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The Inverse Finite Element Method (IFEM) for degenerate solid shells is introduced. IFEM allows deter-
mining the undeformed shape of a body (in this case, a shell-like body) such that it attains a desired shape
after large elastic deformations. The model is based on the degenerate solid approach, which enables the
use of the standard constitutive laws of Solid Mechanics. First, IFEM is applied to three popular
benchmarks for validation purposes. Then, the capabilities of IFEM for inverse design are demonstrated
by means of its application to the design of a microvalve.
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1. Introduction

The Inverse Finite Element Method (IFEM) is the Finite Element
Method (FEM) applied to the problem of determining the unde-
formed configuration of a body when the deformed configuration
as well as the actuating loads are known. This kind of problem –
also known as the Inverse Design problem – often arises in the
design of compliant structures or mechanisms suffering large elas-
tic displacements and/or rotations, for instance: a gasket that
deforms to the desired shape under given loads [1]; a rubber seal
that closes a given channel under a given pressure [2]; a turbine
blade that attains an optimal shape at a certain angular speed
[3]; an S-clutch whose shoes exactly engage the friction surface
of a given drum at a given angular speed [4,5]; a device that folds
an intraocular lens in such a way that facilitates its implantation
into the eye [6], among other interesting applications developed
in the papers mentioned.

Outside the field of inverse design, Lu and Zhou [7,8] proposed
an application of IFEM to the prevention of aneurysms, taking the
in vivo image of an aneurysm as the known deformed configuration
under a known pressure.

All these inverse problems could be solved using systematized
‘‘trial-and-error’’ methods from Optimization Theory, considering
any measure of the closeness to the desired deformed
configuration as the cost function to be minimized. At each itera-
tion of the optimization problem, a nonlinear (direct) equilibrium
equation has to be solved to determine the cost function. In
contrast, IFEM solves only one nonlinear equilibrium equation to
determine the desired deformed configuration, which is approxi-
mately as computationally expensive as only one iteration of an
optimization problem. This was illustrated by Albanesi et al.
[4,5], who used IFEM to design a compliant gripper, which had
been originally designed by Lan and Cheng [9] by solving an
optimization problem.

In our previous papers, IFEM was introduced for 3D solids [3]
and 3D beams [4,5]. The current paper is a step towards the com-
pletion of our IFEM library by introducing shell elements.

Zhou and Lu [8] introduced IFEM for shells using the
stress-resultant approach proposed by Simo et al. [10]. Models
based in this approach need specialized constitutive equations
for the accross-the-thickness membrane and shear stress resul-
tants and stress couple, as described in the pioneering work of
Simo and Fox [11].

In the present paper, the degenerate solid approach to shells,
originally proposed by Ahmad et al. [12] and extended to nonlinear
geometrical analysis by Ramm [13], is preferred. This approach is
characterized by defining the stress itself (rather than the stress
resultants) using the same constitutive equations as those of
Solid Mechanics. This attribute of the degenerate solid shells was
the reason for our choice. Then, as an original contribution, we
introduce IFEM to the context of degenerate solid shells.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2015.05.013&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2015.05.013
mailto:vfachino@intec.unl.edu.ar
http://dx.doi.org/10.1016/j.compstruc.2015.05.013
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc
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The low-order displacement-based shell finite elements predict
spurious shear stresses and, as result, exhibit artificially high stiff-
ness. This is the well-known ‘‘shear locking’’ defect [14], which can
be circumvented by using the appropriate mixed finite elements. In
the present paper, recourse is made to the formulation known as
Mixed Interpolation of Tensorial Components (MITC), originally
proposed by Dvorkin and Bathe [15] for bi-linear 4-node quadran-
gles and extended by Bucalem and Bathe [16] to bi-quadratic
9-node and bi-cubic 16-node quadrangles. Using MITC, the compo-
nents of the strain tensor are interpolated independently of the
displacements, in order to preclude shear locking.

First, we solve three popular problems for linear-elastic shells
with large deflections and rotations [17], using these benchmarks
for the purpose of validating the presented IFEM. Finally, the capa-
bility of IFEM for inverse design is shown by the design of a com-
pliant microvalve to close a given channel when the pressure drop
attains a prescribed value, giving a more efficient alternative to
that originally proposed by Seidemann et al. [18].

2. Formulation of the degenerate solid shell finite element

The aim of this section is to give a brief summary of the formu-
lation of FEM for degenerate solid shells, which is already classical
in the ‘‘direct’’ FEM. Specifically, we describe the so-called ‘‘basic
shell’’ model [19,20], which is based on the Mindlin–Reissner
kinematic hypothesis: those straight fibers that are normal to the
midsurface of the shell when it is undeformed remain straight
and unstretched during deformation. The ‘‘basic shell’’ model is
well-suited for thin to moderately thick shells, offering the best
compromise between simplicity and applicability in FEM for shells.

As a corollary, we arrive at a system of discrete nonlinear equa-
tions governing the equilibrium of geometrically nonlinear degen-
erate solid shells in ‘‘direct’’ FEM, to be taken as the starting point
for the development of IFEM for degerate solid shells in the next
section.

2.1. Kinematic hypotheses for shells

Let B0 represent the solid shell body shown in Fig. 1. The geom-
etry of the shell is defined by its midsurface S0 and the thickness of
the shell at each point of the midsurface. Let fn1; n2; n3g be a system
of natural coordinates, such that n1 and n2 vary through the mid-
surface S0 and n3 varies across the thickness of the shell, with
�1 6 ni 6 1 and n3 ¼ 0 at the midsurface. Then, the position of
any point X 2 B0 can be expressed as a function of the natural coor-
dinates as follows:

Xðn1; n2; n3Þ ¼ Xðn1; n2Þ þ n3
H
2

Tðn1; n2Þ; ð1Þ

where X 2 S0; T is the unit vector known as the material director,
and H ¼ Hðn1; n2Þ is the thickness of the undeformed shell.
Fig. 1. Geometric representation of the undeformed and deformed configurations
of a shell.
Let B be the deformed configuration of the shell, with midsur-
face S. After deformation, the point X 2 B0 occupies the position
x 2 B:

xðn1; n2; n3Þ ¼ �xðn1; n2Þ þ n3
h
2

tðn1; n2Þ; ð2Þ

where �x 2 S; t is the unit vector known as the spatial director, and
h ¼ hðn1; n2Þ is the thickness of the undeformed shell.

In the present paper, we adopt the ‘‘basic shell’’ model [19,20],
based on the Mindlin–Reissner plate theory, according to which t is
not necessarily normal to S if T is normal to S0 (and viceversa), as
an effect of the shear deformation. Further, as a consequence of the
Mindlin–Reissner assumption, the strain normal to the midsurface
is null [20], so that the thickness of the shell remains constant
during deformation, i.e., h ¼ H.

Inside a generic finite element with nodes i ¼ 1;2; . . . ;N, the
positions x 2 B and X 2 B0 are isoparametrically interpolated from
their respective nodal values, as follows:

Xðn1; n2; n3Þ ¼ uiðn1; n2Þ Xi þ
n3

2
hðn1; n2ÞT i

� �
¼ Uðn1; n2; n3ÞQ ; ð3Þ

xðn1; n2; n3Þ ¼ uiðn1; n2Þ �xi þ
n3

2
hðn1; n2Þti

� �
¼ Uðn1; n2; n3Þq; ð4Þ

with

U ¼ u1I3�3
n3
2 hu1I3�3 � � � uNI3�3

n3
2 huNI3�3

� �
; ð5Þ

Q ¼

X1

T1

..

.

XN

TN

266666664

377777775; q ¼

�x1

t1

..

.

�xN

tN

266666664

377777775; ð6Þ

where ðXi; T iÞ defines the position of node i in the finite element
mesh representing B0 (known for FEM, unknown for IFEM), ð�xi; tiÞ
defines the position of node i in the mesh representing B (unknown
for FEM, known for IFEM), and ui ¼ uiðn1; n2Þ is the 2-D shape func-
tion associated to node i; I3�3 is the 3� 3 identity matrix.

The deformation of the shell can be measured using the Green–
Lagrange strain tensor, which can be expressed as

E ¼ 1
2

ga � gb � Ga � Gb

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ecov
ab

Ga � Gb; ð7Þ

where Ecov
ab are the so-called covariant components of E; ga ¼ @x=@na

and Ga ¼ @X=@na are the spatial and convective basis vectors,
respectively, and Ga is a vector of the base reciprocal to fGag, so that
Ga � Gb ¼ da

b .

Using FEM, the covariant strain components Ecov
ab take the form

Ecov
ab ¼

1
2

qT Aabq� Q T AabQ
	 


; ð8Þ

where Aab is the 6N � 6N-symmetric matrix defined by

Aab ¼
1
2

@UT

@na

@U

@nb
þ @U

T

@nb

@U

@na

� �
: ð9Þ
2.2. The cure for shear locking

The stiffness of low-order finite elements increases spuriously
as the thickness/in-plane dimension of the element decreases.
This is the well-known ‘‘shear locking’’ problem, which affects even
cubic order elements.
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One of the simpler cures for ‘‘shear locking’’ is the use of the
‘‘assumed-strain’’ technique. In particular, we use the MITC
formulation, originally proposed by Dvorkin and Bathe [15].

Using MITC, each covariant strain field Ecov
ab (that defined by

Eq. (8)) is replaced by an ‘‘assumed’’ field eEcov
ab . Inside each MITC

finite element, the assumed field eEcov
ab is defined so as to coincide

with Ecov
ab at a series of ‘‘tying’’ points:

eEcov
ab nI

1; n
I
2; n

I
3

� �
� Ecov

ab nI
1; n

I
2; n

I
3

� �
I ¼ 1;2; . . . ;nab; ð10Þ

where nI
1; n

I
2; n

I
2

� �
are the natural coordinates of the tying point I.

With quadrangular MITCn elements (where n stands for the
number of nodes of the element, e.g., MITC4 [15], MITC9, MITC16
[16]), the assumed strain can be defined as

eEcov
ab ðn1; n2; n3Þ ¼

Xnab

K¼1

~uI
abðn1; n2; n3ÞEab nI

1; n
I
2; n

I
3

� �
; ð11Þ

where ~uI
ab is the Lagrange polynomial associated to the tying point

I, such that ~uI
ab nJ

1; n
J
2; n

J
2

	 

¼ dIJ at any tying point J associated to the

covariant strain Eab.
Algorithmically, the use of MITCn elements amounts to replac-

ing the matrix Aab, Eq. (9), by

eAabðn1; n2; n3Þ ¼
Xnab

I¼1

~uI
abðn1; n2; n3ÞAab nI

1; n
I
2; n

I
3

� �
; ð12Þ

in the definition of Ecov
ab , Eq. (8).

From now on, ‘‘direct’’ strains will be replaced with ‘‘assumed’’
strains, and the superimposed tilde that identifies the assumed
ones will be obviated in order to simplify the notation.

2.3. Constitutive equations in shells

One of the characteristic features of the degenerate solid shell
elements is the use of the constitutive laws for continuum solids.
So, for an elastic solid, the constitutive law can be written as a
function relating E with its work-conjugate stress, the second
Piola–Kirchhoff stress tensor S, i.e.,

S ¼ SðEÞ: ð13Þ

Further, the ‘‘basic shell’’ model assumes that the stress in the direc-
tion normal to the midsurface (that of G3) is zero [19]. Then, it is
convenient to refer the constitutive law to a Cartesian frame
fe1; e2; e3g attached to each point X 2 B0, such that a Cartesian
plane, say fe1; e2g, is always tangent to the shell, or more precisely,
to the surface n3 ¼ constant. At this point, we need to refer E to this
Cartesian frame:

E ¼ ha
i h

b
j Eab|fflfflfflffl{zfflfflfflffl}

Eij

ei � ej; ð14Þ

with

ha
i ¼ Ga � ei: ð15Þ

Using Voigt notation, the local-Cartesian and the covariant compo-
nents of E are related by

�E ¼ H�Ecov; ð16Þ

with

�E ¼ E11 E22 E33 2E12 2E23 2E13½ �T ; ð17Þ

�Ecov ¼ Ecov
11 Ecov

22 Ecov
33 2Ecov

12 2Ecov
23 2Ecov

13

� �T
; ð18Þ
H¼

h1
1h

1
1 h2

1h
2
1 h3

1h
3
1 h1

1h
2
1 h2

1h
3
1 h3

1h
1
1

h1
2h

1
2 h2

2h
2
2 h3

2h
3
2 h1

2h
2
2 h2

2h
3
2 h3

2h
1
2

h1
3h

1
3 h2

3h
2
3 h2

3h
2
3 h1

1h
2
3 h2

3h
3
3 h3

3h
1
1

2h1
1h

1
2 2h2

1h
2
2 2h3

1h
3
2 h2

1h
1
2þ h1

1h
2
2 h3

1h
2
2þ h2

1h
3
2 h3

1h
1
2þ h1

1h
3
2

2h1
2h

1
3 2h2

2h
2
3 2h3

2h
3
3 h2

2h
1
3þ h1

2h
2
3 h3

2h
2
3þ h2

2h
3
3 h3

2h
1
3þ h1

2h
3
3

2h1
1h

1
3 2h2

1h
2
3 2h3

1h
3
3 h2

1h
1
3þ h1

1h
2
3 h3

1h
2
3þ h2

1h
3
3 h3

1h
1
3þ h1

1h
3
3

26666666664

37777777775
:

ð19Þ
2.4. The principle of virtual work in degenerate solid shells

When a shell-like body is modeled using the degenerate solid
shell FEM, the equilibrium of the body is governed by the principle
of virtual work (PVW) given in the standard form for 3D solids.
Using the Lagrangian formulation for large deformation problems
together with the Green–Lagrange strain E as a measure of the
deformation, the PVW for general solids takes the formZ
B0

S : dE dV ¼ WextðduÞ; ð20Þ

for all kinematically admissible displacement variations du; dE is
the Green–Lagrange strain induced by du and Wext is the work of
the external forces (surface tractions and body forces) on the whole
body under a displacement du.

In the ‘‘direct’’ FEM, where X and x are interpolated according to
Eqs. (3) and (4) and X is known, the displacement variation can be
written as

du ¼ dx ¼ Udq; ð21Þ

with

dq ¼

d�x1

dt1

..

.

d�xN

dtN

266666664

377777775; ð22Þ

where d�xi and dti denote admissible variations of �x and t at node i.
Under a variation dq, the covariant strain components given by

Eq. (8) undergo the following variation (written in Voigt notation):

d�Ecov ¼ BðqÞdq ð23Þ

with

BðqÞ ¼

qT A11

qT A22

qT A33

2qT A12

2qT A23

2qT A13

2666666664

3777777775
: ð24Þ

Then, using Eq. (16), the variation of the local-Cartesian compo-
nents of E is

d�E ¼ HBdq; ð25Þ

where B � BðqÞ.

2.5. External forces and couples

The (external) virtual work produced by the displacement du or,
equivalently, the nodal variations dq, is

Wext ¼ Fext � dq; ð26Þ
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introducing Fext as the vector of external forces and couples lumped
at the nodes.

2.6. Elimination of the drilling degree of freedom

Following a common practice in the formulation of MITCn
elements, we choose to eliminate the drilling degree of freedom,
that associated to the rotation of the shell around the director.
But differing from the classical papers on MITCn, where an additive
scheme is used to update the director, recourse is made to the
multiplicative scheme proposed by Simo et al. [11], which avoids
singularities for large rotations and guarantees the inextensibility
of the director. Using such a scheme, the variation of t at node i
is expressed as

dti ¼ ~kidt�i ðno summation over iÞ; ð27Þ

where dt�i is a vector in the plane fi; jg of the fixed global Cartesian
frame fi; j;kg, and ~ki is the 2� 3 matrix made of the first two rows
of the orthogonal matrix ki from the transformation

ti ¼ kik: ð28Þ

Eq. (27) shows that only two degrees of freedom are needed to
update the nodal director, this way eliminating the drilling degree
of freedom, making the current formulation have five degrees of
freedom per node. Consequently, dq is replaced by

dq ¼

I3�3 03�2 � � � 03�3 03�2

03�3
~k1 � � � 03�3 03�2

..

. ..
. . .

. ..
. ..

.

03�3 03�2 � � � I3�3 03�2

03�3 03�2 � � � 03�3
~kN

266666664

377777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K

d�x1

dt�1
..
.

d�xN

dt�N

266666664

377777775
|fflfflfflffl{zfflfflfflffl}

dq�

;
ð29Þ

where 0i�j denotes the i� j zero matrix.

2.7. Discrete equilibrium equations for the degenerate solid shell FEM

By replacing dq by dq�, taking into account that dq� is arbitrary,
and introducing the strain and stress measures in local Cartesian
coordinates, the PVW gives rise to the discrete, nonlinear system
of algebraic equations that governs the equilibrium of the degener-
ate solid shell FEM:

R� ¼ F int� � Fext� ¼ 0; ð30Þ

where

Fext� ¼ KT Fext; ð31Þ

F int� ¼ KT
Z
B0

BT
HT �S dV|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

F int

; ð32Þ

where the vector F int of nodal internal forces and couples is intro-
duced, with �S denoting the vector made of the components Sij of
the stress tensor S with respect to the local-Cartesian frame feig
ordered according to Voigt notation:
�S ¼ S11 S22 S33 S12 S23 S13½ �T : ð33Þ
3. Inverse finite element analysis

In inverse finite element analysis, the loaded configuration B as
well as the external loads responsible for deforming the shell from
B0 to B are assumed to be known. In our previous papers [3,4], we
chose to formulate the equilibrium equation over the known
configuration B, using Eulerian stress and strain measures. In the
present paper, we adopt a different approach, assuming that both
FEM and IFEM have the same governing equations, that given by
the discrete equilibrium equation, Eq. (30), differing only in the
fact that the knowns and unknowns are interchanged. Let us
explicitly state how the terms involved in the governing equation,

Eq. (30), depend on q and/or Q . Considering F int�, we have

F int�ðQ ;qÞ ¼ KTðqÞ
Z
B0ðQÞ

BTðqÞHTðQÞ�SðQ ;qÞ dVðQÞ

¼ KTðqÞ
Z
BðqÞ

BTðqÞHTðQÞ�SðQ ;qÞ JðQ ;qÞ½ ��1 dvðqÞ; ð34Þ

where the last equality was obtained by a simple change of the inte-
gration domain, with J the Jacobian determinant of the transforma-
tion from B0 to B, given by

J ¼ dv
dV
¼ ðg1 � g2Þ � g3

ðG1 � G2Þ � G3
: ð35Þ

In the FEM, F int� depends on the unknown q via K;B and �S, while in
the IFEM, it depends on the unknown Q via H; J, and �S.

Concerning the external loads, they generally depend on both
the deformed and undeformed configurations:

Fext�ðQ ;qÞ ¼ KTðqÞFextðQ ;qÞ: ð36Þ

In the case of a pressure load, that is, a configuration-dependent
load, Fext� is constant for IFEM. In contrast, for a dead load, Fext� is
a nonlinear function of Q .

3.1. Solution of the nonlinear equilibrium equation in IFEM

Let us rewrite the equilibrium Eq. (30) as

R�ðQÞ ¼ F int�ðQ ;qÞ � Fext�ðQ ;qÞ: ð37Þ

When specifically applied to the IFEM, the system of Eq. (37) have q
as known and Q as unknown. This is a nonlinear system that will be

solved using the Newton–Raphson scheme: once Q ðkÞ (that is Q at
iteration k) is known, Q is updated by solving the following linear
equation for DQ �:

R�ðQ ðkþ1ÞÞ ¼ R�ðQ ðkÞÞ þ K�ðQ ðkÞÞDQ � ¼ 0; ð38Þ

where K� is the tangent stiffness matrix

K� ¼ @R
@Q �

; ð39Þ

and

DQ � ¼

DX1

DT�1
..
.

DXN

DT�N

266666664

377777775 ð40Þ

After solving the linear system (38), the position of the node i at the
undeformed midsurface is straightforwardly updated:

Xðkþ1Þ
i ¼ XðkÞi þ DXi: ð41Þ
3.1.1. Update of the material director vector
The iterative update of the nodal material director T i requires a

special treatment for two reasons: first, to preserve its unit length,
and second, to transform the 2D-solution DT�i . We proceed here in
a way identical to that proposed by Simo et al. [10] for the ‘‘direct’’
shell FEM.
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Given the initial guess T ð0Þi , we compute the rotation matrix

vð0Þi ¼ ðk � T
ð0Þ
i ÞI3�3 þck�T ð0Þi þ ðk� T ð0Þi Þ � ðk� T ð0Þi Þ

1þ k � T ð0Þi

; ð42Þ

where bv is the skew-symmetric matrix whose axial vector is v .

Usually, T ð0Þi � ti is adopted as the initial guess. In this case,

vð0Þi � ki is the orthogonal matrix of Eq. (28).

Then, once the director T ðkÞ and the rotation matrix vðkÞi are
known for a given iteration k;T i and vi are successively updated
according to the next steps:

1. Update of the director:
T ðkþ1Þ
i ¼ cos kDT ikT ðkÞi þ

sin kDT ik
kDT ik

DT i; ð43Þ

with

DT i ¼ ~vðkÞi

h iT
DT�i ; ð44Þ

where ~vðkÞi is the 2� 3 matrix made of the first two rows of vðkÞi .
2. Update of the rotation matrix:
vðkþ1Þ
i ¼ Dvi v

ðkÞ
i ; ð45Þ

with

Dvi ¼ cos kDT ikI3�3 þ
sin kDT ik
kDT ik

dT ðkÞi � DT i

þ 1� cos kDT ik
kDT ik2 ðT ðkÞi � DT iÞ � ðT ðkÞi � DT iÞ: ð46Þ

3.2. Computation of the tangent stiffness matrix

The tangent matrix K� is made of contributions from the inter-
nal and external forces:

K� ¼ @F int�

@Q �
þ @Fext�

@Q �
¼ K int� þ Kext�: ð47Þ

The term Kext� appears only if the external loads depend on the ini-
tial configuration, like dead loads. In any case, it will not receive fur-
ther consideration here.

The contribution of the internal forces given by Eq. (34) can be
expressed as

K int� ¼ KT Kmat þ Kgeo� � dQ
dQ �

; ð48Þ

with

Kmat ¼
Z
B

BT
HT �C

@�E
@Q

J�1 dv ; ð49Þ

Kgeo ¼
Z
B

BT@ðHTvÞ
@Q


v¼�S

J�1 dv �
Z
B

BT
HT �S J�2 dJ

dQ
dv : ð50Þ
3.2.1. Computation of Kmat

Two matrices remain undefined in Eq. (49) for Kmat. The first
one is

�C ¼ @�S
@�E

; ð51Þ

which is the matrix (in Voigt notation) containing the tangent mod-
uli Cijkl ¼ @Sij=@Ekl referred to the local-Cartesian base feig, which
are given by the material properties.
The second one is @�E=@Q that, given �E by Eq. (16), is
defined as

@�E
@Q
¼ @

@Q
H�Ecov� �

¼ @ðHvÞ
@Q


v¼�Ecov

þH
d�Ecov

dQ
: ð52Þ

The first term in the r.h.s. of Eq. (52) is the matrix whose ij
entry is

@ðHvÞ
@Q

� �
ij

¼ @Hik

@Qj
vk: ð53Þ

Now, it remains to compute @Hik=@Qj. Given H by Eq. (19), its
derivative with respect to Qj is completely determined by the
knowledge of

dha
i

dQ j
¼ ei �

dGa

dQ j
: ð54Þ

Since Ga � Gb ¼ da
b , we have

@Ga
i

@Q j
¼ �Ga

k

@Gbk

@Q j
Gb

i ; ð55Þ

where it remains to determine @Gbk
=@Qj. Taking into account that

Gb ¼ ð@U=@nbÞQ when X is interpolated according to Eq. (3),
@Gbk

=@Qj is the kj entry of the matrix

@Gb

@Q
¼ @U

@nb
: ð56Þ

Regarding the second term in the r.h.s. of Eq. (52), it remains to
compute the matrix @Ecov=@Q . Given the covariant strain compo-
nents Ecov

ab by Eq. (8), we have

@�Ecov

@Q
¼ �B0; ð57Þ

with B0 � BðQÞ defined by Eq. (24).
Finally, Kmat takes the form

Kmat ¼
Z
B

BT
HT �C

@ðHvÞ
@Q


�Ecov

J�1 dv �
Z
B

BT
HT �CHB0J�1 dv : ð58Þ
3.2.2. Computation of Kgeo

Regarding the first term of Kgeo, Eq. (50), it only remains to
determine

@ðHTvÞ
@Q

� �
ij

¼ @Hki

@Q j
vk; ð59Þ

where @Hki=@Qj can be expressed in terms of @ha
i =@Qj, Eq. (54).

Regarding the second term of Eq. (50), we need to compute
@J=@Qj. Invoking Eq. (35), we have

@J
@Q j
¼ � J
ðG1 � G2Þ � G3

� epqr
@G1q

@Q j
G2r G3p þ G1q

@G2r

@Q j
G3p þ G1q G2r

@G3p

@Qj

� �
; ð60Þ

where epqr is the Levi–Civita or permutation symbol, and @Gai
=@Qj is

defined by Eq. (56).

3.2.3. Computation of @Q=@Q �

Once Kmat and Kgeo are completely determined, the complete

determination of the tangent stiffness matrix K int�, Eq. (48),
requires computing
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@Q
@Q �

¼

I3�3 03�2 � � � 03�3 03�2

03�3 @T1=@DT�1 � � � 03�3 03�2

..

. ..
. . .

. ..
. ..

.

03�3 03�2 � � � I3�3 03�2

03�3 03�2 � � � 03�3 @TN=@DT�N

266666664

377777775 ð61Þ

where we need to determine @T i=@DT�i by taking into account the
update procedure described in Section 3.1.1. By differentiating the
updated T i given by Eq. (43) with respect to the nodal increment
DT�i , we obtain

@T ðkþ1Þ
i

@DT�i
¼ @T ðkþ1Þ

i

@DT i

@DT i

@DT�i

¼ � cos kDT ik
kDT ik

T ðkÞi � DT i þ
cos kDT ik
kDT ik2 �

sin kDT ik
kDT ik3

 !
DT i

"

� DT i þ
sin kDT ik
kDT ik

I3�3

#
~vðkÞi

" #T

: ð62Þ
4. Applications

In this section, three benchmarks are solved, to illustrate how
IFEM works in the context of shell analysis. These three problems
are based on popular benchmarks for the geometrically
non-linear analysis of shells using (direct) FEM [17], serving by
the way as a validation of the presented IFEM model.

Next, IFEM will be applied to the design of a compliant micro-
valve. This real-life application is exemplary of the strength of
IFEM for the design of compliant structures to attain a given shape
after large elastic deformations.
4.1. Bending of a cantilever

Let us consider the cantilever shown in Fig. 2, with length
L ¼ 10, width w ¼ 1, and thickness h ¼ 0:1. When unloaded, it lies
in the xy-plane. Then, it is deformed by a lifting load uniformly dis-
tributed along the end, whose resultant is the force P ¼ 4 in the
z-direction. The plate is made of a Saint Venant–Kirchhoff
(linear-elastic) material, with Young modulus E ¼ 1:2� 106 and
Poisson ratio m ¼ 0.
(a) FEM problem

Fig. 2. Cantilever under large elastic deformation: (a) FEM problem with the deformed
solution.
This problem, a popular benchmark for (direct) FEM applied to
shells under large elastic deformations (see [17] and the references
therein), serves the purpose of validating the current IFEM.

First, the problem is solved using the direct FEM. To this end,
the undeformed domain is represented by a mesh of 8� 1 MITC4
finite elements, obtaining the solution shown in Fig. 2a. This
solution is in very good agreement with that of Sze et al. [17],
who used the reduced-integration elements known as S4R from
the commercial code ABAQUS.

Second, the FEM-computed position xi and director ti at all the
nodes of the mesh for FEM are assumed to define the mesh for the
IFEM, made once again of MITC4 elements. The deforming load
(with resultant P in the z-direction) now is distributed along the
free end of the mesh for the IFEM. The solution of the IFEM
problem is depicted in Fig. 2b.

The accuracy of IFEM is determined by its ability to recover the
given undeformed plane cantilever as the solution, and can be
measured in terms of
errorðXiÞ ¼ kXFEM
i � XIFEM

i k; ð63Þ
errorðT iÞ ¼ kTFEM

i � T IFEM
i k; ð64Þ
where ð�ÞFEM
i refers to the variable ð�Þ at the node i of the mesh used

by FEM, which is known, and ð�ÞIFEM
i refers to the variable ð�Þ at the

node i computed as solution of the IFEM.
Fig. 3 proves the remarkabe accuracy of the IFEM in the current

application: the maximal error(Xi) is 1:83� 10�6 and occurs at the
nodes along the loaded end where the displacement magnitude is
7.47; the maximal error(T i) is 2:26� 10�7 and takes place at the
same nodes. Let us remark that both errors depend on the conver-
gence criterion for the solution of the nonlinear equilibrium Eq.
(37): in this case, the FEM problem of obtaining the deformed con-
figuration as well as the IFEM problem of recovering the unde-
formed configuration were solved until kR�k < 10�6.

Another outstanding quality of the IFEM, already observed in
several applications developed in our previous papers [3,4,6], is
the fast convergence to the solution of the nonlinear equilibrium
Eq. (37). Actually, when Sze et al. [17] solved the same (direct)
problem, they needed to use 78 iterations along 15 load incre-
ments, whereas the current IFEM problem was solved using only
14 iterations along 2 load steps.
(b) IFEM problem

configuration as solution, (b) IFEM problem with the undeformed configuration as



(a) (b)

Fig. 3. Cantilever under large elastic deformation: accuracy of IFEM.
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4.2. A slit annular plate under a lifting force

The second benchmark consists of a slit annular plate, with
inner radius r ¼ 6, outer radius R ¼ 10, and thickness h ¼ 0:03
clamped at one side of the slit and deformed by a lifting force uni-
formly distributed along the other side of the slit, with resultant
P ¼ 3:2 and direction given by the z-axis (see Fig. 4). When
unloaded, the plate lies in the xy-plane.

The plate is made of a Saint Venant–Kirchhoff (linear-elastic)
material, with Young modulus E ¼ 21� 106 and Poisson ratio
m ¼ 0.

This is also a popular benchmark for geometrically non-linear
shells, as in the survey of Sze et al. [17].

First, the problem is solved using the FEM with the plate repre-
sented by a mesh of 10� 80 MITC4 finite elements. The results are
shown in Fig. 4a, and are very close to those obtained by Sze et al.
[17] using S4R elements from ABAQUS.

Then, the FEM-computed deformed mesh is adopted as the
mesh for the IFEM, as shown in Fig. 4b. The load that caused the
deformation (that whose resultant is P and whose direction is
the z-axis) is distributed along the free end of the mesh for the
IFEM.

The IFEM solution is shown in Fig. 4b. The accuracy of the IFEM
is highlighted in Fig. 5: the maximal error ðXiÞ ¼ 9:27� 10�6 is
negligible compared to the maximal displacement magnitude
(19.33), while the maximal error ðT iÞ ¼ 0:85� 10�6 is negligible
compared to unity. Both errors have the same order of magnitude
as the tolerance for the Newton–Raphson solution of Eq. (37),
adopted as kR�k < 10�6 in this case.
(a) FEM problem

Fig. 4. Slit annular plate under large elastic deformation: (a) FEM problem with def
undeformed configuration.
Concerning the performance of the solver of the nonlinear equi-
librium equation, when Sze et al. [17] solved the current FEM prob-
lem, 347 iterations along 67 load increments were required. Here,
the IFEM problem was solved using only 15 iterations along 2 load
steps.
4.3. Cylinder under pulling-out forces

The third benchmark consists of the pulling-out of a shell that,
before loading, is a cylinder with radius R ¼ 4:953, length
L ¼ 10:35, and thickness h ¼ 0:094, as shown in Fig. 6a. The
cylinder has open ends and is pulled out by two opposite radial
forces of magnitude P ¼ 2� 105 concentrated at diametrically
opposed points. This shell is made of a Saint Venant–Kirchhoff
(linear-elastic) material, with Young modulus E ¼ 10:5� 106 and
Poisson ratio m ¼ 0:3125.

First, the problem is solved using the FEM. Taking advantage of
the symmetry of the shell with respect to the planes xz and yz, only
one-fourth of the cylinder is modeled, using 36 (tangential) � 48
(axial) MITC4 elements. The FEM solution is shown in Fig. 4a,
and is very close to that obtained by Sze et al. [17] using S4R ele-
ments from ABAQUS.

Second, the FEM-computed deformed mesh is adopted as the
mesh for the IFEM, as shown in Fig. 6b. The pulling-out forces have
the same magnitude and direction and are applied at the same
nodes as those for the FEM.

The IFEM solution is shown in Fig. 6b. As shown in Fig. 7, the
IFEM is able to recover the given undeformed mesh with high
accuracy.
(b) IFEM problem

ormed configuration as solution; (b) IFEM problem solved to recover the given



(a) (b)

Fig. 5. Slit annular plate under large elastic deformation: accuracy of IFEM.

(a) FEM problem (b) IFEM problem

Fig. 6. Pulled-out cylinder.

(a) (b)

Fig. 7. Pulled-out cylinder: accuracy of IFEM.
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In this case, the nonlinear equilibrium Eq. (37) was solved until
kR�k < 10�6, requiring 14 iterations along 2 load steps.
4.4. Design of a passive microvalve

Now, let us apply the IFEM to a real-life inverse design problem:
the design of a passive microvalve whose task is identical to that of
the microvalve proposed by Seidemann et al. [18], depicted in
Fig. 8. Integrated into a microchannel with thickness 360 lm and
width 200 lm, the valve must close the channel when the pressure
drop attains a prescribed value Dp, and bypass a specified flow
when the pressure drop vanishes.

Note that the valve in Fig. 8, as originally designed by
Seidemann et al. [18], cannot remain centered during deformation
because its flexible spring is non-symmetric with respect to the
direction of the resultant of the applied pressure. Without informa-
tion about the pressure drop and the sealing gap, it is not possible
to assess how critical this defect is in the design of Seidemann et al.
[18]. However, Albanesi et al. [6] directly avoided such a defect by
replacing the unique non-symmetric spring of the original valve by
two springs arranged symmetrically with respect to the axis, as
shown in Fig. 9b. This symmetric mechanism, where the springs



Fig. 8. Compliant passive valve to seal a microchannel proposed by Seidemann
et al. [18].
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are compliant beams, is the starting point for the current proposal,
shown in Fig. 9b, where the springs behave as shells.

The valve itself is considerably stiffer than the springs, so it is
modeled as a rigid body. Further, given the symmetry of the prob-
lem, only one spring is modeled, using a mesh of 32,850 MITC4
shell elements, each one having sides of approximately 2 lm. A
detail of this fine mesh is shown in Fig. 9c.

The pressure drop Dp determining the closure of the valve was
not specified by Seidemann et al. [18]. Let us assume Dp ¼ 1 kPa,
which defines the current microvalve as a low-pressure one [21].
(a) (b)

Fig. 9. Configuration of a compliant passive valve when closed under a given pressure
beams; (b) Current proposal, where the springs are shells; (c) Detail of the current finit

Deformed
configuration
(given)

Undeformed
configuration
(solution)

(a) Displacement along the axis

Displ. [

Fig. 10. IFEM solution for the compliant passive valve: (a) Displacement of the midsurfac
thickness the shell.
The resultant of Dp is a force P ¼ 360 l actuating along the axis
of the channel (y-axis in Fig. 9).

Like those of Seidemann et al. [18] and Albanesi et al. [6], the
current valve is made of the monomer SU8, which is assumed to
be a linear-elastic material with Young modulus E ¼ 3:2 GPa [22],
shear modulus G ¼ 1:2 GPa [22], and yield strength from 60 to
73 MPa [23].

There is an additional design requirement that cannot be a pri-
ori imposed on the IFEM since it involves the valve in its open (i.e.,
undeformed) condition: a certain sealing gap is needed, depending
on the prescribed flow to by-pass. In order to control such a gap for
the given geometry of the deformed midsurface, load, and dis-
placement boundary conditions, the thickness of the spring has
to be varied. In this case, in order to attain a gap similar to that
of the valve of Albanesi et al. [6], the thickness of the spring is
set to h ¼ 2 lm, constant.

The Newton–Raphson solution of the nonlinear equilibrium
equation required only one load step and four iterations to attain
the convergence criterion kR�ðQ ð4ÞÞk < 10�5kR�ðQ ð0ÞÞk, with Q ð0Þ

the initial guess with entries Xð0Þi ¼ �xi;T
ð0Þ
i ¼ ti, where �xi and ti

are the nodal position and director at the node i of the mesh of
the given deformed midsurface.

Fig. 10a shows the undeformed configuration computed by
IFEM. Note that the maximal displacement takes place at the side
(c)

drop Dp: (a) Albanesi et al.’s model [6], where the springs are made of compliant
e element mesh.

(b) Maximal von-Mises stress 

m]
Stress [MPa]

e in the direction of the axis of the channel; (b) Maximal von Mises stress across the
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where the spring is clamped to the valve, so this is the displace-
ment of the rigid valve itself. The magnitude of such displacement
is 24.4% of the total height of the spring, which largely justifies the
use of the nonlinear theory of large displacements.

In order to see that the undeformed configuration in Fig. 10a
actually constitutes the manufacturing shape of the valve, the fea-
sibility of the IFEM solution has to be evaluated in terms of topo-
logical and mechanical tests, as detailed by Albanesi et al. [6].
Concerning the topology, the IFEM may lead to a useless solution
containing inter-penetrating elements. As can be seen in Fig. 10,
the current solution is free of such defects.

On the other hand, the mechanical tests concern:

1. Validity of the hypothesis of elasticity: assuming the von Mises
yield criterion to hold, this is confirmed by Fig. 10b, which
shows that the maximal von Mises stress developed throughout
the spring, all across its thickness, is considerably lower than
the yield strength of SU8 (higher than 60 MPa [23]).

2. Uniqueness of the solution, which is lost when an unstable equi-
librium state (or critical point) is met during deformation. In the
current case, critical points are not passed through the deforma-
tion, which is evident to an experienced designer and can be
formally confirmed by using the spectrum test [24].

Having succeeded at all these tests, the IFEM-computed unde-
formed configuration shown in Fig. 10 represents in fact the man-
ufacturing shape of the springs of the valve, such that this valve
exactly closes the channel under the given pressure drop.

5. Conclusions

This paper introduced the inverse finite element method (IFEM)
for degenerate solid shells. The IFEM is particularly well suited for
the inverse design of compliant mechanisms (in this case, shell-like
mechanisms) whose task is to attain a desired shape after large
elastic deformations. As a good example of an application of the
IFEM, the design of a passive valve was undertaken in this paper.
Such a design can also be achieved using an optimization tech-
nique, where an FEM problem is solved at each iteration. Here, it
was achieved by solving only one IFEM problem.

Further, in the light of the current applications, we observe once
again (see our previous papers on 3D solids [3] and beams [4–6])
that the solution of the nonlinear equilibrium equation when the
undeformed configuration is unknown (the case of the IFEM) takes
considerably fewer iterations than the solution of the same equa-
tion when the deformed configuration is unknown (the case of
the FEM).

Last but not least, since degenerate solid-shell FEM – unlike the
stress-resultant shell FEM – makes use of the governing equations
from Solid Mechanics, it makes possible to reuse the standard
material libraries.
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