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1. INTRODUCTION

The problem of free vibrations of a plate clamped at four boundaries does not have, to the
authors' knowledge, a classical solution within the theory of elasticity. A generalized
solution previously developed by the authors for one, two and three dimensions [1}3] is
employed in the analysis. Its application to the clamped plate considered as
a three-dimensional solid (3-D) is a continuation of reference [3] in which the free vibration
of arbitrary thickness plates with lateral shear diaphragms was solved by the same means.

The methodology is capable of solving a wide scope of di!erential problems*governed
by either ordinary di!erential equations (ODEs) [4] or partial di!erential equations (PDEs)
[5]. Additionally, non-linear problems have been handled successfully [6]. A linear
combination of functions that belong to a complete set in ¸

2
is systematically stated as the

extremizing sequence. Only the essential or geometric boundary conditions (BC) are to be
satis"ed, but this requirement is ful"lled by the sequence and not, in general, by each
co-ordinate function. Eventual non-satis"ed essential BC are taken into account using
Lagrange multipliers. The extreme condition of a suitable functional stated in the sequences
leads to arbitrary precision frequencies and mode shapes uniformly convergent to the
classical solution. These assertions are based on theorems and corollaries not included here
(see references [3, 7]). The authors name this methodology as whole element method
(WEM) since the domain is considered as a unique element even when discontinuities such
as intermediate supports, springs, masses, etc., are present [8]. An important conclusion has
been drawn. Its use in any boundary-value problem reduces to the application of
a pseudo-theorem of <irtual =ork using the above-mentioned extremizing sequences. The
present application provides a useful tool to verify technical theories such as the one
developed by Mindlin for moderately thick plates and the adjustment of the factors
involved therein.

The variational methods are well known [9}11] for linear problems governed by positive
and symmetric (energy) functionals. In fact, the functional herein dealt with is of that
type. However, it should be mentioned that WEM is able to handle other types of
functionals. Additionally, in general, it should not be regarded as a traditional Ritz method.
In e!ect, WEM makes use of certain extended series. The functions to be linearly combined
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a priori belong to a complete set in ¸
2

and each of them does not satisfy, in general, the
essential BC.

Many authors have carried out relevant research on thick plate vibration problems
taking into account diverse geometries and BC. Liew and co-workers [12, 13] have reported
thorough papers on these subjects which include very complete bibliographic reviews. In
particular, Liew et al. [13] report a Ritz formulation to tackle the vibration problem of
thick plates including the present case.

In this paper, the plate is assumed as a regular prism of arbitrary aspect ratio and
thickness with four consecutive faces clamped. By increasing the thickness from zero, one
may model the thin, moderately thick and thick plate successively. By means of WEM, the
frequency parameters are obtained for the transverse modes of vibration with arbitrary
precision. Other modes (such as the &&breathing'' ones) might be easily considered. Also,
a "nite-element model using &&brick'' elements [14] was solved for comparison.

2. ENERGY FUNCTIONAL

The vibrational problem of deformable isotropic bodies in three dimensions is governed
by the energy functional F given by the Theory of Elasticity as a function of the components
u,v and w of the displacement vector:
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where normal modes of frequency u have been admitted, o is the body uniform density,
k"E/(1#l) and j"kl/(1!2l) are the LameH 's constants, with l being the Poisson
coe$cient, E the modulus of elasticity, e
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3. EXTREMIZING SEQUENCES

Since we are dealing with a symmetric and positive functional [10], the sequences are
minimizing. As is known, series such as the Fourier ones ensure the convergence in the mean
(¸

2
) of any square integrable function. It was shown in reference [3] that the following

functions are of uniform convergence in a regular prismatic domain MD: 0)x)1,
0)y)1, 0)z)1N:
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where the following notation was introduced:
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However, WEM requires the uniform convergence of the so-called essential functions,
which in this problem are u, v and w. A systematic method of generation of such series is
reported in references [3, 7]. In short, one may start with the following two possibilities
(among in"nite):
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The underlined terms in equation (3a) represent a support function. In turn, each function
of (y, z) must be expanded in a similar fashion in each variable. Obviously, an in"nite
number of combinations may be obtained from this procedure and all of them would be of
uniform convergence in D.

In particular and without loss of generality, we will concentrate our study of the
transversal (bending) vibrational mode of the clamped plate at x"0, 1 and y"0, 1:

w (x, y, z)"w (x, y,1!z), u(w, y, z)"!u(w, y, 1! z), v(x, y, z)"!v(x, y, 1!z). (4)

Now, if the plates were &&simply supported'' (prism with shear diaphragms) the essential
conditions would be [3]

at x"0, 1: w"0, v"0; at y"0, 1: w"0, u"0. (5)

In this case, the complete 3-D trigonometric series are systematically generated achieving
uniform convergence of u, v and w:
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where k is odd (k"1, 3, 5,2). The clamped plate case requires the additional conditions

at x"0, 1: u"0; at y"0, 1: v"0, (7)

which when written in terms of sequences (6) give place to
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These non-identically satis"ed conditions are taken into account by means of Lagrange
multipliers P

lm
, Q

lm
, R

lm
and S
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with an extended functional
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4. FOUNDATIONS

As was mentioned, the minimizing sequences yield the uniform convergence of u, v and
w that are continuous functions. But some derivatives of the sequences only comply with
convergence in the mean (in ¸

2
). However, it is su$cient to demonstrate that the frequencies

obtained with WEM are exact. For brevity, neither the theorems and corollaries statements
nor the demonstrations are included herein. The interested reader may refer to references
[2, 3, 7].

4.1. APPLICATION PROCEDURE

The extreme condition (corollary, reference [3]) should be imposed on the extended
functional stated in the extremizing sequence

dF
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where d denotes the "rst variation with respect to the sequence constants. It was shown [15]
that this equation is equivalent to a pseudo-theorem of <irtual =ork stated in the
extremizing sequences and adding the terms involving the Lagrange multipliers. This
conclusion would allow working with the di!erential equation avoiding the statement of the
functional. Equation (10) results in
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5. RESULTS

After the application of equation (11) and taking factors (according to equations (6) and
(9)), +
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O denotes odd); the last four lead to two equations if symmetric and antisymmetric
conditions are considered:
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TABLE 1

Fundamental frequency parameters for a clamped rectangular plate. ¹he Poisson coe.cient:
l"0)3

Aspect ratio Height/side ratio (a/b)2 X
a/b h/b

Liew
[13]

WEM
(M"700)

FEM [14]
(4800 el.)

1 0)2 26)9055 26)8922 26)9854
0)3 21)8690 21)8555 21)9111
0)5 15)2939 15)2814 15)3104

1)5 0)2 47)6907 47)6685 47)9493
0)3 39)5588 39)5372 39)6865
0)5 28)3089 28)2907 28)3541

2 0)2 77)9736 77)9420 78)6235
0)3 64)8236 64)7922 65)1606
0)5 46)4660 46)4388 46)5773

Figure 1. Fundamental transverse mode shape of a prismatic solid (rectangular plate clamped at four
consecutive boundaries of arbitrary thickness).
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Numerical results of the transverse frequency parameter X"Joh/D. (D"Eh3/12
(1!l2)) were obtained for odd values of i, j and k using the WEM solution*equations
(12)}(17). The results are compared with a 3-D Ritz solution [13] and with a "nite-element
model using 3-D (brick)-type elements solved with ALGOR [14]. Table 1 depicts the
non-dimensional natural frequencies for a prism with aspect ratio a/b"1, 1)5, 2 and height
ratio h/b"0)2, 0)3, 0)5. In all cases, the reported values correspond to the "rst transverse
(bending) mode and l"0)3. The WEM values were found with 700 terms in the sums. The
procedure to achieve a certain number of exact digits consists in "xing the desired accuracy
and increasing the number of terms until the goal is attained. For simplicity, in this example,
all the plates were studied with the same number of terms. An example of convergence is
reported in reference [3]. Figure 1 shows the fundamental mode of the plate considered as
a 3-D solid and clamped at four consecutive boundaries.
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6. CONCLUSIONS

The exact natural frequencies corresponding to the transverse mode of vibration of
a rectangular prism clamped at four consecutive boundaries are analyzed in this paper. The
methodology employed in the study is WEM, a direct variational method previously
developed by the authors for boundary-value problems in one-, two- and three-dimensional
domains. Also, applications to initial conditions and initial-boundary value problems have
been successful. Non-linearities as well as non-conservative forces have also been addressed.

Summarizing, the algorithm is reduced to an iterative process that involves summations.
Theoretically, any rectangular clamped plate of arbitrary thickness may be handled with it.
In practice, as h/b gets smaller (PR), more terms should be taken in the sums to achieve
a good precision. The authors have developed another algorithm for the particular case of
thin plates [2]. It is not included here but it may be shown that in the limit when PR, the
solution found with WEM is coincident with the frequency values given by the theory of
Germain}Lagrange. When bending (transverse) modes are selected, one is considering
subsets of the complete set of possible mode shapes. Such subsets are also complete in
¸
2

which assures the exactness of the frequencies and the uniform convergence of the mode
shapes.

Here, only fundamental frequencies are reported but higher ones may be found without
additional di$culties. The values obtained with WEM are compared with the ones
obtained by Liew and co-workers using a three-dimensional Ritz formulation. Also, the
authors modelled the prismatic solid using FEM. Both methods yield higher bounds.

The availability of the exact solution by means of this methodology allows to correct
values found with approximate methods and, in the case of other theories, such as the
widely used theory for moderately thick plates (Mindlin), it is possible to correct the shear
coe$cients involved there. Among the advantages, additional to the exactness of the
frequencies and the uniform convergence of the modes, the systematic statement of the
solution (extremizing sequence) is formally the same in all the problems. It is worth
mentioning that as far as the di!erential problem is completely stated (equations and
boundary and/or initial conditions), the application of WEM leads to a pseudo-theorem of
<irtual =ork in the extremizing sequences; this feature makes the method applicable to
problems in which the functional does not exist in the classical sense. The authors have
made use of this advantage when solving non-conservative and/or non-linear problems by
stating ad hoc functionals that (obviously, they are not symmetrical nor positive de"nite)
give place to the pseudo-theorem of <irtual =ork. At present, the authors are studying
rectangular prisms with other boundary conditions for which the classical solutions are not
available.
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