relating the old connectivity with the face-maps (pseudo-

supermesh connectivity).
8. Local addressing and weighting lists of the new pseudo-supermesh interfaces are sent to all processors. New inter-

processor maps are created for future communication (pseudo-supermesh communication).

Steps 1, 3, 5 and 7 are parallelised trivially without requiring inter-processor communication. On the contrary, steps 2, 4, 
6 and 8 involve communication and are not required when running in serial mode. However, the total time consumed by 
these steps is of a minor order of magnitude as shown in Table 1 which details the relative time consumed by each step of 
the parallel implementation. From Table 1 it is concluded that the steps 1, 3, 5 and 7 consume the 90.4 percent of the total 
time. An important detail is that the local supermeshing (step 3) is achieved only by the processors who own source faces. 
Therefore, the source side of the interface should be distributed over all processors to optimally balance the algorithm. The 
incidence of this point is clearly appreciated in Fig. 8 where the partitioning scheme A has a better performance than the 
scheme B.

3.6. Computational efficiency

This test evaluates the computational cost of the proposed algorithm as a function of the total number of original in-
terface faces. Two different tests are introduced. The first one consists in measuring the CPU time required to couple and 
decouple two static and planar interfaces which are meshed with a non-conformal mesh. On the other hand, the second 
test achieves a dynamic mesh simulation using a rotor–stator configuration with a cylindrical interface. Here, the CPU time 
required to complete a whole revolution of the rotor is analysed using 10 time-steps. At each time-step, the interfaces are 
coupled and decoupled. A graphical description of the tests and results are shown in Fig. 9 and Fig. 10 respectively. As a ref-
erence, an implementation of the Sliding Interfaces technique [1–3] is also evaluated.1 The pseudo-supermesh performance 

1 The denominations “sliding interfaces” and “sliding meshes” are commonly used to describe the general framework of these strategies. Here, “Sliding 
Interfaces” is the name of a particular technique within this group of methodologies.



38 H.J. Aguerre et al. / Journal of Computational Physics 335 (2017) 21–49
Fig. 9. Description of the examples solved for the computational efficiency tests: (a) static test with non-conformal planar interfaces; (b) dynamic test with 
non-conformal cylindrical interfaces.

Fig. 10. Computational time required to couple the interfaces as a function of the number of faces: (a) static test; (b) dynamic test. Both tests are executed 
in serial mode with an i7-3770K CPU.

scales linearly with the size of the interface. In this context, the original order of the local supermeshing approach is pre-
served. Moreover, when the interface faces are on the order of one million, the current pseudo-supermesh implementation 
is approximately an order of magnitude faster than the Sliding Interfaces implementation used as a reference.

3.6.1. Advantages of the pseudo-supermesh approach
Regarding the computational efficiency, the main advantage of the pseudo-supermesh approach is that nodes and faces 

which are already present in the original interfaces are not modified. This feature is beneficial to optimise computational 
cost and to save memory space. Several computations which are required to define a full supermesh are avoided using 
the pseudo-supermesh approach. If a full supermesh is required, nodes of the triangulated intersection described in Fig. 3
must be reordered to define a valid polygon. Then, the labels of the supermesh nodes which are already existing in the 
mesh must be searched from the original ones and, in addition, new labels must be assigned to the new supermesh nodes. 
Furthermore, new nodes must be introduced into the mesh and removed when recovering the original interfaces. Moreover, 
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Fig. 11. Description of the pure advective transport inside a cavity flow. The interface separates the region filled with the marker.

each supermesh face must be explicitly defined using the new nodes which implies modifying the original interface faces. 
In contrast to this, the pseudo-supermesh approach re-uses the original faces as new pseudo-supermesh faces without 
modifying their definition, only their areas and centroids are modified. In practical applications, the amount of re-used faces 
are in order of 25–50% of the total pseudo-supermesh faces depending on the interface connectivity.

Additionally to the comparison shown in Fig. 10, another quantitative estimation of the computational efficiency is 
performed. The aim of this new test is evaluating the CPU time increment as a result of introducing new nodes into 
the mesh as it is done when constructing a full supermesh. In this sense, a modified version of the pseudo-supermesh 
approach is evaluated where not only faces are replicated or multiplied but also each node of the pseudo-supermesh faces 
is considered as a new node which must be introduced into the mesh. In contrast to the comparison achieved with the 
Sliding Interfaces technique, the methods compared in this analysis use a similar implementation except for the one which 
adds new nodes. The test is analogous to the static problem shown in Fig. 10(a). In this case, two interfaces of approximately 
3 million faces are coupled and decoupled. Here, the implementation which explicitly introduces new nodes into the mesh 
shows a CPU time overhead of approximately 30%. The inclusion of all steps required to construct a full-supermesh will 
require even more CPU resources.

4. Numerical examples

In this section, a series of numerical tests are performed to evaluate the pseudo-supermesh interfaces. The first exam-
ples are conceived to test the conservation property of the pseudo-supermesh strategy. In the second group of examples, 
problems with an analytical solution are solved with the objective of evaluating the accuracy of the numerical method 
when using the pseudo-supermesh interfaces. Finally, a three-dimensional Navier–Stokes problem is solved comparing the 
pseudo-supermesh results with a conformal mesh solution and with a reference found in the literature.

4.1. Conservation examples

Two scalar transport problems are solved with the aim of evaluating the global conservation of the transported quantity. 
The first problem is an unsteady and pure advective scalar transport problem inside a cubic cavity flow. The second example 
is an unsteady pure diffusive problem in a cubic cavity.

4.1.1. Pure advective transport in a cavity flow
An unsteady Navier–Stokes problem is solved inside a cubic cavity of a 1-meter side. Half of the domain is filled with 

a scalar marker having a value of φ = 200, and the remaining sector is left in φ = 0. The flow is at rest at the beginning 
of the problem. On the upper side of the cavity, a fixed velocity value in the z component is imposed to induce the flow 
motion. The fluid kinematic viscosity ν has a value of 0.01 m2/s and the velocity magnitude of the upper side is set up in 
10 m/s to define a Reynolds number of Re = 1000. The total simulation time is set up in 50 s. A schematic representation of 
the problem is shown in Fig. 11 and the mathematical description is presented for the flow and scalar transport problems 
respectively as follows,

∂ [ U(x, t)]

∂t
+ ∇ · [U(x, t)U(x, t)] = −∇p(x, t)

ρ
+ ν � [U(x, t)] x ∈ �

∇ · [U(x, t)] = 0 x ∈ �

U(x, t) = (0, 0, uz) x ∈ �D

U(x, t) = (0, 0, 0) x ∈ { � − �D}
U(x,0) = (0, 0, 0) x ∈ �,

(4.1)
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Fig. 12. Triangular and a hexagonal dominant interfaces used in the cavity problem.

Fig. 13. Threshold of cells located at a transversal plane x = 0.5 with values of the scalar marker φ ≥ 50 for the first phase of the simulation.

∂φ(x, t)

∂t
+ ∇ · [U(x, t)φ(x, t)] = 0 x ∈ �

φ(x,0) = 200 x ∈ �A

φ(x,0) = 0 x ∈ �B
∂φ

∂n
(x,0) = 0 x ∈ �,

(4.2)

where U(x, t) is the velocity, p is the pressure, ρ is the fluid density assumed as constant with a value of 1 kg/m3, �A

and �B are the subdomains separated by the interface, �D is the upper boundary of the cube and � is the whole domain 
boundary.

The subdomains �A and �B are meshed with different discretisation patterns in order to generate an arbitrary non-
conformal interface. The first subdomain is meshed with tetrahedral cells (21173 cells) and the remaining subdomain with 
polyhedra (6831 cells). The non-conformal discretisation patterns generate a triangular and an hexagonal dominant inter-
faces as shown in Fig. 12. The problem is solved using the merged SIMPLE-PISO algorithm [24,25]. The time-step length is 
configured with a value of 0.01 s defining a maximum Courant number of Co ≈ 14. The second order backward differencing 
scheme is used for the time discretisation and upwind schemes are adopted for the advective terms. The diffusion terms 
are discretised using a linear scheme.

In this problem, the flow mixes the scalar marker along the whole domain as shown in Fig. 13 where the flow and 
the scalar marker cross the interfaces continuously. Therefore, to conserve the global integral of the scalar marker in the 
cavity it is important to solve both problems conservatively, the flow and the scalar transport ones. The problem is also 
solved by interpolating the fields at the interface with area-based weights, without pseudo-supermeshes. The results are 
presented in Fig. 14 showing the global average of the scalar quantity over time. The pseudo-supermesh approach exhibits 
conservation to machine precision (10−16) of the scalar marker quantity over the whole simulation time. On the other hand, 
the simulation based on area-weighted interpolations has a non-negligible conservation issue. For this solution, the global 
average grows indefinitely over the time indicating a stability problem of this non-conservative interpolation. The standard 
deviation of the scalar marker is also evaluated as an indicator of mixing. As a reference, a one-region simulation (without 
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Fig. 14. Results of the simulations using pseudo-supermeshes and a method based on overlapped-area interpolations; (a) evolution over time of the global 
average of φ; (b) evolution over time of the standard deviation of φ.

interfaces) is solved. The evolution of the standard deviation against the time is plotted in Fig. 14. The standard deviation 
of φ for the pseudo-supermesh approach is equivalent to the results of the one-region problem. In contrast, the results of 
the non-conservative method show an unphysical behaviour of the standard deviation.

4.1.2. Pure diffusive problem
A pure diffusive problem is proposed to evaluate the conservative property of the diffusive discretisation using pseudo-

supermesh interfaces. The test analyses the mixing through diffusion of an initial scalar marker distribution inside a cubic 
cavity. The definition of the problem is as follows,

∂φ(x, t)

∂t
+ ∇ · [α(x)∇φ] = 0

φ(x,0) = 200 x ∈ �A

φ(x,0) = 0 x ∈ �B
∂φ

∂n
(x,0) = 0 x ∈ �

α(x) = 1 + 10000 x2 y2z2

, (4.3)

where φ is the transported variable, α(x) is the diffusivity coefficient, � is the domain boundary and �A and �B are the 
subdomains. They are meshed with hexahedral cells using different grid refinements in order to generate a non-conformal 
interface. The problem is schematically presented in Fig. 15. A non-homogeneous scalar diffusivity is defined to amplify the 
potentially non-conservation issues. For reference, three arrows are located on the cavity sides indicating the direction in 
which the diffusivity increases. Furthermore, references to the minimum and maximum values of the diffusivity are detailed 
for the nodes (0, 0, 0) and (1, 1, 1). The problem is solved with an unsteady diffusive solver where the Laplacian operator 
is discretised with a linear scheme and the temporal derivative is discretised with an Euler scheme. The total simulation 
time is configured to 1 s and the time-step length is set to 0.001 s. The global average of the scalar marked is plotted 
over the time in Fig. 16. The evolution of the global average of φ indicates a correct conservation of the scalar quantity 
with the method presented in this work. Alternatively, as done in the previous test, a simulation based on area-weighted 
interpolations is included. This simulation does not conserve correctly the scalar marker increasing the initial global quantity 
of φ on the order of 1%. The significant imbalance of φ takes place in the initial phase of the simulation where the gradient 
of the scalar marker at the interface is high.

4.2. Analytic examples

The next tests evaluate the accuracy of the pseudo-supermesh approach. In particular, the first example analyses the 
performance of the present approach with an advective problem. Similarly, the second test evaluates the accuracy of the 
diffusive discretisation showing the influence of the non-orthogonal corrections. Finally, the last two examples combine the 
two differential operators by solving two different Navier–Stokes problems.

4.2.1. Pure advection of a Gaussian profile
In this test, a scalar marker with a Gaussian profile is transported along a square duct by a constant flow. The domain 

� is divided into two subdomains which are meshed with different discretisation patterns and coupled with the pseudo-
supermesh interfaces. The problem is defined in Eq. (4.4) and schematically presented in Fig. 17.
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Fig. 15. Cubic cavity with an interface located at the plane z = 0.5. A non-uniformity diffusivity field is defined in the cavity. The diffusivity field has its 
minimum value at point x = (0, 0, 0) and its maximum in point x = (1, 1, 1).

Fig. 16. Global average of the scalar marker over simulation time for the pure diffusive problem.

Fig. 17. A Gaussian profile is transported by a uniform flow inside a square duct. The domain discretisation presents a non-conformal interface in the middle 
of the duct.

∇ · [U(x)φ] = 0
U(x) = (0, 0, 1) x ∈ �

φ(x) = exp
[−10 (x2 + y2)

]
x ∈ �D

, (4.4)

where U(x) is the flow velocity, φ(x) is the transported variable (scalar marker) and �D is the inlet boundary. The solution 
of the problem is the complete propagation of the inlet boundary condition along the whole domain which generates a 
constant profile of φ(x) in the z direction,
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Fig. 18. Convergence of the error for the pure advective problem.

φ(x) = exp
[
−10 (x2 + y2)

]
x ∈ �. (4.5)

The subdomains are meshed with a pure hexahedral mesh with different discretisation patterns to generate dissimilar 
surface meshes at the interface. Namely, the interfaces are meshed with [n × n] and [(n + 1) × (n + 1)] points per side, 
where n is varied from n = 4 to n = 512. The problem is solved with an unsteady solver starting from φ = 0 on the whole 
domain at time t = 0. The simulation finishes when the stationary state is reached. The advective terms are discretised 
with the second order upwind scheme. The mean square error of the outlet profile is plotted as a function of the mesh 
size in Fig. 18. A one-region domain (without interfaces) is also included in the analysis. The results demonstrate a second 
order convergence of the solution using the pseudo-supermesh approach. Furthermore, the error magnitude is equal to 
the one-region case which demonstrates that the pseudo-supermesh approach does not introduce additional error into the 
solution.

4.2.2. A manufactured diffusive problem
A manufactured diffusive problem on a cubic cavity domain is presented. The main aim of this example is to evaluate 

the order of convergence of the pseudo-supermesh approach in a pure diffusive problem. In particular, the influence of the 
non-orthogonal corrections on the error is analysed. The definition of the problem is as follows,

∇ · [∇φ(x)] = 6 x ∈ �

φ(x) = 1 + x + y + x2 x ∈ �A = {x ∈ � : z = 0}
φ(x) = 3 + x + y + xy + x2 + y2 x ∈ �B = {x ∈ � : z = 1}
φ(x) = 1 + y + z + y2 + z2 x ∈ �C = {x ∈ � : x = 0}
φ(x) = 3 + y + z + yz + y2 + z2 x ∈ �D = {x ∈ � : x = 1}
φ(x) = 1 + x + z + x2 + z2 x ∈ �E = {x ∈ � : y = 0}
φ(x) = 3 + x + z + xz + x2 + z2 x ∈ �F = {x ∈ � : y = 1}

, (4.6)

where φ(x) is the scalar quantity, � is the domain of the problem, � is the domain boundary and �A ..�F are the sides of 
the cavity. The problem has analytical solution:

φ(x) = 1 + x + y + z + xyz + x2 + y2 + z2 x ∈ �. (4.7)

The domain � is a cubic cavity of 1 meter per side where a pseudo-supermesh interface is located in the plane z = 0.5 as 
shown in Fig. 15. A convergence study is achieved solving the problem given in Eq. (4.6) with different discretisations for 
both sides of the interfaces as done in the previous test. The results are presented in Fig. 19 where a very good agreement 
is achieved between the results of the pseudo-supermesh and the one-region simulations. The non-orthogonal corrections 
improve the accuracy of the method to second order which indicates a proper handling of the non-orthogonal corrections 
at the pseudo-supermesh interfaces.

4.2.3. Viscous vortex problem
In the previous tests, the convective and diffusive discretisations at the pseudo-supermeshes are tested separately. In 

this case, the combination of both operators is validated solving the unsteady two-dimensional Navier Stokes equations. The 
problem solved is the transport of a vortex structure through the interfaces by a uniform mean flow. The initial condition 
of the velocity U = (u, v) is,
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Fig. 19. Convergence of the error in the manufactured diffusive problem. The cases with non-orthogonal corrections and without them are compared.

Fig. 20. Convection of a vortex through the pseudo-supermesh interfaces by a uniform flow. The starting and final positions of the vortex (xc, yc ) are 
indicated.

u(x, y,0) = U0 − �

R2
c

(y − yc)exp

(−r2

2R2
c

)
, v(x, y,0) = �

R2
c

(x − xc)exp

(−r2

2R2
c

)
, (4.8)

where xc and yc are the vortex centre coordinates, r = 2
√

(x − xc)2 + (y − yc)2 is the distance to the vortex centre, � is 
the vortex strength, Rc the radius of the vortex and U0 is the mean flow velocity magnitude. The problem has analytical 
solution given by,

u(x, y, t) = U0 − �

R2
c

(y − yc)

α2
exp

( −r2

2α R2
c

)
, v(x, y, t) = �

R2
c

(x − xc)

α2
exp

( −r2

2α R2
c

)
, (4.9)

where α is defined by,

α = 1 + 2ν t, (4.10)

being ν the kinematic viscosity.
The configuration of the problem is based on the work of Wang et al. [26]: the vortex strength is set up to � = 0.036, the 

vortex radius is Rc = 0.01556 m and the mean flow velocity is U0 = 1 m/s. A graphical scheme of the domain and problem 
description is shown in Fig. 20. The vortex is positioned at the time t = 0 s in (xc, yc) = (−3Rc, 0) and is convected to the 
position (xc, yc) ≈ (3.42Rc, 0) at time t = 0.1 s. The subdomains �A and �B are meshed with different number of grid 
points in the y-direction: N y and (N y + 1) for the pseudo-supermesh interfaces τC A and τC B respectively.
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Fig. 21. Root mean square error of the velocity; (a) u component and (b) v component.

The pressure–velocity coupling is solved with the SIMPLE-PISO algorithm. The domain boundaries are located far enough 
away from the vortex so that the analytic solution there falls below machine precision (10−16). At boundaries, the velocity 
is set up to the uniform mean flow U0 and the pressure is fixed to p = 0 at the outlet. On the other hand, a null normal 
gradient is configured for p at the rest of the boundary. The problem is solved with different grid refinements (from 
N y = 40 to N y = 640), varying the time-step length accordingly to set up a maximum Courant number of Co ≈ 0.95. 
Three simulations are performed with different viscosity values, ν1 = 0, ν2 = 10−5 and ν3 = 10−4 m2/s which define the 
inviscid case, and viscous problems with Re = 1556 and Re = 155.6 respectively. The Reynolds number is defined as Re =
U0 Rc/ν . The advective operator is discretised with the second order upwind scheme and the diffusive operator with a 
linear interpolation scheme using non-orthogonal corrections. Likewise, the temporal discretisation is addressed with the 
second order backward differencing scheme. The root mean square error of the solutions is plotted in Fig. 21 as a function 
of the cell size of the mesh for both velocity components. The h value considered is the left sub-domain cell size. The 
results demonstrate that the pseudo-supermesh interfaces do not affect the order of accuracy of the discretisation schemes 
being second order accurate.

4.2.4. Two-dimensional Taylor–Green vortex
The two-dimensional Taylor–Green vortex problem is solved to evaluate the behaviour of the pseudo-supermeshes when 

using a non-flat interface. The problem configuration is based on the work of Mirkov et al. [27] which has the following 
analytic solution,

u (x, y, t) = −sin(x) cos(y)exp(−2νt),

v (x, y, t) = cos(x) sin(y)exp(−2νt),

p(x, y, t) = 1

4
[cos(2x) + sin(2y)] exp(−4νt),

(4.11)

where ν is the kinematic viscosity. The problem is solved using a square domain with a side length of 2π and setting 
periodic conditions at boundaries. A circular interface of a diameter equal to 

√
2π is centred inside the squared domain 

defining the subdomains �A and �B . This circular interface is coincident with some vortex centres (points with null velocity 
magnitude) of the problem as shown in Fig. 22. A convergence study is performed varying the cell size of the domain 
discretisation. In contrast to the previous problems, a different non-conformal pattern is adopted at the interface. More 
specifically, for n divisions of the interface τC A , the opposite interface τCb is meshed with (1.5 n + 1) grid points. Using this 
division scheme, the ratio of characteristic lengths of both interfaces tends to 1.5 when n increases. A graphical description 
of the interface discretisation is depicted in Fig. 22 where the coarser and finer interfaces have 64 and 97 grid points 
respectively.

The discretisation schemes of the differential operators are equal to those used in the vortex convection test. The initial 
condition for velocity and pressure is the analytic solution at time t = 0 s. The time step is set up in order to obtain a 
maximum Courant number of approximately 3.8 and each simulation is run until reaching the total time of 1.28 s. Kinematic 
viscosity is set in 0.01 m2/s defining a Re number of 157. The results are presented in Fig. 23 showing the root mean square 
error of the velocity (the error of ux and u y are equal since the problem is symmetric) as a function of the finest interface 
characteristic length.

Second order convergence of the error is achieved. It is important to remark that the circular interface generates a 
mesh which has some non-orthogonality and skewness. As a consequence of this, skewness corrections on the cell-face 
interpolation should be used to obtain a second order convergence.
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Fig. 22. Description of the Taylor–Green vortex problem. A circular interface with a (n) vs (1.5n + 1) discretisation scheme is located in the centre of the 
domain. On the right side, velocity contours of the simulation results at t = 1.28 s are presented.

Fig. 23. Convergence of the velocity error (ux or u y ) for the Taylor–Green vortex problem.

4.3. Three-dimensional Taylor–Green vortex

Finally, the three-dimensional Taylor–Green vortex problem [28] is solved using non-conformal interfaces with the 
pseudo-supermesh approach. This test starts with an initial vortex flow which evolutes until rest transitioning through 
turbulence and energy dissipation phases. The aim of this problem is to evaluate the capability of the pseudo-supermesh 
approach to reproduce the physics of the flow without introducing spurious errors in comparison with a one-region mesh 
simulation which is used as a validation result. As an additional reference, a pseudo-spectral solution is also included in the 
analysis [29]. The domain of the problem is a cube of a side length of 2π . In this particular test, the cubic domain is divided 
into three subdomains: �A , �B and �C . These subdomains generate two pairs of pseudo-supermesh interfaces which are 
planes perpendicular to the x-axis as shown in Fig. 24.

The problem is defined by a periodic flow which starts with the following initial condition for the velocity components 
and the pressure,

u(x, y, z, t = 0) = V 0 sin
( x

L

)
cos

( y

L

)
cos

( z

L

)
,

v(x, y, z, t = 0) = −V 0 cos
( x

L

)
sin

( y

L

)
cos

( z

L

)
,

z(x, y, z, t = 0) = 0,

p(x, y, z, t = 0) = p0 + ρ0 V 2
0
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cos

(
2x

)
+ cos

(
2y

)][
cos

(
2z

)
+ 2

]
,

(4.12)
16 L L L
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Fig. 24. Cubic region divided into three subdomains along the x-axis defining two pairs of interfaces.

Fig. 25. Temporal evolution of the kinetic energy.

where the velocity V 0, the characteristic length L and the reference density ρ0 are set up to 1 and the reference pressure 
p0 is set up to 0. The viscosity is defined in order to set up a Reynolds number of 1600 (Re = V 0L/ν). The problem is 
studied computing the temporal evolution of the kinetic energy Ek and its derivative −dEk/dt which represents the kinetic 
energy dissipation rate. The kinetic energy is calculated as,

Ek = 1

ρ0�

∫
�

1

2
(U · U)d�, (4.13)

being U = (u, v, z) the velocity vector.
A mesh convergence study is performed where the subregions �A and �C are meshed with [n/4 ×n ×n] points per side 

and the middle sector �B with [(n/2) × (n + 1) × (n + 1)] respectively generating non-conformal meshes at the interfaces. 
Analogously, the one-region domain is discretised with [n × n × n] points per side. The set up of the numerical solver is 
configured as done in the viscous vortex problem with second order discretisation schemes for the convective, diffusive 
and temporal terms. In particular, the �t value is set up to define a maximum Courant number of approximately 6. Three 
different mesh resolutions are simulated (n = 128; n = 256 and n = 512). The temporal evolutions of Ek and −dEk/dt are 
presented in Fig. 25 and Fig. 26 for each mesh resolution analysed. From these results, it is concluded that the pseudo-
supermesh interfaces do not introduce numerical errors in comparison with the one-region mesh simulations. Furthermore, 
the results of the current approach have an acceptable agreement with the pseudo-spectral solution chosen as a reference.
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Fig. 26. Temporal evolution of the kinetic energy dissipation rate.

5. Conclusions

A simple strategy to couple non-conformal interfaces has been presented and proved to be conservative, computationally 
efficient and second order accurate. In order to achieve these objectives, an interpolation expression for a general transport 
problem with advective and diffusive terms has been derived based on the conservation of fluxes. Due to the arbitrary con-
nectivity of non-conformal grids, the interface values must be calculated by a flux-weighted interpolation. If the interfaces 
are conformal, the interpolations become trivial and consequently, the flux computation at the interfaces is straightforward. 
Considering the last feature, the original non-conformal grids have been replaced with a pair of new interfaces (pseudo-
supermeshes) with a one-to-one addressing. The new coupling strategy generates copies of the original faces to determine 
a conformal connectivity between them. A significant advantage of the developed pseudo-supermesh approach is that it 
is formally conservative. The flux-conservation does not depend on the convergence of the numerical algorithm since the 
pseudo-supermesh faces are equivalent to the internal ones. Then, the telescopic property of the FVM is fully satisfied.

To obtain second order accuracy, the area and centroid of the pseudo-supermesh faces must be redefined. This task has 
been achieved with the local supermeshing approach [19] which is a robust and efficient algorithm to handle non-conformal 
interfaces resulting from complex unstructured meshes. The obtained pseudo-supermesh strategy is computationally effi-
cient and simple to implement since the arbitrary polygons resulting from the grid intersections are not required. Therefore, 
the addition of new nodes, edges, and faces into the mesh is avoided.

The new strategy has been implemented for parallel computing architectures, showing an excellent performance in a 
scalability test. Regarding the computational efficiency, the method has been evaluated measuring the CPU time required to 
couple and decouple the interfaces. A better performance of the pseudo-supermesh strategy has been obtained, in contrast 
to a stitch-based methodology. Moreover, the linear complexity of the local supermeshing algorithm has been preserved.

In order to evaluate the conservativeness and accuracy of the new technique, a series of numerical tests have been per-
formed. The pseudo-supermesh approach has shown conservation to machine precision of fluxes for advective and diffusive 
problems. In contrast, the computations done with a method based on area-weighted interpolations (not flux-weighted) 
have shown conservation and stability problems. The accuracy of the proposed technique has been evaluated using analyti-
cal solutions as a reference. The performance of the advective and diffusive operators have been analysed separately and its 
combination has been tested solving Navier–Stokes problems with analytical solutions. In all the tests, the solutions have 
converged with a second-order rate. Finally, the pseudo-supermesh approach was tested in a three-dimensional benchmark 
problem obtaining a very good agreement with the reference solutions.

Taking into account the properties summarised above, this work proposes a very advisable alternative to simulate aca-
demic and industrial multi-domain problems in which conservativeness, accuracy and efficiency are desired.
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