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ABSTRACT
Accurate prediction of phenological development in maize (Zea mays L.) is fundamental to determining crop adaptation and yield 
potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has 
not been quantified. The objectives of this study were (i) to evaluate the precision of eight thermal functions, (ii) to assess the effects 
of source data on the ability to differentiate among thermal functions, and (iii) to attribute the precision of thermal functions to their 
response across various temperature ranges. Data sets used in this study represent >1000 distinct maize hybrids, >50 geographic 
locations, and multiple planting dates and years. Thermal functions and calendar days were evaluated and grouped based on their 
temperature response and derivation as empirical linear, empirical nonlinear, and process-based functions. Precision in predicting 
phase durations from planting to anthesis or silking and from silking to physiological maturity was evaluated. Large data sets 
enabled increased differentiation of thermal functions, even when smaller data sets contained orthogonal, multi-location and -year 
data. At the highest level of differentiation, precision of thermal functions was in the order calendar days < empirical linear < process 
based < empirical nonlinear. Precision was associated with relatively low temperature sensitivity across the 10 to 26°C range. In 
contrast to other thermal functions, process-based functions were derived using supra-optimal temperatures, and consequently, 
they may better represent the developmental response of maize to supra-optimal temperatures. Supra-optimal temperatures could 
be more prevalent under future climate-change scenarios, but data sets in this study contained few data in that range.
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Modeling crop productivity under climate change has 
been a topic of much discussion, and maize is particularly of 
significance due to its importance as a global source of food 
and feed. Model predictions of crop productivity under climate 
change are known to be hindered by uncertainties inherent in 
these analyses. Uncertainties can arise from a number of sources 
including the choice of general circulation model, the downscal-
ing climate methodology, as well as variation among crop mod-
els. In a recent report, Asseng et al. (2013) found that a greater 
proportion of the uncertainty in simulating the response of crop 
yields to climate change is attributable to differences in crop 
models than the uncertainties due to variations among down-
scaled general circulation models. Crop model differences can 
arise from variations in crop parameters or the approaches used 
to simulate the underlying biophysical processes. There is a need 
to evaluate the accuracy of the processes underlying crop models, 
specifically those processes that are most immediately affected by 
the environmental factors modified by climate change, such as 
temperature, water, and elevated CO2.

The impact of increased temperature due to climate change 
on crop production has been a topic of much interest in the 
scientific literature. The Intergovernmental Panel on Climate 
Change forecast an increase in global average temperature of 
1.8 to 4°C from the  period 1980 to 1999 to the period 2080 
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to 2099 (Intergovernmental Panel on Climate 
Change, 2007). Temperature increases can 
impact crop production in a number of ways, 
but arguably the most important of these is the 
impact of temperature on crop phenology. The 
importance of phenology for crop productivity 
is well understood. The phenology of a crop 
will determine its adaptation to a region, its 
ability to mature and set grain within a growing 
season, and the synchrony of key developmental 
phases with ambient environmental conditions 
critical for productivity. Consequently, 
differences in model prediction of crop 
developmental phases can have significant 
impacts on the accuracy of the effects of 
forecast climate change on crop productivity.

There are a variety of thermal functions 
in current crop models that capture the 
relationship between temperature and maize 
development. These functions vary in a number 
of ways, including parameter values, the 
quantity and quality of the data from which 
they were formulated, the complexity of the 
algorithm used to capture the relationship, 
and the manner in which the algorithms were 
derived (i.e., empirical or process based) (Table 
1). The relationship between temperature 
and maize development can be derived 
either empirically or through a process-based 
methodology. For the purposes of this study, 
empirically derived functions are defined as 
those that are formulated and parameterized 
utilizing the same measured phenomenon as the 
phenomenon to be predicted (e.g., time from 
planting to anthesis). Thermal functions derived 
through process-based methodology are defined 
as those functions that are parameterized and 
derived utilizing information at a lower level of 
organization than the phenomenon that is to be 
predicted (e.g., enzyme kinetics to predict the 
time from planting to anthesis). The thermal 
functions studied here are grouped into three 
function types that represent simple linear 
empirical relationships (Gilmore and Rogers, 
1958; Jones and Kiniry, 1986), more complex 
empirical nonlinear relationships (Brown, 
1969; Stewart et al., 1998), and functions 
based on process-based relationships between 
temperature and biochemical or organ-level 
responses (Tollenaar et al., 1979; Kim et al., 
2012; Parent and Tardieu, 2012). Differences 
in cardinal temperatures, as well as the 
relative rates of development within specific 
temperature ranges, are seen across the thermal 
functions studied (Table 1).

Despite the importance of thermal functions 
in the prediction of crop developmental stages 
and the variation in the currently utilized 
thermal functions, there is no clear indication Ta
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of the relative precision of these functions in simulating crop 
developmental phases. Fundamental differences in the accuracy 
of these algorithms are largely unknown, partially due to the 
use of genotype coefficients that “fit” the genotype to a set of 
data. Therefore, the evaluation of thermal functions for the 
accurate simulation of maize development (while limiting 
potential biases imposed by the use of genotype coefficients) is 
an important inquiry.

In assessing the impact of climate change on crop productivity, 
assumptions are generally made about the hybrids adapted for 
a region or the date on which the hybrid was probably planted. 
In some applications of crop models, such as gridded models, 
instead of specific hybrids an “average” hybrid is used to capture 
the average response of hybrids adapted to the geographic region. 
To indicate the geographic region of adaptation, commercial 
hybrids are grouped by comparative relative maturity (Lauer, 
1998), or simply relative maturity (RM). The determination of 
the developmental response of RM groups is therefore of value to 
modelers to simulate the “average” response of hybrids adapted 
to specific geographies. Variation in the precision of the thermal 
functions for different RM groups may indicate that some 
thermal functions are better able to capture the temperature 
variation extent in the geographies to which the RM groups are 
adapted or, alternatively, that RM group hybrids have different 
temperature responses. Therefore, the relationship between 
RM groups and thermal function precision is an important 
consideration. An early vs. a delayed planting date may also 
impact the precision of thermal function in much the same way 
as RM group, again calling for consideration of how the precision 
of thermal functions may vary by the temperature variations that 
can result as a consequence of a change in planting date.

The overall goal of this study was to bring together researchers 
to evaluate a number of thermal functions for their ability to 
predict maize phenology across a range of source data that vary 
in the number of hybrids, geographies, and environmental 
conditions tested. The specific objectives of this study were (i) 
to assess the effect of source data on the ability to differentiate 
among thermal functions, (ii) to quantify the relative precision 
of eight thermal functions in predicting maize phenological 
development, and (iii) to attribute the precision of thermal 
functions to their response across various temperature ranges.

MATERIALS AND METHODS
Thermal Functions

Eight thermal functions were selected for evaluation and 
classified according to their derivation type (i.e., empirical or 
process based) and thermal response. An empirical function is 
defined herein as a function for which the level of organization 
of its derivation and parameterization is the same as that of its 
outcome, e.g., the planting to anthesis interval of a field-grown 
maize canopy. In contrast, a process-based function is defined 
as a function that is derived and parameterized at a lower level 
of organization than that of its outcome, e.g., the derivation 
and parameterization of a function at the enzyme-kinetics level, 
whereas the outcome of the function is the planting to anthesis 
interval of a field-grown maize canopy. For the purposes of this 
study, the APSIM, TLU, MAIZSIM, and EnzymResp functions 
(defined below) were classified as process-based functions, and the 
GDD10,30, CERES-Maize, CHU, and GTI functions (defined 

below) were classified as empirical functions. The empirical 
functions were subdivided into “linear” (GDD10,30 and CERES-
Maize) and “nonlinear” (CHU and GTI) functions, based on 
their temperature response at a constant temperature during a 
24-h period. The thermal functions evaluated in this study are 
summarized in Table 1 and defined as follows:

1. GDD10,30: Growing degree days (GDD) with a “base” tem-
perature of 10°C and an “optimum” temperature at 30°C is 
a thermal function developed by Gilmore and Rogers (1958) 
using 10 hybrids and 10 inbred lines grown at College 
Station, TX, at five planting dates in 1956. They calculated 
heat unit accumulation by subtracting 10°C from the daily 
minimum and maximum temperatures before calculating 
daily means, using six combinations of base (none or 10°C) 
and optimum (none, 30, or 32.2°C) temperatures. The 
method with the highest precision in their study was the 
classic 10/30°C cutoff method.

2. CERES-Maize (GDD8,34): The CERES-Maize model uti-
lizes GDD8,34, with temperatures at hourly time steps esti-
mated from the minimum and maximum temperatures. The 
GDD8,34 is a linear function similar to GDD10,30, but with 
base and optimum temperatures of 8 and 34°C, respectively. 
The original thermal function for CERES-Maize described 
by Jones and Kiniry (1986) used eight 3-h, third-order poly-
nomial interpolations, but in the current version, thermal 
accumulation is calculated from temperatures during 24 1-h 
periods ( J.T. Ritchie, personal communication, 1998), which 
are estimated using a sine wave between the minimum and 
the maximum daily temperatures (cf., Tollenaar et al., 1979). 
The Hybrid-Maize (Yang et al., 2006) and IXIM (Lizaso et 
al., 2011) models also use GDD8,34, with eight 3-h and 24 
1-h temperatures, respectively, estimated from minimum 
and maximum temperatures.

3. APSIM: The APSIM model uses a single multilinear func-
tion for thermal accumulation that reflects the biological 
response of development across the 0 to 44°C range in tem-
peratures encountered in most environments in which maize 
is cultivated (Wilson et al., 1995). This temperature-response 
function has 0°C minimum, 34°C optimum, and 44°C 
ceiling temperatures. Daily thermal accumulation was calcu-
lated from eight 3-h, third-order polynomial interpolations 
between the minimum and maximum daily temperatures.

4. Thermal leaf units (TLU). Analogous to accumulated grow-
ing degrees days in GDD10,30 (°C d), TLU is accumulated 
thermal leaf units (L, leaf tips) by conversion of temperature 
to leaf (tip) units through the temperature-dependent rate 
of leaf appearance (L °C–1 d–1 ´ °C d = L), where the rate 
of leaf appearance (RLA) is the inverse of the phylochron. 
The relationship between the rate of leaf-tip appearance and 
temperature (Tollenaar et al., 1979) represents a biologically 
meaningful temperature response. This response is similar 
to other growth and development processes in maize such 
as seedling growth (Lehenbauer, 1914), radical elongation 
(Blacklow, 1972), and leaf elongation (Parent and Tardieu, 
2012). The temperature-compensated rate of leaf-tip appear-
ance is fairly constant until the emergence of the topmost 
leaf (Tollenaar et al., 1979, 1984). The number of visible 
leaf tips per plant is assumed to be equal to the accumulated 
TLU at any time between planting and the appearance of 
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the topmost leaf if the rate of leaf appearance is influenced 
by temperature only. Based on this assumption, TLU accu-
mulation between planting and anthesis is equal to the  total 
leaf number plus the TLU accumulation during the interval 
between the appearance of the topmost leaf and anthesis. 
Leaf-ligulae appearance has also been used to quantify (e.g., 
Warrington and Kanemasu, 1983a) and to model (e.g., 
Parent et al., 2010) the rate of leaf appearance and maize de-
velopment, among others, because of the wide use of V stages 
(Abendroth et al., 2011) to describe phenological develop-
ment in maize. In contrast to the temperature-compensated 
rate of leaf-tip appearance, the temperature-compensated 
rate of leaf-ligule appearance varies widely for the planting to 
flowering interval. The ratio of the rate of leaf-tip appearance 
to the rate of leaf-ligule appearance is >1 during the first 
eight to 12 leaves, and it is <1 during the second half of the 
pre-silking period (Muldoon et al., 1984). The variability of 
the temperature-compensated rate of leaf-ligule appearance 
across the pre-silking phase diminishes its suitability for use 
in modeling the rate of maize development. Analogous to ac-
cumulated growing degrees days in GDD10,30 (°C d), TLU, 
(L °C–1 d–1 ´ °C d = L) are accumulated by the conversion 
of temperature to leaf tips through the RLA function.

5. MAIZSIM (b function): A b function was introduced by 
Yin et al. (1995) that described the temperature response 
of crop development. This function describes a smooth 
non-symmetric response to temperature using five param-
eters: three cardinal temperatures (the base temperature 
[Tbase], the optimum temperature [Topt], and the maxi-
mum temperature [Tceil]), a parameter for the maximum 
rate of development at Topt (Rmax), and a parameter that 
describes the curvature of the relationship. All parameters 
except the parameter that describes the curvature are bio-
logically meaningful. Yan and Hunt (1999) simplified the 
Yin et al. (1995) function by eliminating the variable de-
scribing the shape of the curve and by setting Tbase to zero, 
resulting in the following equation with three parameters:

( )
opt ceil opt/( )

ceil
max

ceil opt opt

T T T
T T TR T R

T T T

-æ öæ ö- ÷ ÷ç ç÷ ÷ç ç= ÷ ÷ç ç÷ ÷ç ç÷ ÷-è øè ø
 [1]

where R(T) is the rate of development as a function of tem-
perature. Yan and Hunt (1999) showed that this simplified b 
function was highly predictive when model parameters that 
were estimated from six constant temperatures were used 
to predict the rates of 16 varying day–night temperature re-
gimes in the Tollenaar et al. (1979) data set. The MAIZSIM 
model (Kim et al., 2012) uses Eq. [1] for predicting the leaf 
appearance rate and assigned the following parameter values: 
Topt = 31.2°C, Tceil = 43.7°C, and Rmax = 0.53 d–1.

6. Enzymatic response (EnzymResp): Using an equation for 
describing the temperature response of enzyme activities 
( Johnson et al., 1942), Parent et al. (2010) showed that 
processes linked to plant growth and development showed 
coordinated temperature responses and followed common 
laws within a plant species. Interestingly, they showed that 
there was no coordination of temperature responses linked 
to plant metabolism and leaf photosynthesis. In a meta-

analysis, Parent and Tardieu (2012) utilized an equation 
to show a common response among maize genotypes from 
high-latitude, temperate, and tropical regions across a wide 
range in temperatures:
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The function has two parameters: T0 = 306.4°K ( = 33.3°C) 
and a = 3.5 (Parent and Tardieu, 2012). The parameter 
DHA = 73900 J mol–1 is deduced from the other two. and 
A is a size factor without units (51,559,240,052).

7. Crop heat units (CHU): Crop heat units have been used in 
Canada to account for temperature effects on phenology in 
maize since the mid-1960s. Crop heat units are estimated 
using separate night and day temperature functions (Table 1). 
The former is a linear function with a minimum of 4.4°C and 
the latter is a quadratic function with a minimum at 10°C 
and an optimum near 30°C (Brown, 1969). The quadratic 
function was developed by Brown (1960) from data collected 
on soybean [Glycine max (L.) Merr.] grown in environment-
controlled studies (Van Schaik and Probst, 1958).

8. General thermal index (GTI): The GTI model is based on a 
large data set of maize hybrids grown during 4 yr at 19 loca-
tions across a 9°interval in latitude across the North American 
Corn Belt, in which the durations from planting to silking 
and from silking to maturity were related to air temperature 
(Stewart et al., 1998). The GTI model is unique in that (i) 
it consists of two polynomial responses to temperature, one 
for the period from planting to silking and one for the period 
from silking to maturity, and (ii) the temperature response 
during the post-silking period was flat relative to that during 
the pre-silking period, particularly for temperatures <20°C 
(cf., Stewart et al., 1998, Fig. 2 and 5). Although the rela-
tive insensitivity of the duration of the grain-filling period in 
maize to temperature has been reported previously (Shaw and 
Thom, 1951; Brown, 1977), none of the current thermal mod-
els other than GTI account for differences in the temperature 
response between the pre- and post-flowering periods.

Thermal functions can have a range of responses across 
temperatures and, consequently, the precision of the thermal 
functions will probably be related to their differential response 
across the temperature ranges to which they are exposed. 
Most figures of thermal functions in the literature graph the 
developmental response against a specific temperature value, 
which is useful for evaluating the function at the hour when 
the plant experienced the specific temperature. However, 
due to the diurnal range in temperatures to which plants are 
exposed daily, an hour snap shot is a limited perspective of the 
plant’s daily developmental response. Given that a location’s 
diurnal temperature variation is relatively stable, the response 
of thermal functions for a given diurnal range can be computed 
and graphed against a range of mean temperatures. To better 
capture how the thermal functions in this study respond to 
daily ambient conditions, the response of the thermal functions 
to mean temperature in the 0 to 40°C range was calculated 
assuming a diurnal temperature range of 12°C (i.e., the 
difference between Tmax and Tmin values). The 12°C diurnal 
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temperature range value was selected because this was the 
approximate mean diurnal temperature range in the data sets 
utilized in the current study. To facilitate a comparison of the 
relative response, each function was normalized for the rate at 
its optimum temperature (Fig. 1).

Data Sources and Analyses

The precision of the thermal functions was evaluated using 
data from three different sources:

1. North America: Data were collected in field trials performed 
by Monsanto Co. that resulted in two different data sets. 
First, data were collected in trials that were performed from 
2007 to 2011 at 43 locations across the North American 
Corn Belt. A total of 118 commercial DeKalb maize hybrids 
were tested that ranged from 76 to 119 RM. The hybrids 
were grown in their area of adaptation, and the number of 
locations in each of five RM classes was 13 for RM 76 to 85, 
27 for RM 86 to 95, 26 for RM 96 to 105, 28 for RM 106 
to 115, and 14 for RM 116 to 119 (i.e., the total number of 
locations is 43 because hybrids of more than one RM class 
were tested in several locations). The number of hybrids and 
locations tested varied each year. The data set consisted of 
1375 combinations of hybrids ´ locations ´ years. Dates 
of planting and 50% anthesis were measured in this data 
set. The second data set was collected in trials that were 
performed from 2007 to 2012 at a location near DeKalb, 
IL. This location was not included in the 43-location North 
American data set. At this location, dates of black layer 
formation (i.e., physiological maturity), anthesis, and silking 
were recorded on 3129 hybrids ´ years, and the hybrids 
tested included all 118 hybrids grown at the other 43 loca-
tions. The hybrids in this data set ranged in RM from 76 to 
119. At all locations, maize hybrids were grown in 6.1-m-
long, four-row plots using standard agronomic practices.

2. Indiana–Ohio: This data set consisted of 108 entries. Details 
of this study have been previously reported by Nielsen et al. 
(2002). In short, three Pioneer maize hybrids (CRM 106, 
111, and 115) were grown at three planting dates, ranging 
from 22 April to 17 June, each at four locations in Ohio and 
Indiana from 1991 to 1994. Note that Pioneer uses CRM 
(comparative relative maturity) to designate hybrid RM and 
that hybrid RM ratings may vary somewhat among differ-
ent seed companies (Lauer, 1998). Dates of 50% silking and 
50% black layer were recorded.

3. Argentina: This data set consists of information collected 
on various maize hybrids ranging from RM 92 and 127 that 
were grown between 1988 and 2013 near Balcarce, Argen-
tina. Data included the results of a published study (Cirilo 
and Andrade, 1994a, 1994b) and several unpublished 
studies. Some of the studies had multiple planting dates that 
ranged from September to January. The experimental area 
was irrigated when deemed necessary. Dates of 50% silking 
and 50% black layer were recorded.

Weather data were collected for each location-year 
in the three data sets. Records of daily maximum and 
minimum air temperatures were obtained either from the 
National Climate Data Center (U.S. weather stations, 
http://www.ncdc.noaa.gov/cdo-web/search) or the Government 
of Canada Climate Service (Canadian weather stations, 

Fig. 1. Relationships between mean daily temperatures with a 12°C diurnal 
range normalized for rate of development at the optimum temperature 
specific to each function: (a) growing degree days (GDD10,30), CERES-
Maize, and crop heat units (CHU) functions, (b) APSIM, thermal leaf 
units (TLU), MAIZSIM, EnzymResp, and CHU functions, and (c) general 
thermal index (GTI) during the preflowering period (GTIV), GTI during 
the post-flowering period (GTIR), and CHU functions.
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http://climate.weather.gc.ca/index_e.html#access) for the 
location-years in the North American and Indiana–Ohio data 
sets. All weather service stations were, on average, within 20 km 
of the experimental site.

Field data were analyzed for the pre-flowering and post-
flowering periods. The pre-flowering period was defined as the 
period from the first day after planting until, and including, 
anthesis (i.e., the first day at which ³50% of plants shed pollen) 
or silking (i.e., the first day at which silks had emerged from 
the topmost ear shoot in ³50% of plants), and the post-silking 
period was defined as the first day after silking until, and 
including, black layer (the first day on which 50% of plants 
have grain with a black layer in the center portion of the ear). 
Whenever possible, the planting to anthesis interval rather 
than the planting to silking interval was analyzed because 
the anthesis to silking interval is highly affected by abiotic 
stresses (Edmeades et al., 2000) and, consequently, the use of 
the silking date will introduce another potential unaccounted 
source of variability in the data.

Daily thermal accumulation was estimated using the daily 
mean temperature (GTI), minimum and maximum temperatures 
(GDD10,30 and CHU), 1-h temperatures (CERES-Maize, 
TLU, MAIZSIM, and EnzymResp), and 3-h temperatures 
(APSIM). The 1-h temperatures were estimated using a sine wave 
between the minimum and the maximum daily temperature 
(e.g., Tollenaar et al., 1979). The 3-h temperatures in the APSIM 
function were estimated using range fractions for each of the 
eight time periods within a 24-h day that describe a sine wave.

The CV (coefficient of variability) was used to quantify 
the precision of the thermal functions. The mean thermal 
accumulation (and days), standard deviation, and CV were 
calculated from all observations (i.e., hybrid-location-year) 
within an RM class for the North American data set and within 
a planting date for the Indiana–Ohio and Argentinean data sets 
for the planting to anthesis (or silking) interval and the silking 
to physiological maturity interval. Statistical analyses of the CVs 
were performed using the Glimmix procedure for generalized 
linear modeling assuming a log link and g distribution in SAS, 
Version 9.3, where RM classes or planting dates were replications 
for the statistical comparisons among thermal functions, 
and thermal functions were replications for the statistical 
comparisons among either RM classes or planting dates.

Differences in the precision of the thermal functions across RM 
groups may be due to genetic or environmental factors associated 
with the regions to which the RM groups are adapted. One 
method for deconstructing these factors is to identify differences 
in cardinal temperatures among RM classes. Since the MAIZSIM 
function explicitly quantifies Topt and Tceil values, optimization 
of this function for each of the five RM classes can identify 
these cardinal temperatures of each RM class. The optimization 
procedure of the b function was performed by varying the values 
of Topt and Tceil (keeping Tbase unchanged at 0°C) and selection 
based on the lowest CV. The optimization of the b function was 
done using the optimum function of the R statistical language 
(R Development Core Team, 2013) with the Nelder–Mead 
algorithm for both entries in each of the five RM classes of the 
43-location North American data set and for all RM classes 
combined (bOPT). This is a general purpose routine for function 
error minimization. Several of the minimization calculations were 

run for two different starting values, and the results were identical 
in the two cases. This exercise confirmed that the algorithm was 
converging to a global rather than to a local optimum.

In addition, for each of the five RM class in the 43-location 
North America data set, the hybrid-location-years of the data 
set were subdivided equally into three groups representing 33% 
low, 33% medium, and 33% high means of daily minimum 
temperature and of daily maximum temperature, resulting 
in 15 mean-minimum and 15 mean-maximum temperature 
groups (i.e., 5 RM classes ´ 3 groups within each RM class). 
This analysis is informative of thermal function sensitivity 
variation by temperature. The thermal functions tested 
vary in Tbase, Topt, and Tmax values. Differences in cardinal 
temperature may render some thermal functions more sensitive 
to specific temperatures than others, thus impacting their 
relative precision in simulating development.

RESULTS AND DISCUSSION
Impact of Data Source on Thermal  

Function Evaluation
Data source is an important variable when evaluating the 

precision of thermal functions. The data sets evaluated in this 
study each had limitations. The Indiana–Ohio data set was 
comprised of a multilocation, multiyear study with orthogonal 
treatments, but contained only a relatively small number of 
hybrids and environments (i.e., location-years). In contrast, the 
North American data sets consisted of a large number of hybrids 
and environments, but the treatments were not orthogonal. 
Different hybrids were grown in each location-year, resulting 
in a different number of observations for each RM class in the 
43-location data set (Tables 2 and 3). In addition, the silking 
to black layer interval was evaluated only at a single geographic 
location near DeKalb, IL, for multiple years (Table 3). The 
Argentinean data set was not orthogonal and contained a 
relatively small number of environments (years).

Empirical nonlinear functions were more precise than either 
empirical linear or process-based functions in the North American 
and Indiana–Ohio data sets, but the precision of the thermal 
functions did not differ in the Argentinean data set (Tables 2–6). 
Differences among thermal functions and calendar days were 
generally smaller in the Indiana–Ohio than the North American 
data set. The precision of the thermal functions for the planting 
to anthesis phase in the North American data set were calendar 
days < empirical linear < process based < empirical nonlinear, 
whereas in the Indiana–Ohio data set they were calendar days < 
empirical linear = process based < empirical nonlinear. In the 
Argentinean data set, calendar days were less precise than the 
thermal functions, but the thermal functions could not be 
differentiated. Therefore, large data sets have improved ability to 
differentiate thermal function performance, even when they may 
have limitations such as lack of orthogonality. Ideally, large and 
orthogonal data sets would be preferred.

Relative Precision of Thermal Functions

Within the large data sets that allowed the greatest 
differentiation among the thermal functions, the empirical 
nonlinear functions proved to be more precise than the other 
functions tested (Tables 2–6). Thermal functions were generally 
more precise than calendar days, although differences were 
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smaller during the period between silking and black layer than 
during the planting to anthesis interval. The precision of the 
thermal functions for both the pre-flowering and post-flowering 
period in the North American data set was empirical linear < 
process based < empirical nonlinear (Table 6). The CHU and 
GTI functions were the most precise for the prediction of both 
the pre-anthesis and post-silking phases in the North American 
data set (Tables 2 and 3). In the Indiana–Ohio data set, the GTI 
function was the only thermal function that was more precise 
than calendar days for the silking to black layer period (Table 4). 
The post-flowering GTI thermal function had a very different 

thermal response than any other thermal function tested (Fig. 
1). The higher precision of GTI for the post-flowering period 
was associated with a relatively small difference in thermal 
accumulation from silking to maturity between the early and 
late planting dates for GTI. Nielsen et al. (2002) showed a 17% 
difference in GDD10,30 accumulation during the post-flowering 
period between early and late planting, whereas the difference 
in GTI accumulation was only 5% (data not shown). The mean 
minimum daily temperatures during the silking to black layer 
interval decreased from 14.3 to 10.7°C for the early and late 
planting dates, respectively.

Table 2. Coefficients of variation of the number of days and thermal accumulation during the planting to anthesis interval determined by eight func-
tions for commercial hybrids across five relative maturity (RM) groups grown at 43 locations in the Corn Belt from 2007 to 2011 (North American 
data set). The number of observations (n) is the sum of all hybrids grown in each location-year for a RM class.

RM n

Coefficient of variation

Days GDD10,30 CERES MAIZSIM TLU EnzymResp APSIM GTI CHU

—————————————————————————– % —————————————————————————–
76–85 121 10.3 9.5 9.3 9.0 8.4 9.0 7.8 7.6 7.0
86–95 204 9.9 9.7 9.5 9.2 8.5 9.2 7.7 7.6 6.8
96–105 342 9.3 6.4 6.5 6.2 6.0 6.3 6.0 5.7 5.6
106–115 560 10.4 6.4 6.9 6.0 5.3 6.2 5.4 4.7 4.5
116–122 148 10.3 6.3 6.9 5.9 5.3 6.0 5.2 4.5 4.6

Mean 10.1 e† 7.7 d 7.8 d 7.3 cd 6.7 c 7.3 d 6.4 bc 6.0 ab 5.7 a
All 1375 10.7 10.1 10.2 9.5 8.7 9.6 7.9 7.5 6.7

† Means within a row followed by the same letter are not significantly different at the 0.05 level of probability.

Table 3. Coefficients of variation of the number of days and thermal accumulation during the silking to black layer interval determined by eight thermal 
functions for commercial hybrids across five relative maturity (RM) classes grown at a single location in the U.S. Corn Belt from 2007 to 2012 (North 
American data set). The number of observations (n) is the sum of all hybrids grown in each location-year for a RM class.

RM n

Coefficient of variation

Days GDD10,30 CERES MAIZSIM TLU EnzymResp APSIM GTI CHU

—————————————————————————– % —————————————————————————–
76–85 182 9.0 8.2 8.0 7.6 7.2 8.2 7.1 6.2 6.0
86–95 413 9.4 9.3 9.0 8.6 8.2 9.3 8.2 7.4 6.8
96–105 771 8.5 9.4 9.3 8.7 8.0 9.5 8.3 7.1 6.0
106–115 1477 9.9 9.6 9.4 8.9 8.2 9.6 8.1 7.1 5.8
116–122 286 9.6 11.8 11.5 11.0 10.3 11.3 9.6 7.7 7.4

Mean 9.3 de† 9.7 e 9.5 de 9.0 d 8.4 c 9.6 e 8.3 c 7.1 b 6.4 a
All 3129 12.4 10.2 10.1 9.7 9.1 10.3 9.4 9.0 7.7

† Means within a row followed by the same letter are not significantly different at the 0.05 level of probability.

Table 4. Coefficients of variation of the number of days and thermal accumulation during the planting to silking and silking to black layer intervals de-
termined by eight thermal functions for three maize hybrids planted at three dates from April to June during 1990 to 1994 at four locations in Ohio 
and Indiana (Nielsen et al., 2002); the total number of observations is 108. Data were analyzed both separately for the early, medium, and late planting 
dates and together for all planting dates.

Planting date

Coefficient of variation

Days GDD10,30 CERES MAIZSIM TLU EnzymResp APSIM GTI CHU

—————————————————————————– % —————————————————————————–
Planting to silking

Early 11.6 4.4 5.2 4.7 3.6 4.5 5.9 4.4 3.5
Medium 9.1 4.7 5.4 4.9 3.9 4.9 6.1 4.5 3.8
Late 5.6 5.7 6.4 6.1 5.2 6.1 7.2 5.7 4.7
Mean 8.8e† 4.9abc 5.7cd 5.3bcd 4.2ab 5.2bcd 6.4d 4.8abc 4.0a
All 12.9 5.2 5.8 5.5 4.7 5.5 7.0 5.4 5.0

Silking to black layer
Early 9.5 8.4 9.2 9.0 7.9 8.7 10.1 6.8 8.0
Medium 11.5 9.0 10.2 10.0 8.6 9.4 11.0 7.6 8.9
Late 8.6 11.3 12.7 12.5 10.7 11.8 14.0 8.6 10.5
Mean 9.9bc 9.6bc 10.7cd 10.5cd 9.0b 10.0bc 11.7d 7.7a 9.1b
All 10.3 11.8 13.1 12.8 11.0 12.0 12.8 7.9 10.5

† Means within row followed by the same letter are not significantly different at 0.05 level of probability.
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Relationship between Temperature Response 
and Precision of Thermal Functions

The precision of the thermal functions is associated with 
their response across a wide range of temperatures. One 
means of understanding the precision of thermal functions 
is to compare their normalized response across a range of 
temperatures in relation to that of CHU, which has been 
shown to be more precise in the North American data set 
(Fig. 1). The results of the normalized responses to mean 
temperatures (based on a 12°C diurnal range) show that: (i) 
the empirical functions (GDD10,30 and CERES) have a linear-
like response between mean temperatures of 4 and 36°C (Fig. 
1a) (the generally depicted temperature response of GDD10,30 
in the literature is a straight line between 10 and 30°C, 
but this is true only when there is no diurnal temperature 
variation or if the maximum and minimum daily temperatures 
are >10°C and <30°C); (ii) the process-based functions (TLU, 
APSIM, MAIZSIM, and EnzymResp) have a temperature 
response similar to each other in the 15 to 45°C temperature 
range, with small differences in the lower temperature range 
(Fig. 1b); and (iii) the nonlinear empirical functions are 
similar to each other across 0 to 30°C for the pre-silking 
phase (Fig. 1c). The post-silking GTI function has a very 

different temperature response that is relatively insensitive at 
temperatures <23°C (Stewart et al., 1998).

In this study, the nonlinear empirical functions were the 
most precise group of thermal functions tested, and differences 
in precision were associated with response in the 10 to 26°C 
mean diurnal temperature range (Fig. 1). Unlike linear empirical 
functions, the shape of process-based functions and the nonlinear 
empirical function are similar (Fig. 1). These two groups of 
thermal functions varied somewhat in their base temperatures 
(Fig. 1b and 1c), but there was no consistent relationship between 
the base temperatures and the precision of the function (Tables 
2–5). All three groups differ in the supra-optimal temperature 
range. However, differences in precision cannot be attributed to 
the developmental responses in the supra-optimal temperature 
range because none of the data sets used in this study contained 
mean daily temperatures >30°C. Differences in precision among 
thermal functions were associated with their relative temperature 
response in the 10 to 26°C mean diurnal temperature range (Fig. 
1). The CHU function had higher developmental rates across 
the 10 to 26°C range and was the most precise in predicting 
phenology. At 20°C, for instance, the rate of development 
of CHU is 21% greater than that of TLU, and the rate of 
development of TLU is 21% greater than that of GDD10,30 (Fig. 

Table 5. Coefficients of variation of number of days and thermal accumulation by eight functions during the planting-silking and silking-black layer in-
tervals of maize hybrids planted from September to January between 1989 and 2012 at locations near Balcarce (Argentina). Data were analyzed both 
separately for four planting-date periods and together for all planting dates. The number of observations (n) is the sum of all hybrids grown in each 
location-year for a RM class.

Planting date n

Coefficient of variation

Days GDD10,30 CERES MAIZSIM TLU EnzymResp APSIM GTI CHU

—————————————————————————– % —————————————————————————–
Planting to silking

Sept. 6 5.4 8.2 7.8 7.7 7.6 7.6 6.7 7.0 6.9
Oct. 41 6.7 6.2 6.5 6.2 5.6 6.4 6.5 6.3 5.5
Nov. 13 9.0 8.5 8.7 8.5 8.3 8.7 8.6 8.4 8.1
Dec.–Jan. 16 12.5 9.9 10.0 9.9 10.0 9.9 10.2 10.2 10.8
Mean 8.4 a† 8.2 a 8.2 a 8.1 a 7.9 a 8.2 a 8.0 a 8.0 a 7.8 a
All 76 18.5 8.8 9.1 9.0 9.0 9.2 10.3 10.1 10.7

Silking to black layer
Sept. 6 6.7 6.0 5.0 5.4 5.7 5.6 5.1 5.4 5.4
Oct. 41 12.5 12.6 13.0 12.7 12.1 12.8 12.9 12.7 11.9
Nov. 13 18.7 11.0 10.3 10.8 11.9 11.0 11.8 13.6 13.3
Dec.–Jan. 16 11.0 8.6 8.5 8.4 8.4 8.1 7.6 8.2 8.7
Mean 12.2 b 9.6 a 9.2 a 9.3 a 9.5 a 9.4 a 9.4 a 10.0 a 9.9 a
All 76 13.0 17.0 17.5 16.8 15.7 17.0 15.7 14.1 14.0

† Means within row followed by the same letter are not significantly different at 0.05 level of probability.

Table 6. Mean coefficients of variation  of calendar days and thermal accumulation determined by empirical-linear functions (GDD10,30 and CERES-
Maize), process-based functions (APSIM, MAIZSIM, EnzymResp, and TLU), and empirical-nonlinear functions (GTI and CHU) during the planting to 
anthesis or silking and the silking to black layer intervals in the 43-location, 5-yr and the one-location, 6-yr North American data sets (Tables 2 and 3), 
the Indiana–Ohio data set (Table 4), and the Argentinean data set (Table 5).

Phase of development Data set

Coefficient of variation

Calendar days
Thermal function

Empirical linear Process-based Empirical nonlinear
——————————————————— % ———————————————————

Planting to anthesis or silking North America 10.1 d† 7.7 c 6.9 b 5.9 a
Indiana–Ohio 8.8 c 5.3 b 5.3 b 4.4 a

Argentina 8.4 8.2 8.0 7.9
Silking to black layer North America 9.3 c 9.6 c 8.8 b 6.8 a

Indiana–Ohio 9.9 ab 10.1 b 10.3 b 8.4 a
Argentina 12.2 b 9.4 a 9.4 a 9.8 a

† Means within a row followed by the same letter are not significantly different at the 0.05 level of probability.
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1), while precision of the three functions in the North American 
data sets was in the order CHU > TLU > GDD10,30 (Tables 2 
and 3). Thermal functions with higher normalized developmental 
rates across a wide range of temperatures (e.g., nonlinear empirical 
functions) have lower temperature sensitivity.

The precision of the thermal functions varied with RM class 
in the North American data set, and the variation in precision 
was associated with air temperature. The precision of the thermal 
functions increased from low- to high-RM classes during 
the planting to anthesis interval (Table 7) in the 43-location 
North America data set. This relationship between RM class 
and thermal function precision could be due to either genetics 
or environment. The association with genetics was dismissed 
because, when all RM hybrids were grown at a single location 
(i.e., the DeKalb, IL location), the trend in RM precision was no 
longer observed, i.e., there was either an opposite trend during 
the silking to black layer period (Table 7) or no trend during 
the planting to anthesis interval (data not shown). The effects 
of temperature on the relative precision of thermal methods 
across the RM groups in the North American data set was 
examined in more detail by subdividing each of the five RM 
groups of environments into three mean-minimum-temperature 
environments (Fig. 2). In this analysis, the change in CV of 
each thermal function across the 15 temperature–RM groups 

was –0.55% °C–1 for GDD10,30, –0.49% °C–1 for TLU, and 
–0.41% °C–1 for CHU, but these slopes were not significantly 
different (data not shown). The CVs in some of the temperature 
environments deviated substantially from the regression (Fig. 2), 
and variation among the three thermal functions within these 
environments was small when the deviation from the regression 
was negative (e.g., the 10.2, 12.3, and 13.9°C environments) and 
was large when the deviation from the regression was positive 
(e.g., the 10.4, 12.0, and 13.4°C environments).

When the b function was optimized for five RM groups, the 
values of Topt and Tceil of the early RM classes (Table 8) were 
much lower than reported values from controlled-environment 
studies (e.g., Parent et al., 2010; Sanchez et al., 2014). The low 
Topt and Tceil values were probably not due to genetic differences 
among RM groups. Low Topt (21.2 and 22.3°C) has been 
reported for the temperature-dependent duration of the period 
from sowing to tassel initiation for two highland tropical inbred 
lines in controlled-environment studies performed by Ellis et al. 
(1992) and reported by Yin et al. (1995), but neither the results 
of Tollenaar et al. (1979), which included North American 
hybrids of <85 RM, nor the results of Parent and Tardieu (2012), 
which included very early European hybrids and inbred lines, 
showed Topt and Tceil values that were lower than those reported 
in studies of temperature-dependent rates of growth and 
development in maize (cf., Parent and Tardieu, 2012).

The relatively high precision of temperature-insensitive 
functions, the decline in CV with increase in temperature 
among RM groups, and low cardinal temperatures in the 
optimized b function of early RM groups all support the 
contention that maize phenology is influenced by factors other 
than air temperature per se. Factors other than air temperature 

Table 7. Mean coefficient of variations (CV) of thermal accumulation determined by eight functions during the planting to anthesis and silking to black 
layer intervals, and mean daily minimum and maximum temperatures of locations for five relative maturity (RM) groups. The planting-to-anthesis 
interval comprised observations across 43 Corn-Belt locations during 2007 to 2011 (Table 1) and the silking to black layer interval comprised > 3100 
observations at one Corn-Belt location from 2007 to 2012 (North American data sets).

RM

Planting to anthesis Silking to black layer

CV
Daily temperature

CV
Daily temperature

Min. Max. Min. Max.

d % ——————— °C ——————— % ——————— °C ———————
76–85 8.5 c† 11.7 23.1 7.3 a 17.1 28.4
86–95 8.5 c 12.1 23.9 8.4 b 16.9 27.9
96–105 6.1 b 13.0 25.4 8.3 b 16.6 27.7
106–115 5.7 a 14.3 26.3 8.3 b 15.6 26.7
116–122 5.6 a 15.7 27.5 10.1 c 15.1 26.3

† Means within a column followed by the same letter are not significantly different at the 0.05 level of probability.

Table 8. Coefficients of variation (CV) for the planting to anthesis in-
terval of thermal functions that utilize different forms of the b function: 
the MAIZSIM b function, and different b functions modified in order to 
optimize CV by changing Topt and Tceil within each of the five relative 
maturity (RM) classes (Tbase is held constant at 0°C).

RM

Coefficient of variation

bOPT MAIZSIM

d ————————— % —————————
76–85 6.2 (23.0, 32.4)† 9.0 (32.1, 43.7)
86–95 6.3 (25.7, 39.6) 9.2 (32.1, 43.7)
96–105 5.4 (26.2, 35.9) 6.2 (32.1, 43.7)
106–115 4.3 (27.6, 37.8) 6.0 (32.1, 43.7)
116–122 4.3 (30.3, 44.9) 5.9 (32.1, 43.7)

† Topt, Tceil (°C) in parentheses.

Fig. 2. Relationship between mean minimum temperature and CVs 
of the growing degree day (GDD10,30), thermal leaf units (TLU), and 
crop heat units (CHU) functions for 12 environments (location-years). 
Environments were grouped into the 33% highest, 33% medium, and 
33% lowest mean minimum temperature environments in each of the 
five relative maturity classes depicted in Table 7.
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that can influence phenology include soil and apex temperature 
(Vinocur and Ritchie, 2001), photoperiod (e.g., Kiniry et al., 
1983; Tollenaar and Hunter, 1983; Warrington and Kanemasu, 
1983b), incident solar radiation (Birch et al., 1998, Tollenaar, 
1999), and periods of severe stress (e.g., McCullough et al., 
1994). For instance, apex temperature is influenced by plant 
transpiration and soil temperature before the eight-leaf-tip stage 
and the apex-air temperature differential appears to be greatest at 
low temperatures (Vinocur and Ritchie, 2001; Birch et al., 1998). 
The apex-air temperature differential may have played a role 
in the higher precision of less temperature-sensitive functions, 
the increase in precision with temperature among RM groups, 
and the low Topt and Tceil values for the early RM groups in 
the MAIZSIM optimization. The lower precision of process-
based functions may be due to the fact that these data sets were 
generated under controlled-environment conditions where many 
of the factors other than air temperature were held constant and 
where the apex-air temperature differential may have been less 
than under field conditions.

Precision of Thermal Functions under 
Supra-Optimal Temperatures

Climate change will probably result in an increase in the number 
of days in the growing season with elevated temperatures, and 
therefore an accurate estimate of the impact of supra-optimal 
temperatures on maize phenology will be important in evaluating 
the impact of climate change on maize yield. The response to 
supra-optimal temperature differs substantially among the thermal 
functions (Fig. 1).The process-based thermal functions TLU, 
MAIZSIM, and EnzymResp are derived from data that includes 
supra-optimal temperatures. These functions were derived from 
controlled-environment studies during early phases of development 
that showed that the rate of development declines rapidly when 
temperatures are raised beyond the optimum temperature 
(Lehenbauer, 1914; Tollenaar et al., 1979; Warrington and 
Kanemasu, 1983a,b; Parent and Tardieu, 2012). In contrast, the 
rate of development remains constant beyond 36°C for empirical 
linear functions and declines moderately beyond the optimum 
temperature in nonlinear empirical functions that account for the 
whole life cycle (Fig. 1). Nonlinear empirical functions were derived 
based on data sets that contained either no or few supra-optimal 
temperatures (i.e., Van Schaik and Probst, 1958; Brown, 1960; 
Stewart et al., 1998), and the precision of these functions may be 
low for supra-optimal conditions. Hence, while data are limited on 
the supra-optimal range, we suggest that maize models that are used 
to assess the impact of climate change on crop productivity should 
utilize the developmental response to supra-optimal temperatures 
of process-based functions for the pre-flowering period. Even less 
is known about the developmental response to supra-optimal 
temperatures during the grain-filling period. The GTI and CHU 
functions performed best during the post-silking period in the 
data sets evaluated here (Tables 3 and 4), with mean temperatures 
<25°C. To the best of our knowledge, no information is available 
on the response of the grain-filling period to supra-optimal 
temperatures. Owing to the paucity of supra-optimal temperature 
data in the derivation or evaluation of empirical thermal functions, 
process-based functions appear to better represent the temperature 
response of maize development under supra-optimal temperatures. 
Overestimation of the rate of development under supra-optimal 

temperatures by empirical models will lead to a disproportionate 
reduction of the life cycle, and consequently, models that use 
empirical thermal functions will underpredict yield in climate-
change scenarios.

CONCLUSIONS
The results of this study show that large data sets can 

improve the ability to differentiate among thermal functions 
that quantify the effect of temperature on maize phenology. 
The precision of nonlinear empirical functions, particularly 
CHU, is superior to that of both linear empirical functions, 
such as GDD10,30, and process-based functions, such as the 
TLU function, in predicting maize phenology. The precision of 
thermal functions was associated with the temperature response 
across the 10 to 26°C temperature range rather than with the 
base and optimum cardinal temperatures or the supra-optimal 
temperature range. The higher precision of the CHU function is 
associated with its overall lower relative temperature sensitivity 
in the 10 to 26°C temperature range, which is probably due 
to factors other than air temperature that influence rate of 
development. The GTI function during the post-silking period 
has a low temperature sensitivity for temperatures <23°C (Fig. 
1c), and this function was superior for the Indiana–Ohio data 
set. Because the nonlinear empirical functions were developed 
under conditions devoid of supra-optimal temperatures, 
and while we await for research addressing the response to 
temperature in that range, maize models that are used to assess 
the impact of climate change on crop productivity should 
utilize the developmental response of process-based functions 
to quantify the response of phenology to supra-optimal 
temperatures during the pre-flowering period.
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